Transcript
Page 1: Cells, Tissues, Organs and Organ Systems  by Elizabeth Harris

Cells, Tissues, Organs and Organ Systems

by Elizabeth Harris.

Page 2: Cells, Tissues, Organs and Organ Systems  by Elizabeth Harris

What is a Cell?What is a Cell?

Organism Bacteria Insect Small mammal HumanDiagram

Notes Bacteria are tiny organisms whose single cells have neither a membrane-bounded nucleus nor other membrane-bounded organelles. These organisms are very successful. Did you know all bacteria found on the surface of our planet weigh more than any other species? That's amazing.

An insect can have millions of cells. Insects have basic organ systems that help all insects live and reproduce. An organ system is a group of organs that work together to complete a specific task.

A small mammal can contain millions of cells. Don’t let size fool you. Cells are microscopic so they can fit in almost any small space! Small mammals also contain a specific array of organ systems including respiratory, circulatory, ect. Which also included in human organ systems as well.

There are eleven major organ systems in the human body. Humans contain a skeletal organ system, reproductive, and an excretory organ system. Humans can produce billions of new cells each hour! We put our organ systems to work.

Cells are the smallest unit of living matter. All living things are made up of cells including bacteria, insects, small mammal’s and humans. There are a lot of different cells. Cells contain atoms which is matter, the basic building blocks of objects. (1, 3)

Page 3: Cells, Tissues, Organs and Organ Systems  by Elizabeth Harris

How Cells, Tissues, and Organ Systems Work.How Cells, Tissues, and Organ Systems Work.

Part Cells Tissues Organs Organ Systems such as Circulatory

Diagram

Notes Cells are all different. Each cell has a job. For example a red blood cells job is to carry oxygen to the rest of the body.

Tissues like blood and skin are collections of cells working together to keep life in motion.

Organs like the heart, brain, liver, and skin are all collections of tissues. The tissue contains many functions to keep the organs alive. The organs all work together to sustain life and create and organ system.

This group of organs transport blood and the nutrients in blood through out the body. This group of organs work together and become an organ system.

Certain cells perform certain functions. When two cells perform similar functions they are both organized into tissues. For example: A tissue like a skin tissue contain a collection of cells that are highly specialized and are designed to do their job by creating new cells and absorbing the nutrients to keep the skin healthy. If the cells in our skin didn’t fight off infection we would die due to the infection passing through our skin into our body. (1, 3, 5)

Page 4: Cells, Tissues, Organs and Organ Systems  by Elizabeth Harris

How do cells and organ systems work together to create an How do cells and organ systems work together to create an organism?organism?

An organism is a living thing that can react to certain things like light, glucose, carbon An organism is a living thing that can react to certain things like light, glucose, carbon dioxide, etc. reproduce, grow, and maintain homeostasis. An organism can be a dioxide, etc. reproduce, grow, and maintain homeostasis. An organism can be a bacteria, protist, fungi, virus, animal, or plant. bacteria, protist, fungi, virus, animal, or plant.

An organ system is a group of organs that work together and complete a particular An organ system is a group of organs that work together and complete a particular task such as the respiratory systems job is to carry oxygen to your lungs and other task such as the respiratory systems job is to carry oxygen to your lungs and other parts of your body then dispose of carbon dioxide.parts of your body then dispose of carbon dioxide.

A cell is the structural, functional, and biological unit of organisms.A cell is the structural, functional, and biological unit of organisms. (1, 5, 6. 7, 8)

“When two or more similar cells join together we get a tissue.Two or more similar tissue fuse to form a organ.Different organs function together to make a organ system.“ (8)

Page 5: Cells, Tissues, Organs and Organ Systems  by Elizabeth Harris

This is a tree map This is a tree map explaining the flow of explaining the flow of how cells and organ how cells and organ systems contribute to systems contribute to making an organism.making an organism.

Page 6: Cells, Tissues, Organs and Organ Systems  by Elizabeth Harris

Cell part FunctionNucleus Found in both cells, A nucleus controls activity and contains cell genes.

Mitochondria Breaths glucose and oxygen within the cell. Only found in animal cells.

Cell membrane

The outer part of the cell which gives the cell shape and controls the cells molecules as there passed in and out of the cell. Found both in animal and plant cells.

Cytoplasm Chemical reactions that are very essential in the certain area. Found in both plant and animal cells.

Cell wall Strengthens the cell in the plant. Is made from cellulose. Found in Plant cells.

Vacuole Contains a liquid that is sugary called cell sap. Found in plant cells.

Chloroplast Carries out photosynthesis, turning light into energy. Only found in plant cells.

Plant and animal cellsPlant and animal cells

Cell Animal Plant

Diagram

Plant and animal cells both have some things in common such as a nucleus. Plant cells contain unique organelles that use light and turn it into energy. This is called photosynthesis. Each tiny cell organelle has a special job to do within the cell. (1, 4)

Page 7: Cells, Tissues, Organs and Organ Systems  by Elizabeth Harris

Essential cell organellesEssential cell organelles

Cell organelles in plants and animals:Organelle Mitochondria Chloroplast Nucleus Cell membrane

Diagram

Function Found in both plant and animal cells, Mitochondria breaths glucose and oxygen to release energy along with Co2 and water.

Chloroplast is only found in plant cells. They are able to combine carbon dioxide and water by using the energy from light. By doing this they release oxygen and glucose.

A cell’s nucleus contains necessary information or genes so it’s able to produce new cells, new enzymes and new proteins. Humans have over 30,000 genes.

Controls passage of substances in and out of a cell. Movement of the molecules happen by active uptake, which is high activity in taking up molecules.

Cell organelles carry out important functions in plants and animal cells. The nucleus builds new proteins including enzymes and also controls activity in the cell so nothing goes hay wire. The nucleus also contains DNA, the material of inheritance and is able to produce new daughter cells during cell division aka mitosis. Mitochondria breathes glucose and oxygen releasing energy. (1, 5)

Page 8: Cells, Tissues, Organs and Organ Systems  by Elizabeth Harris

Specific cells in Humans and AnimalsSpecific cells in Humans and Animals

Specific cells in animals:Cell Red blood cell Nerve cell Sperm cell Muscle cells

Diagram

Notes Red blood cells contain no nucleus and have a larger surface area. This allows than to carry more oxygen to larger areas of the body.

These cells carry connections through out our body to different nerve cells. The can send out impulses to other nerve cells to send our body different messages in a short amount of time.

Sperm cells can swim to their destination, being the female egg, using the tails and streamlined head to reach the female egg and deliver fertilization.

Muscle cells are rich in mitochondria allowing them to produce massive amounts of energy by taking in glucose and oxygen and turning it into energy. They contract to make our bodies move.

Cells are designed for specific functions in the human body and an animal body, which are very much alike. Billions and billions of cells work together in our body to support their assigned life. A red blood cell for example does not contain a nucleus so there is more room to transport more oxygen to the rest of the body. A muscle cell may contain more mitochondria than normal cells because it must produce more energy. (1, 2, 4)

Page 9: Cells, Tissues, Organs and Organ Systems  by Elizabeth Harris

Specific cells in Plants. Specific cells in Plants.

Cell Root hair cell Xylem cells Pollen cell Stomata cell

Diagram

Notes Root hair cells contain a large surface area, just like red blood cells. They have this large surface area to take in more minerals and water to create photosynthesis for a healthy plant.

Water is carried up and down the plants stem and through the Xylem vessels. These are long tubes that reach from the roots to the leaf. Water moves in xylem cells.

Pollen cells are like the male gametes and are transferred to the female carpel by insects such as bees. Each pollen cell contains genetic information to create a new specific plant.

These cells are located on the underside of leaves to exchange water, carbon dioxide, and oxygen when photosynthesis is occurring in the plant.

Like in animal cells, plant cells are also specifically designed to function along with their rolls and produce life. Millions of cells work together to produce food for these green plants by taking light and turning it into energy. A pollen cell, for example is like a male sperm cell compared to an animal sperm cell. The pollen cell is transferred to the female carpel by insects therefore creating new genetic information to create a new plant. (1, 8, 10)

Page 10: Cells, Tissues, Organs and Organ Systems  by Elizabeth Harris

The size of cells in plants and animalsThe size of cells in plants and animals

Cell Typical animal cells Typical plant cells Cell division in plants and animals

Diagram

Notes Animal cells range much larger than plant cells. They can stretch to 10 to 100 meters.

Plant cells are much smaller than animal cells. Plant cells stretch from 10 to 30 micrometers.

When cell volume increases, the ratio decreases between surface area and volume decreasing. This reduces the cells ability to absorb nutrients and oxygen in the cell membrane. Over a million cells split in our bodies every day doubling our cells.

Mitosis

Parent cell

2 Daughter cells

DNA replicates

Chromosomesseparate

Stage one

Stage four

Stage two

Stage three

2n

2n

4n

2n

Cells in plants and animals come in all different sizes. We need a microscope to exam the size of cells. Plant cells are much smaller than animal cells. Both plant and animal cells split or divide before becoming to large. If cells didn’t split the surface area would become too large and release oxygen and nutrients that could have been absorbed. (1, 10,11)

Page 11: Cells, Tissues, Organs and Organ Systems  by Elizabeth Harris

References

1. Unit 38 Cells, Tissues, and Organ Systemshttp://www.slideshare.net/scienceinteractive/unit-38-cells-tissues-organs-and-organ-systems 2. Medicene.Nethttp://www.medterms.com/script/main/art.asp?articlekey=5260 3. Biology.about.comhttp://biology.about.com/od/organsystems/a/aa031706a.htm 4. Cells Alive!http://www.cellsalive.com/cells/3dcell.htm 5. Cells and Organelles http://biology.clc.uc.edu/courses/bio104/cells.htm 6. Answers.comhttp://www.answers.com/topic/organism 7. Biology-online.orghttp://www.biology-online.org/dictionary/Cell 8. Biology-online.orghttp://www.biology-online.org/dictionary/Cell 9. Wiki.answers.comhttp://wiki.answers.com/Q/Relate_cells_to_tissues_to_organs_to_organ_systems_how_do_they_work_together

Page 12: Cells, Tissues, Organs and Organ Systems  by Elizabeth Harris

References

10. Microscopy.fsu.eduhttp://www.microscopy.fsu.edu/cells/plantcell.html

11. Wikipedia.org http://en.wikipedia.org/wiki/Cell_%28biology%29


Top Related