Transcript
Page 1: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

Compiled and Solved Problems

in Geometry and Trigonometry

Page 2: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

1

FLORENTIN SMARANDACHE

255 Compiled and Solved Problems

in Geometry and Trigonometry

(from Romanian Textbooks)

Educational Publisher

2015

Page 3: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

2

Peer reviewers:

Prof. Rajesh Singh, School of Statistics, DAVV, Indore (M.P.), India.

Dr. Linfan Mao, Academy of Mathematics and Systems, Chinese Academy of Sciences,

Beijing 100190, P. R. China.

Mumtaz Ali, Department of Mathematics, Quaid-i-Azam University, Islamabad, 44000,

Pakistan

Prof. Stefan Vladutescu, University of Craiova, Romania.

Said Broumi, University of Hassan II Mohammedia, Hay El Baraka Ben M'sik,

Casablanca B. P. 7951, Morocco.

E-publishing, Translation & Editing:

Dana Petras, Nikos Vasiliou

AdSumus Scientific and Cultural Society, Cantemir 13, Oradea, Romania

Copyright:

Florentin Smarandache 1998-2015

Educational Publisher, Chicago, USA

ISBN: 978-1-59973-299-2

Page 4: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

3

Table of Content

Explanatory Note ..................................................................................................................................................... 4

Problems in Geometry (9th grade) ................................................................................................................... 5

Solutions ............................................................................................................................................................... 11

Problems in Geometry and Trigonometry ................................................................................................. 38

Solutions ............................................................................................................................................................... 42

Other Problems in Geometry and Trigonometry (10th grade) .......................................................... 60

Solutions ............................................................................................................................................................... 67

Various Problems ................................................................................................................................................... 96

Solutions ............................................................................................................................................................... 99

Problems in Spatial Geometry ...................................................................................................................... 108

Solutions ............................................................................................................................................................ 114

Lines and Planes ................................................................................................................................................. 140

Solutions ............................................................................................................................................................ 143

Projections ............................................................................................................................................................. 155

Solutions ............................................................................................................................................................ 159

Review Problems ................................................................................................................................................. 174

Solutions ............................................................................................................................................................ 182

Page 5: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

4

Explanatory Note

This book is a translation from Romanian of "Probleme Compilate ลŸi Rezolvate de

Geometrie ลŸi Trigonometrie" (University of Kishinev Press, Kishinev, 169 p., 1998), and

includes problems of 2D and 3D Euclidean geometry plus trigonometry, compiled and

solved from the Romanian Textbooks for 9th and 10th grade students, in the period

1981-1988, when I was a professor of mathematics at the "Petrache Poenaru" National

College in Balcesti, Valcea (Romania), Lycรฉe Sidi El Hassan Lyoussi in Sefrou (Morocco),

then at the "Nicolae Balcescu" National College in Craiova and Dragotesti General

School (Romania), but also I did intensive private tutoring for students preparing their

university entrance examination. After that, I have escaped in Turkey in September 1988

and lived in a political refugee camp in Istanbul and Ankara, and in March 1990 I

immigrated to United States. The degree of difficulties of the problems is from easy

and medium to hard. The solutions of the problems are at the end of each chapter.

One can navigate back and forth from the text of the problem to its solution using

bookmarks. The book is especially a didactical material for the mathematical students

and instructors.

The Author

Page 6: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

5

Problems in Geometry (9th grade)

1. The measure of a regular polygonโ€™s interior angle is four times bigger than

the measure of its external angle. How many sides does the polygon have?

Solution to Problem 1

2. How many sides does a convex polygon have if all its external angles are

obtuse?

Solution to Problem 2

3. Show that in a convex quadrilateral the bisector of two consecutive angles

forms an angle whose measure is equal to half the sum of the measures of

the other two angles.

Solution to Problem 3

4. Show that the surface of a convex pentagon can be decomposed into two

quadrilateral surfaces.

Solution to Problem 4

5. What is the minimum number of quadrilateral surfaces in which a convex

polygon with 9, 10, 11 vertices can be decomposed?

Solution to Problem 5

6. If (๐ด๐ต๐ถ) โ‰ก (๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ) , then โˆƒ bijective function ๐‘“ = (๐ด๐ต๐ถ) โ†’ (๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ) such

that for โˆ€ 2 points ๐‘ƒ, ๐‘„ โˆˆ (๐ด๐ต๐ถ) , โ€–๐‘ƒ๐‘„โ€– = โ€–๐‘“(๐‘ƒ)โ€–, โ€–๐‘“(๐‘„)โ€–, and vice versa.

Solution to Problem 6

Page 7: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

6

7. If โˆ†๐ด๐ต๐ถ โ‰ก โˆ†๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ then โˆƒ bijective function ๐‘“ = ๐ด๐ต๐ถ โ†’ ๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ such that

(โˆ€) 2 points ๐‘ƒ, ๐‘„ โˆˆ ๐ด๐ต๐ถ, โ€–๐‘ƒ๐‘„โ€– = โ€–๐‘“(๐‘ƒ)โ€–, โ€–๐‘“(๐‘„)โ€–, and vice versa.

Solution to Problem 7

8. Show that if โˆ†๐ด๐ต๐ถ~โˆ†๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ, then [๐ด๐ต๐ถ]~[๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ].

Solution to Problem 8

9. Show that any two rays are congruent sets. The same property for lines.

Solution to Problem 9

10. Show that two disks with the same radius are congruent sets.

Solution to Problem 10

11. If the function ๐‘“:๐‘€ โ†’ ๐‘€โ€ฒ is isometric, then the inverse function ๐‘“โˆ’1:๐‘€ โ†’ ๐‘€โ€ฒ

is as well isometric.

Solution to Problem 11

12. If the convex polygons ๐ฟ = ๐‘ƒ1, ๐‘ƒ2, โ€ฆ , ๐‘ƒ๐‘› and ๐ฟโ€ฒ = ๐‘ƒ1โ€ฒ, ๐‘ƒ2

โ€ฒ , โ€ฆ , ๐‘ƒ๐‘›โ€ฒ have |๐‘ƒ๐‘– , ๐‘ƒ๐‘–+1| โ‰ก

|๐‘ƒ๐‘–โ€ฒ, ๐‘ƒ๐‘–+1

โ€ฒ | for ๐‘– = 1, 2, โ€ฆ , ๐‘› โˆ’ 1, and ๐‘ƒ๐‘–๐‘ƒ๐‘–+1๐‘ƒ๐‘–+2 โ‰ก๐‘ƒ๐‘–โ€ฒ๐‘ƒ๐‘–+1โ€ฒ ๐‘ƒ๐‘–+2

โ€ฒ , (โˆ€) ๐‘– = 1, 2, โ€ฆ , ๐‘› โˆ’

2, then ๐ฟ โ‰ก ๐ฟโ€ฒ and [๐ฟ] โ‰ก [๐ฟโ€ฒ].

Solution to Problem 12

13. Prove that the ratio of the perimeters of two similar polygons is equal to

their similarity ratio.

Solution to Problem 13

14. The parallelogram ๐ด๐ต๐ถ๐ท has โ€–๐ด๐ตโ€– = 6, โ€–๐ด๐ถโ€– = 7 and ๐‘‘(๐ด๐ถ) = 2. Find

๐‘‘(๐ท, ๐ด๐ต).

Solution to Problem 14

Page 8: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

7

15. Of triangles ๐ด๐ต๐ถ with โ€–๐ต๐ถโ€– = ๐‘Ž and โ€–๐ถ๐ดโ€– = ๐‘, ๐‘Ž and ๐‘ being given

numbers, find a triangle with maximum area.

Solution to Problem 15

16. Consider a square ๐ด๐ต๐ถ๐ท and points ๐ธ, ๐น, ๐บ, ๐ป, ๐ผ, ๐พ, ๐ฟ,๐‘€ that divide each side

in three congruent segments. Show that ๐‘ƒ๐‘„๐‘…๐‘† is a square and its area is

equal to 2

9๐œŽ[๐ด๐ต๐ถ๐ท].

Solution to Problem 16

17. The diagonals of the trapezoid ๐ด๐ต๐ถ๐ท (๐ด๐ต||๐ท๐ถ) cut at ๐‘‚.

a. Show that the triangles ๐ด๐‘‚๐ท and ๐ต๐‘‚๐ถ have the same area;

b. The parallel through ๐‘‚ to ๐ด๐ต cuts ๐ด๐ท and ๐ต๐ถ in ๐‘€ and ๐‘. Show that

||๐‘€๐‘‚|| = ||๐‘‚๐‘||.

Solution to Problem 17

18. ๐ธ being the midpoint of the non-parallel side [๐ด๐ท] of the trapezoid ๐ด๐ต๐ถ๐ท,

show that ๐œŽ[๐ด๐ต๐ถ๐ท] = 2๐œŽ[๐ต๐ถ๐ธ].

Solution to Problem 18

19. There are given an angle (๐ต๐ด๐ถ) and a point ๐ท inside the angle. A line

through ๐ท cuts the sides of the angle in ๐‘€ and ๐‘. Determine the line ๐‘€๐‘

such that the area โˆ†๐ด๐‘€๐‘ to be minimal.

Solution to Problem 19

20. Construct a point ๐‘ƒ inside the triangle ๐ด๐ต๐ถ, such that the triangles ๐‘ƒ๐ด๐ต,

๐‘ƒ๐ต๐ถ, ๐‘ƒ๐ถ๐ด have equal areas.

Solution to Problem 20

21. Decompose a triangular surface in three surfaces with the same area by

parallels to one side of the triangle.

Solution to Problem 21

Page 9: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

8

22. Solve the analogous problem for a trapezoid.

Solution to Problem 22

23. We extend the radii drawn to the peaks of an equilateral triangle inscribed

in a circle ๐ฟ(๐‘‚, ๐‘Ÿ), until the intersection with the circle passing through the

peaks of a square circumscribed to the circle ๐ฟ(๐‘‚, ๐‘Ÿ). Show that the points

thus obtained are the peaks of a triangle with the same area as the

hexagon inscribed in ๐ฟ(๐‘‚, ๐‘Ÿ).

Solution to Problem 23

24. Prove the leg theorem with the help of areas.

Solution to Problem 24

25. Consider an equilateral โˆ†๐ด๐ต๐ถ with โ€–๐ด๐ตโ€– = 2๐‘Ž. The area of the shaded

surface determined by circles ๐ฟ(๐ด, ๐‘Ž), ๐ฟ(๐ต, ๐‘Ž), ๐ฟ(๐ด, 3๐‘Ž) is equal to the area of

the circle sector determined by the minor arc (๐ธ๐น) of the circle ๐ฟ(๐ถ, ๐‘Ž).

Solution to Problem 25

26. Show that the area of the annulus between circles ๐ฟ(๐‘‚, ๐‘Ÿ2) and ๐ฟ(๐‘‚, ๐‘Ÿ2) is

equal to the area of a disk having as diameter the tangent segment to

circle ๐ฟ(๐‘‚, ๐‘Ÿ1) with endpoints on the circle ๐ฟ(๐‘‚, ๐‘Ÿ2).

Solution to Problem 26

27. Let [๐‘‚๐ด], [๐‘‚๐ต] two โŠฅ radii of a circle centered at [๐‘‚]. Take the points ๐ถ and

๐ท on the minor arc ๐ด๐ต๏ฟฝ๏ฟฝ such that ๐ด๏ฟฝ๏ฟฝโ‰ก๐ต๏ฟฝ๏ฟฝ and let ๐ธ, ๐น be the projections of

๐ถ๐ท onto ๐‘‚๐ต. Show that the area of the surface bounded by [๐ท๐น], [๐น๐ธ[๐ธ๐ถ]]

and arc ๐ถ๏ฟฝ๏ฟฝ is equal to the area of the sector determined by arc ๐ถ๏ฟฝ๏ฟฝ of the

circle ๐ถ(๐‘‚, โ€–๐‘‚๐ดโ€–).

Solution to Problem 27

Page 10: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

9

28. Find the area of the regular octagon inscribed in a circle of radius ๐‘Ÿ.

Solution to Problem 28

29. Using areas, show that the sum of the distances of a variable point inside

the equilateral triangle ๐ด๐ต๐ถ to its sides is constant.

Solution to Problem 29

30. Consider a given triangle ๐ด๐ต๐ถ and a variable point ๐‘€ โˆˆ |๐ต๐ถ|. Prove that

between the distances ๐‘ฅ = ๐‘‘(๐‘€, ๐ด๐ต) and ๐‘ฆ = ๐‘‘(๐‘€, ๐ด๐ถ) is a relation of ๐‘˜๐‘ฅ +

๐‘™๐‘ฆ = 1 type, where ๐‘˜ and ๐‘™ are constant.

Solution to Problem 30

31. Let ๐‘€ and ๐‘ be the midpoints of sides [๐ต๐ถ] and [๐ด๐ท] of the convex

quadrilateral ๐ด๐ต๐ถ๐ท and {๐‘ƒ} = ๐ด๐‘€ โˆฉ ๐ต๐‘ and {๐‘„} = ๐ถ๐‘ โˆฉ ๐‘๐ท. Prove that the

area of the quadrilateral ๐‘ƒ๐‘€๐‘„๐‘ is equal to the sum of the areas of triangles

๐ด๐ต๐‘ƒ and ๐ถ๐ท๐‘„.

Solution to Problem 31

32. Construct a triangle having the same area as a given pentagon.

Solution to Problem 32

33. Construct a line that divides a convex quadrilateral surface in two parts

with equal areas.

Solution to Problem 33

34. In a square of side ๐‘™, the middle of each side is connected with the ends of

the opposite side. Find the area of the interior convex octagon formed in

this way.

Solution to Problem 34

Page 11: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

10

35. The diagonal [๐ต๐ท] of parallelogram ๐ด๐ต๐ถ๐ท is divided by points ๐‘€, ๐‘, in 3

segments. Prove that ๐ด๐‘€๐ถ๐‘ is a parallelogram and find the ratio between

๐œŽ[๐ด๐‘€๐ถ๐‘] and ๐œŽ[๐ด๐ต๐ถ๐ท].

Solution to Problem 35

36. There are given the points ๐ด, ๐ต, ๐ถ, ๐ท, such that ๐ด๐ต โˆฉ ๐ถ๐ท = {๐‘}. Find the

locus of point ๐‘€ such that ๐œŽ[๐ด๐ต๐‘€] = ๐œŽ[๐ถ๐ท๐‘€].

Solution to Problem 36

37. Analogous problem for ๐ด๐ต||๐ถ๐ท.

Solution to Problem 37

38. Let ๐ด๐ต๐ถ๐ท be a convex quadrilateral. Find the locus of point ๐‘ฅ1 inside ๐ด๐ต๐ถ๐ท

such that ๐œŽ[๐ด๐ต๐‘€] + ๐œŽ[๐ถ๐ท๐‘€] = ๐‘˜, ๐‘˜ โ€“ a constant. For which values of ๐‘˜ the

desired geometrical locus is not the empty set?

Solution to Problem 38

Page 12: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

11

Solutions

Solution to Problem 1.

180 (๐‘› โˆ’ 2)

๐‘›= 4

180

5 ๐‘› = 10

Solution to Problem 2.

Let ๐‘› = 3๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3โˆข ext

โŸน

๐‘ฅ1 > 900

๐‘ฅ2 > 900

๐‘ฅ3 > 900

}โŸน ๐‘ฅ1 + ๐‘ฅ2 + ๐‘ฅ3 > 2700, so ๐‘› = 3 is possible.

Let ๐‘› = 4๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3, ๐‘ฅ4โˆข ext

โŸน๐‘ฅ1 > 90

0

โ‹ฎ๐‘ฅ3 > 90

0} โŸน ๐‘ฅ1 + ๐‘ฅ2 + ๐‘ฅ3 + ๐‘ฅ4 > 360

0, so ๐‘› = 4 is impossible.

Therefore, ๐‘› = 3.

Solution to Problem 3.

Page 13: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

12

m(๐ด๐ธ๏ฟฝ๏ฟฝ) = m(๏ฟฝ๏ฟฝ) + m(๏ฟฝ๏ฟฝ)

2

m(๏ฟฝ๏ฟฝ) + m(๏ฟฝ๏ฟฝ) + m(๏ฟฝ๏ฟฝ) + m(๏ฟฝ๏ฟฝ) = 360ยฐ

m(๏ฟฝ๏ฟฝ) + m(๏ฟฝ๏ฟฝ)

2 = 180ยฐ โˆ’

m(๏ฟฝ๏ฟฝ) + m(๏ฟฝ๏ฟฝ)

2

m(๐ด๐ธ๏ฟฝ๏ฟฝ) = 180ยฐ โˆ’ m(๏ฟฝ๏ฟฝ)

2โˆ’m(๏ฟฝ๏ฟฝ)

2 =

= 180ยฐ โˆ’ 180ยฐ +m(๏ฟฝ๏ฟฝ) + m(๏ฟฝ๏ฟฝ)

2 =m(๏ฟฝ๏ฟฝ) + (๏ฟฝ๏ฟฝ)

2

Solution to Problem 4.

Let ๐ธ๐ท๏ฟฝ๏ฟฝ โ‡’ ๐ด, ๐ต โˆˆ int. ๐ธ๐ท๏ฟฝ๏ฟฝ. Let ๐‘€ โˆˆ |๐ด๐ต| โ‡’ ๐‘€ โˆˆ int. ๐ธ๐ท๏ฟฝ๏ฟฝ โ‡’ |๐ท๐‘€ โŠ‚ int. ๐ธ๐ท๏ฟฝ๏ฟฝ, |๐ธ๐ด| โˆฉ

|๐ท๐‘€ = โˆ… โ‡’ ๐ท๐ธ๐ด๐‘€ quadrilateral. The same for ๐ท๐ถ๐ต๐‘€.

Solution to Problem 5.

9 vertices; 10 vertices; 11 vertices;

4 quadrilaterals. 4 quadrilaterals. 5 quadrilaterals.

Page 14: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

13

Solution to Problem 6.

We assume that ABC โ‰ก Aโ€™Bโ€™Cโ€™ . We construct a function ๐‘“: ๐ด๐ต๐ถ โ†’ ๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ such that

{๐‘“ (B) = Bโ€ฒ

if P โˆˆ |BA, ๐‘“(P) โˆˆ Bโ€ฒAโ€ฒ

๐‘ƒ โˆˆ |๐ต๐ถ, ๐‘“(๐‘ƒ) โˆˆ ๐ตโ€ฒ๐ถโ€ฒ such that โ€–๐ต๐‘ƒโ€– = โ€–๐ตโ€ฒ๐‘ƒโ€ฒโ€– where ๐‘ƒโ€ฒ = ๐‘“(๐น).

The so constructed function is bijective, since for different arguments there are

different corresponding values and โˆ€ point from ๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ is the image of a single

point from ๐ด๐ต๏ฟฝ๏ฟฝ (from the axiom of segment construction).

If ๐‘ƒ, ๐‘„ โˆˆ this ray,

โ€–BPโ€– = โ€–Bโ€ฒPโ€ฒโ€–

โ€–BQโ€– = โ€–Bโ€ฒQโ€ฒโ€–} โŸน โ€–PQโ€– = โ€–BQโ€– โˆ’ โ€–BPโ€– = โ€–Bโ€ฒQโ€ฒโ€– โˆ’ โ€–Bโ€ฒPโ€ฒโ€– = โ€–Pโ€ฒQโ€ฒโ€– = โ€–๐‘“(P), ๐‘“(Q)โ€–.

If ๐‘ƒ, ๐‘„ โˆˆ a different ray,

โ€–BPโ€– = โ€–Bโ€ฒPโ€ฒโ€–โ€–BQโ€– = โ€–Bโ€ฒQโ€ฒโ€–

PBQ โ‰ก Pโ€ฒBโ€ฒQโ€ฒ

} โŸน โˆ†PBQ = โˆ†Pโ€ฒBโ€ฒQโ€ฒ โ€–PQโ€– = โ€–Pโ€ฒQโ€ฒโ€– = โ€–๐‘“ (P), ๐‘“ (Q)โ€–.

Vice versa.

Let ๐‘“ โˆถ ABC โ†’ Aโ€ฒBโ€ฒCโ€ฒ such that ๐‘“ bijective and โ€–PQโ€– = โ€–๐‘“(P), ๐‘“(Q)โ€–.

Let ๐‘ƒ, ๐‘„ โˆˆ |๐ต๐ด and ๐‘…๐‘† โˆˆ |๐ต๐ถ.

Page 15: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

14

โ€–PQโ€– = โ€–Pโ€ฒQโ€ฒโ€–โ€–PSโ€– = โ€–Pโ€ฒSโ€ฒโ€–โ€–QSโ€– = โ€–Qโ€ฒSโ€ฒโ€–

} โŸน โˆ†PQS โ‰ก โˆ†Pโ€ฒQโ€ฒSโ€ฒโŸน QPS โ‰ก Qโ€ฒPโ€ฒSโ€ฒ โŸนBPS โ‰ก Bโ€ฒPโ€ฒSโ€ฒ (1);

โ€–๐‘ƒ๐‘†โ€– = โ€–๐‘ƒโ€ฒ๐‘†โ€ฒโ€–โ€–๐‘…๐‘ƒโ€– = โ€–๐‘…โ€ฒ๐‘ƒโ€ฒโ€–โ€–๐‘ƒ๐‘†โ€– = โ€–๐‘ƒโ€ฒ๐‘†โ€ฒโ€–

} โŸน โˆ†PRS โ‰ก โˆ†Pโ€ฒRโ€ฒSโ€ฒโ€ฒ โŸน PSB โ‰ก Pโ€ฒSโ€ฒBโ€ฒ (2).

From (1) and (2) โŸน PBC โ‰ก Pโ€ฒBโ€ฒSโ€ฒ (as diff. at 180ยฐ) i.e. ABC โ‰ก Aโ€ฒBโ€ฒCโ€ฒ .

Solution to Problem 7.

Let โˆ†๐ด๐ต๐ถ โ‰ก โˆ†๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ.

We construct a function ๐‘“ โˆถ ๐ด๐ต๐ถ โ†’ ๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ such that ๐‘“(๐ด) = ๐ดโ€ฒ, ๐‘“(๐ต) = ๐ตโ€ฒ, ๐‘“(๐ถ) = ๐ถโ€ฒ

and so ๐‘ƒ โˆˆ |๐ด๐ต| โ†’ ๐‘ƒโ€ฒ = ๐‘“(๐‘ƒ) โˆˆ |๐ดโ€ฒ๐ตโ€ฒ| such that ||๐ด๐‘ƒ|| = ||๐ดโ€ฒ๐‘ƒโ€ฒ||;

๐‘ƒ โˆˆ |๐ต๐ถ| โ†’ ๐‘ƒโ€ฒ = ๐‘“(๐‘ƒ) โˆˆ |๐ตโ€ฒ๐ถโ€ฒ| such that ||๐ต๐‘ƒ|| = ||๐ตโ€ฒ๐‘ƒโ€ฒ||;

๐‘ƒ โˆˆ |๐ถ๐ด| โ†’ ๐‘ƒโ€ฒ = ๐‘“(๐‘ƒ) โˆˆ |๐ถโ€ฒ๐ดโ€ฒ| such that ||๐ถ๐‘ƒ|| = ||๐ถโ€ฒ๐‘ƒโ€ฒ||.

The so constructed function is bijective.

Let ๐‘ƒ โˆˆ |๐ด๐ต| and ๐‘Ž โˆˆ |๐ถ๐ด| โŸน ๐‘ƒโ€ฒ โˆˆ |๐ดโ€ฒ๐ตโ€ฒ| and ๐‘„โ€ฒ โˆˆ |๐ถโ€ฒ๐ดโ€ฒ|.

โ€–APโ€– = โ€–Aโ€ฒPโ€ฒโ€–

โ€–CQโ€– = โ€–Cโ€ฒQโ€ฒโ€–

โ€–CAโ€– = โ€–Cโ€ฒAโ€ฒโ€–} โŸน โ€–AQโ€– = โ€–Aโ€ฒQโ€ฒโ€–; A โ‰ก Aโ€ฒโŸน โˆ†APQ โ‰ก โˆ†Aโ€ฒPโ€ฒQโ€ฒ โŸน โ€–PQโ€– = โ€–Pโ€ฒQโ€ฒโ€–.

Similar reasoning for (โˆ€) point ๐‘ƒ and ๐‘„.

Vice versa.

We assume that โˆƒ a bijective function ๐‘“ โˆถ ๐ด๐ต๐ถ โ†’ ๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ with the stated

properties.

We denote ๐‘“(A) = Aโ€ฒโ€ฒ, ๐‘“(B) = Bโ€ฒโ€ฒ, ๐‘“(C) = Cโ€ฒโ€ฒ

โŸน โ€–ABโ€– = โ€–Aโ€ฒโ€ฒBโ€ฒโ€ฒโ€–, โ€–BCโ€– = โ€–Bโ€ฒโ€ฒCโ€ฒโ€ฒโ€–, โ€–ACโ€– = โ€–Aโ€ฒโ€ฒCโ€ฒโ€ฒโ€–โˆ†ABC = โˆ†Aโ€ฒโ€ฒBโ€ฒโ€ฒCโ€ฒโ€ฒ.

Because ๐‘“(ABC) = ๐‘“([AB] โˆช [BC] โˆช [CA]) = ๐‘“([AB]) โˆช ๐‘“([BC]) โˆช ๐‘“([CA])

= [Aโ€ฒโ€ฒBโ€ฒโ€ฒ] โˆช [Bโ€ฒโ€ฒCโ€ฒโ€ฒ][Cโ€ฒโ€ฒAโ€ฒโ€ฒ] = Aโ€ฒโ€ฒBโ€ฒโ€ฒCโ€ฒโ€ฒ.

But by the hypothesis ๐‘“(๐ด๐ต๐ถ) = ๐‘“(๐ดโ€™๐ตโ€™๐ถโ€™), therefore

Aโ€ฒโ€ฒBโ€ฒโ€ฒCโ€ฒโ€ฒ = โˆ†Aโ€ฒBโ€ฒCโ€ฒโŸน โˆ†ABC โ‰ก โˆ†Aโ€ฒBโ€ฒCโ€ฒ.

Page 16: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

15

Solution to Problem 8.

If โˆ†๐ด๐ต๐ถ~โˆ†๐ดโ€™๐ตโ€™๐ถโ€™ then (โˆ€) ๐‘“: ๐ด๐ต๐ถ โ†’ ๐ดโ€™๐ตโ€™๐ถโ€™ and ๐‘˜ > 0 such that:

||๐‘ƒ๐‘„|| = ๐‘˜ ||๐‘“(๐‘ƒ), ๐‘“(๐‘„)||, ๐‘ƒ, ๐‘„ โˆˆ ๐ด๐ต๐ถ;

โˆ†๐ด๐ต๐ถ~โˆ†๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ โŸน

โ€–ABโ€–

โ€–Aโ€ฒBโ€ฒโ€–=

โ€–BCโ€–

โ€–Bโ€ฒCโ€ฒโ€–=

โ€–CAโ€–

โ€–Cโ€ฒAโ€ฒโ€–= ๐‘˜

A โ‰ก Aโ€ฒ; B โ‰ก Bโ€ฒ; C โ‰ก Cโ€ฒ} โŸน

โ€–ABโ€– = ๐‘˜โ€–Aโ€ฒBโ€ฒโ€–

โ€–BCโ€– = ๐‘˜โ€–Bโ€ฒCโ€ฒโ€–โ€–CAโ€– = ๐‘˜โ€–Cโ€ฒAโ€ฒโ€–

.

We construct a function ๐‘“: ๐ด๐ต๐ถ โ†’ ๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ such that ๐‘“(๐ด) = ๐ดโ€ฒ, ๐‘“(๐ต) = ๐ตโ€ฒ, ๐‘“(๐ถ) = ๐ถโ€ฒ;

if ๐‘ƒ โˆˆ |๐ต๐ถ| โ†’ ๐‘ƒ โˆˆ |๐ตโ€ฒ๐ถโ€ฒ| such that ||๐ต๐‘ƒ|| = ๐‘˜||๐ตโ€ฒ๐‘ƒโ€ฒ||;

if ๐‘ƒ โˆˆ |๐ถ๐ด| โ†’ ๐‘ƒ โˆˆ |๐ถโ€ฒ๐ดโ€ฒ| such that ||๐ถ๐‘ƒ|| = ๐‘˜||๐ถโ€ฒ๐‘ƒโ€ฒ||; ๐‘˜ โ€“ similarity constant.

Let ๐‘ƒ, ๐‘„ โˆˆ ๐ด๐ต such that ๐‘ƒ โˆˆ |๐ต๐ถ|, ๐‘„ โˆˆ |๐ด๐ถ| โŸน ๐‘ƒโ€ฒ โˆˆ |๐ตโ€ฒ๐ถโ€ฒ| and ||๐ต๐‘ƒ|| = ๐‘˜||๐ตโ€ฒ๐‘ƒโ€ฒ||

Qโ€ฒ โˆˆ |Aโ€ฒCโ€ฒ| and โ€–CQโ€– = ๐‘˜โ€–Cโ€ฒQโ€ฒโ€– (1);

As โ€–BCโ€– = ๐‘˜โ€–Bโ€ฒCโ€ฒโ€– โŸน โ€–PCโ€– = โ€–BCโ€– โˆ’ โ€–BPโ€– = ๐‘˜โ€–Bโ€ฒCโ€ฒโ€– โˆ’ ๐‘˜โ€–Bโ€ฒPโ€ฒโ€– =

= ๐‘˜(โ€–Bโ€ฒCโ€ฒโ€– โˆ’ โ€–Bโ€ฒPโ€ฒโ€–) = ๐‘˜โ€–Pโ€ฒCโ€ฒโ€– (2);

C โ‰ก Cโ€ฒ (3).

From (1), (2), and (3) โŸน โˆ†PCQ~โˆ†Pโ€ฒCโ€ฒQโ€ฒ โŸน โ€–PQโ€– = ๐‘˜โ€–Pโ€ฒQโ€ฒโ€– .

Similar reasoning for ๐‘ƒ, ๐‘„ โˆˆ ๐ด๐ต๐ถ.

We also extend the bijective function previously constructed to the interiors of

the two triangles in the following way:

Let ๐‘ƒ โˆˆ int. ๐ด๐ต๐ถ and we construct ๐‘ƒโ€™ โˆˆ int. ๐ดโ€™๐ตโ€™๐ถโ€™ such that ||๐ด๐‘ƒ|| = ๐‘˜||๐ดโ€™๐‘ƒโ€™|| (1).

Let ๐‘„ โˆˆ int. ๐ด๐ต๐ถ โ†’ ๐‘„โ€ฒ โˆˆ int. ๐ดโ€™๐ตโ€™๐ถโ€™ such that BAQ โ‰ก Bโ€™Aโ€™Qโ€™ and ||๐ด๐‘„|| = ๐‘˜||๐ดโ€™๐‘„โ€™|| (2).

Page 17: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

16

From (1) and (2),

AP

Aโ€ฒPโ€ฒ=AQ

Aโ€ฒQโ€ฒ= ๐‘˜, PAQ โ‰ก Pโ€ฒAโ€ฒQโ€ฒ โŸนโˆ†APQ ~ โˆ†Aโ€ฒPโ€ฒQโ€ฒโŸน โ€–PQโ€– = ๐‘˜โ€–Pโ€ฒQโ€ฒโ€–,

but ๐‘ƒ, ๐‘„ โˆˆ [๐ด๐ต๐ถ], so [๐ด๐ต๐ถ] ~[๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ].

Solution to Problem 9.

a. Let |๐‘‚๐ด and |๐‘‚โ€ฒ๐ดโ€ฒ be two rays:

Let ๐‘“: |๐‘‚๐ด โ†’ |๐‘‚โ€ฒ๐ดโ€ฒ such that ๐‘“(๐‘‚) = ๐‘‚โ€ฒ and ๐‘“(๐‘ƒ) = ๐‘ƒโ€ฒ with ||๐‘‚๐‘ƒ|| = ||๐‘‚โ€ฒ๐‘ƒโ€ฒ|.

The so constructed point ๐‘ƒโ€ฒ is unique and so if ๐‘ƒ โ‰  ๐‘„ โŸน ||๐‘‚๐‘ƒ|| โ‰  ||๐‘‚๐‘„|| โŸน

||๐‘‚โ€ฒ๐‘ƒโ€ฒ|| โ‰  ||๐‘‚โ€ฒ๐‘„โ€ฒ|| โŸน ๐‘ƒโ€ฒ โ‰  ๐‘„โ€ฒ and (โˆ€)๐‘ƒโ€ฒ โˆˆ |๐‘‚โ€ฒ๐ดโ€ฒ (โˆƒ) a single point ๐‘ƒ โˆˆ |๐‘‚๐ด such that

||๐‘‚๐‘ƒ|| = ||๐‘‚โ€ฒ๐‘ƒโ€ฒ||.

The constructed function is bijective.

If ๐‘ƒ, ๐‘„ โˆˆ |๐‘‚๐ด, ๐‘ƒ โˆˆ |๐‘‚๐‘„| โ†’ ๐‘ƒโ€ฒ๐‘„โ€ฒ โˆˆ |๐‘‚โ€ฒ๐ดโ€ฒ such that โ€–OPโ€– = โ€–Oโ€ฒPโ€ฒโ€–; โ€–OQโ€– = โ€–Oโ€ฒQโ€ฒโ€– โŸน

โ€–PQโ€– = โ€–OQโ€– โˆ’ โ€–OPโ€– = โ€–Oโ€ฒQโ€ฒโ€– โˆ’ โ€–Oโ€ฒPโ€ฒโ€– = โ€–Pโ€ฒQโ€ฒโ€–(โˆ€)P;๐‘„ โˆˆ |OA

โŸน the two rays are congruent.

b. Let ๐‘‘ and ๐‘‘โ€ฒ be two lines.

Let ๐‘‚ โˆˆ ๐‘‘ and ๐‘‚โ€ฒ โˆˆ ๐‘‘โ€ฒ. We construct a function ๐‘“: ๐‘‘ โ†’ ๐‘‘โ€ฒ such that ๐‘“(๐‘‚) = ๐‘‚โ€ฒ and

๐‘“ (|๐‘‚๐ด) = |๐‘‚โ€ฒ๐ดโ€ฒ and ๐‘“ (|๐‘‚๐ต) = |๐‘‚โ€ฒ๐ตโ€ฒ as at the previous point.

It is proved in the same way that ๐‘“ is bijective and that ||๐‘ƒ๐‘„|| = ||๐‘ƒโ€ฒ๐‘„โ€ฒ|| when ๐‘ƒ

and ๐‘„ belong to the same ray.

Page 18: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

17

If ๐‘ƒ, ๐‘„ belong to different rays:

โ€–๐‘‚๐‘ƒโ€– = โ€–๐‘‚โ€ฒ๐‘ƒโ€ฒโ€–โ€–๐‘‚๐‘„โ€– = โ€–๐‘‚โ€ฒ๐‘„โ€ฒโ€–

} โŸน โ€–๐‘ƒ๐‘„โ€– = โ€–๐‘‚๐‘ƒโ€– + โ€–๐‘‚๐‘„โ€– = โ€–๐‘‚โ€ฒ๐‘ƒโ€ฒโ€– + โ€–๐‘‚โ€ฒ๐‘„โ€ฒโ€– = โ€–๐‘ƒโ€ฒ๐‘„โ€ฒโ€–

and so the two rays are congruent.

Solution to Problem 10.

We construct a function ๐‘“:๐ท โ†’ ๐ทโ€ฒ such that ๐‘“(๐‘‚) = ๐‘‚โ€ฒ, ๐‘“(๐ด) = ๐ดโ€ฒ and a point

(โˆ€) ๐‘ƒ โˆˆ ๐ท โ†’ ๐‘ƒโ€ฒ โˆˆ ๐ทโ€ฒ which are considered to be positive.

From the axiom of segment and angle construction โŸน that the so constructed

function is bijective, establishing a biunivocal correspondence between the elements

of the two sets.

Let ๐‘„ โˆˆ ๐ท โ†’ ๐‘„โ€ฒ โˆˆ ๐ทโ€ฒ such that ||๐‘‚๐‘„โ€ฒ|| = ||๐‘‚๐‘„||; ๐ด๐‘‚๏ฟฝ๏ฟฝ โ‰ก ๐ดโ€ฒ๐‘‚โ€ฒ๐‘„โ€ฒ .

As:

โ€–๐‘‚๐‘ƒโ€– = โ€–๐‘‚โ€ฒ๐‘ƒโ€ฒโ€–โ€–๐‘‚๐‘„โ€– = โ€–๐‘‚โ€ฒ๐‘„โ€ฒโ€–

๐‘ƒ๐‘‚๏ฟฝ๏ฟฝ โ‰ก ๐‘ƒโ€ฒ๐‘‚โ€ฒ๐‘„โ€ฒ}โŸนโˆ†๐‘‚๐‘ƒ๐‘„ โ‰ก ๐‘ƒโ€ฒ๐‘‚โ€ฒ๐‘„โ€ฒ โŸนโ€–๐‘ƒ๐‘„โ€– = โ€–๐‘ƒโ€ฒ๐‘„โ€ฒโ€–, (โˆ€) ๐‘ƒ, ๐‘„ โˆˆ ๐ท โŸน ๐ท โ‰ก ๐ทโ€ฒ.

Solution to Problem 11.

Page 19: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

18

๐‘“:๐‘€ โ†’ ๐‘€โ€ฒ is an isometry โŸน ๐‘“ is bijective and (โˆ€) ๐‘ƒ, ๐‘„ โˆˆ ๐‘€ we have ||๐‘ƒ๐‘„|| =

||๐‘“(๐‘ƒ), ๐‘“(๐‘„)||, ๐‘“ โ€“ bijective โŸน ๐‘“ โ€“ invertible and ๐‘“โˆ’1 โ€“ bijective.

โ€–๐‘ƒโ€ฒ๐‘„โ€ฒโ€– = โ€–๐‘“(๐‘ƒ); ๐‘“(๐‘„)โ€– = โ€–๐‘ƒ๐‘„โ€–

โ€–๐‘“โˆ’1(๐‘ƒโ€ฒ); ๐‘“โˆ’1(๐‘„โ€ฒ)โ€– = โ€–๐‘“โˆ’1(๐‘“(๐‘ƒ)), ๐‘“โˆ’1(๐‘“(๐‘„))โ€– = โ€–๐‘ƒ๐‘„โ€–} โŸน

โ€–๐‘ƒโ€ฒ๐‘„โ€ฒโ€– = โ€–๐‘“โˆ’1(๐‘“(๐‘ƒโ€ฒ)), ๐‘“โˆ’1(๐‘“(๐‘„โ€ฒ))โ€–, (โˆ€)๐‘ƒโ€ฒ, ๐‘„โ€ฒ โˆˆ ๐‘€,

therefore ๐‘“โˆ’1:๐‘€โ€ฒ โ†’ ๐‘€ is an isometry.

Solution to Problem 12.

We construct a function ๐‘“ such that ๐‘“(๐‘ƒ๐‘–) = ๐‘ƒ๐‘–โ€ฒ, ๐‘– = 1, 2, โ€ฆ , ๐‘›, and if ๐‘ƒ โˆˆ

|๐‘ƒ๐‘– , ๐‘ƒ๐‘–+1|.

The previously constructed function is also extended inside the polygon as

follows: Let ๐‘‚ โˆˆ int. ๐ฟ โ†’ ๐‘‚โ€ฒ โˆˆ int. ๐ฟโ€ฒ such that ๐‘‚๐‘ƒ๐‘–๐‘ƒ๐‘–+1 โ‰ก ๐‘‚โ€ฒ๐‘ƒโ€ฒ๐‘–๐‘ƒโ€ฒ๐‘–+1 and โ€–๐‘‚๐‘ƒ๐‘–โ€– =

โ€–๐‘‚โ€ฒ๐‘ƒโ€ฒ๐‘–โ€–. We connect these points with the vertices of the polygon. It can be easily

proved that the triangles thus obtained are congruent.

We construct the function ๐‘”: [๐ฟ] โ†’ [๐ฟโ€ฒ] such that

๐‘”(๐‘ƒ) = {

๐‘“(๐‘ƒ), if ๐‘ƒ โˆˆ ๐ฟ

๐‘‚โ€ฒ, if ๐‘ƒ = ๐‘‚ ๐‘ƒโ€ฒ, if ๐‘ƒ โˆˆ [๐‘ƒ๐‘–๐‘‚๐‘ƒ๐‘–+1] such that

๐‘ƒ๐‘–๐‘‚๏ฟฝ๏ฟฝ โ‰ก ๐‘ƒ๐‘–โ€ฒ๐‘‚โ€ฒ๐‘ƒโ€ฒ (โˆ€)๐‘– = 1, 2, โ€ฆ , ๐‘› โˆ’ 1

The so constructed function is bijective (โˆ€) ๐‘ƒ, ๐‘„ โˆˆ [๐ฟ]. It can be proved by the

congruence of the triangles ๐‘ƒ๐‘‚๐‘„ and ๐‘ƒโ€ฒ๐‘‚โ€ฒ๐‘„โ€ฒ that ||๐‘ƒ๐‘„|| = ||๐‘ƒโ€ฒ๐‘„โ€ฒ||, so [๐ฟ] = [๐ฟโ€ฒ]

โŸน if two convex polygons are decomposed

in the same number of triangles

respectively congruent,

they are congruent.

Page 20: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

19

Solution to Problem 13.

๐ฟ = ๐‘ƒ1๐‘ƒ2โ€ฆ , ๐‘ƒ๐‘›; ๐ฟโ€ฒ = ๐‘ƒ1

โ€ฒ๐‘ƒ2โ€ฒ โ€ฆ , ๐‘ƒ๐‘›

โ€ฒ

๐ฟ~๐ฟโ€ฒ โŸน (โˆƒ)๐พ > 0 and ๐‘“: ๐ฟ โ†’ ๐ฟโ€ฒ such that โ€–๐‘ƒ๐‘„โ€– = ๐‘˜โ€–๐‘“(๐‘ƒ)๐‘“(๐‘„)โ€– (โˆ€)๐‘ƒ, ๐‘„ โˆˆ ๐ฟ,

and ๐‘ƒ๐ผโ€ฒ = ๐‘“(๐‘ƒ๐‘–).

Taking consecutively the peaks in the role of ๐‘ƒ and ๐‘„, we obtain:

โ€–๐‘ƒ1๐‘ƒ2โ€– = ๐‘˜โ€–๐‘ƒ1โ€ฒ๐‘ƒ2โ€ฒโ€– โ‡’

โ€–๐‘ƒ1๐‘ƒ2โ€–

โ€–๐‘ƒ1โ€ฒ๐‘ƒ2โ€ฒโ€–= ๐‘˜

โ€–๐‘ƒ2๐‘ƒ3โ€– = ๐‘˜โ€–๐‘ƒ2โ€ฒ๐‘ƒ3โ€ฒโ€– โ‡’

โ€–๐‘ƒ2๐‘ƒ3โ€–

โ€–๐‘ƒ2โ€ฒ๐‘ƒ3โ€ฒโ€–= ๐‘˜

โ‹ฎ

โ€–๐‘ƒ๐‘›โˆ’1๐‘ƒ๐‘›โ€– = ๐‘˜โ€–๐‘ƒ๐‘›โˆ’1โ€ฒ ๐‘ƒ๐‘›

โ€ฒโ€– โ‡’โ€–๐‘ƒ๐‘›โˆ’1๐‘ƒ๐‘›โ€–

โ€–๐‘ƒ๐‘›โˆ’1โ€ฒ ๐‘ƒ๐‘›โ€ฒโ€–

= ๐‘˜

โ€–๐‘ƒ๐‘›๐‘ƒ1โ€– = ๐‘˜โ€–๐‘ƒ๐‘›โ€ฒ๐‘ƒ1โ€ฒโ€– โ‡’

โ€–๐‘ƒ๐‘›๐‘ƒ1โ€–

โ€–๐‘ƒ๐‘›โ€ฒ๐‘ƒ1โ€ฒโ€–= ๐‘˜

}

โŸน

โŸน ๐‘˜ =โ€–๐‘ƒ1๐‘ƒ2โ€–

โ€–๐‘ƒ1โ€ฒ๐‘ƒ2โ€ฒโ€–=โ€–๐‘ƒ2๐‘ƒ3โ€–

โ€–๐‘ƒ2โ€ฒ๐‘ƒ3โ€ฒโ€–= โ‹ฏ =

โ€–๐‘ƒ1๐‘ƒ2โ€– + โ€–๐‘ƒ2๐‘ƒ3โ€– +โ‹ฏ+ โ€–๐‘ƒ๐‘›โˆ’1๐‘ƒ๐‘›โ€– + โ€–๐‘ƒ๐‘›๐‘ƒ1โ€–

โ€–๐‘ƒ1โ€ฒ๐‘ƒ2โ€ฒโ€– + โ€–๐‘ƒ2

โ€ฒ๐‘ƒ3โ€ฒโ€– +โ‹ฏ+ โ€–๐‘ƒ๐‘›โˆ’1

โ€ฒ ๐‘ƒ๐‘›โ€ฒโ€– + โ€–๐‘ƒ๐‘›โ€ฒ๐‘ƒ1โ€ฒโ€–=๐‘ƒ

๐‘ƒโ€ฒ .

Solution to Problem 14.

๐œŽ[๐ด๐ท๐ถ] =2โˆ™7

2= 7; ๐œŽ[๐ด๐ต๐ถ๐ท] = 2 โˆ™ 7 = 14 = 6โ€–๐ท๐นโ€– โŸน โ€–๐ท๐นโ€– =

14

6=7

3 .

Solution to Problem 15.

Page 21: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

20

โ„Ž = ๐‘ โˆ™ sin๐ถ โ‰ค ๐‘;

๐œŽ[๐ด๐ต๐ถ] =๐‘Žโˆ™โ„Ž

2 is max. when โ„Ž is max.

max. โ„Ž = ๐‘ when sin๐ถ = 1

โ‡’ ๐‘š(๐ถ) = 90 โ‡’ ๐ด๐ต๐ถ has a right angle at ๐ถ.

Solution to Problem 16.

โ€–๐‘€๐ทโ€– = โ€–๐ท๐ผโ€– โŸน ๐‘€๐ท๐ผ โ€“ an isosceles triangle.

โŸน๐‘š(๐ท๐‘€๏ฟฝ๏ฟฝ) = ๐‘š(๐‘€๐ผ๏ฟฝ๏ฟฝ) = 450 ;

The same way, ๐‘š(๐น๐ฟ๏ฟฝ๏ฟฝ) = ๐‘š(๐ด๐น๏ฟฝ๏ฟฝ) = ๐‘š(๐ต๐ธ๏ฟฝ๏ฟฝ) = ๐‘š(๐ธ๐ป๏ฟฝ๏ฟฝ).

โ€–๐‘…๐พโ€–โŸน โ€–๐‘†๐‘ƒโ€– = โ€–๐‘ƒ๐‘„โ€– = โ€–๐‘„๐‘…โ€– = โ€–๐‘…๐‘†โ€– โŸน ๐‘†๐‘…๐‘„๐‘ƒ is a square.

โ€–๐ด๐ตโ€– = ๐‘Ž, โ€–๐ด๐ธโ€– =2๐‘Ž

3, โ€–๐‘€๐ผโ€– = โˆš

4๐‘Ž2

9+4๐‘Ž2

9=2๐‘Žโˆš2

3 ;

2โ€–๐‘…๐ผโ€–2 =๐‘Ž2

9โŸน โ€–๐‘…๐ผโ€–2 =

๐‘Ž2

18โŸน โ€–๐‘…๐ผโ€– =

๐‘Ž

3โˆš2=๐‘Žโˆš2

6 ;

โ€–๐‘†๐‘…โ€– =2๐‘Žโˆš2

3โˆ’ 2

๐‘Žโˆš2

6=๐‘Žโˆš2

3 ;

๐œŽ[๐‘†๐‘…๐‘„๐‘ƒ] =2๐‘Ž2

9=2

9๐œŽ[๐ด๐ต๐ถ๐ท].

Solution to Problem 17.

๐œŽ[๐ด๐ถ๐ท] =โ€–๐ท๐ถโ€– โˆ™ โ€–๐ด๐ธโ€–

2

๐œŽ[๐ต๐ถ๐ท] =โ€–๐ท๐ถโ€– โˆ™ โ€–๐ต๐นโ€–

2โ€–๐ด๐ธโ€– = โ€–๐ต๐นโ€– }

โŸน ๐œŽ[๐ด๐ถ๐ท] = ๐œŽ[๐ต๐ถ๐ท]

Page 22: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

21

๐œŽ[๐ด๐‘‚๐ท] = ๐œŽ[๐ด๐‘€๐‘‚] + ๐œŽ[๐‘€๐‘‚๐ท]

๐œŽ[๐ด๐‘€๐‘‚] = ๐œŽ[๐‘€๐‘ƒ๐‘‚] =โ€–๐‘€๐‘‚โ€– โˆ™ โ€–๐‘‚๐‘ƒโ€–

2

๐œŽ[๐‘€๐‘‚๐ท] = ๐œŽ[๐‘€๐‘‚๐‘„] =โ€–๐‘‚๐‘€โ€– โˆ™ โ€–๐‘‚๐‘„โ€–

2 }

โŸน ๐œŽ[๐ด๐‘‚๐ท] =โ€–๐‘‚๐‘€โ€–(โ€–๐‘‚๐‘ƒโ€– + โ€–๐‘‚๐‘„โ€–)

2=โ€–๐‘‚๐‘€โ€– โˆ™ โ„Ž

2

The same way,

๐œŽ[๐ต๐‘‚๐ถ] =โ€–๐‘‚๐‘โ€– โˆ™ โ„Ž

2 .

Therefore,

๐œŽ[๐ด๐‘‚๐ท] = ๐œŽ[๐ต๐‘‚๐ถ] โŸนโ€–๐‘‚๐‘€โ€– โˆ™ โ„Ž

2=โ€–๐‘‚๐‘โ€– โˆ™ โ„Ž

2โŸน โ€–๐‘‚๐‘€โ€– = โ€–๐‘‚๐‘โ€–.

Solution to Problem 18.

โ€–๐ด๐ธโ€– = โ€–๐ธ๐ทโ€– ;

We draw ๐‘€๐‘ โŠฅ ๐ด๐ต;๐ท๐ถ;

โ€–๐ธ๐‘โ€– = โ€–๐ธ๐‘€โ€– =โ„Ž

2;

๐œŽ[๐ต๐ธ๐ถ] =(โ€–๐ด๐ตโ€– + โ€–๐ท๐ถโ€–) โˆ™ โ„Ž

2โˆ’โ€–๐ด๐ตโ€– โˆ™ โ„Ž

4โˆ’โ€–๐ท๐ถโ€– โˆ™ โ„Ž

4=(โ€–๐ด๐ตโ€– + โ€–๐ท๐ถโ€–) โˆ™ โ„Ž

4=1

2๐œŽ[๐ด๐ต๐ถ๐ท];

Therefore, [๐ด๐ต๐ถ๐ท] = 2๐œŽ[๐ต๐ธ๐ถ] .

Solution to Problem 19.

๐œŽ[๐ด๐ธ๐ท๐‘โ€ฒ] is ct. because ๐ด, ๐ธ, ๐ท,๐‘โ€ฒ are fixed points.

Let a line through ๐ท, and we draw โˆฅ to sides ๐‘๐ท and ๐ท๐ธ.

No matter how we draw a line through ๐ท, ๐œŽ[๐‘„๐‘ƒ๐ด] is formed of: ๐œŽ[๐ด๐ธ๐ท๐‘] +

๐œŽ[๐‘๐‘ƒ๐‘‚] + ๐œŽ[๐ท๐ธ๐‘„].

We have ๐œŽ[๐ด๐ธ๐ท๐‘] constant in all triangles ๐‘ƒ๐ด๐‘„.

Page 23: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

22

Letโ€™s analyse:

๐œŽ[๐‘ƒ๐‘โ€ฒ๐ท] + ๐œŽ[๐ท๐ธ๐‘„] =โ€–๐‘โ€ฒ๐ทโ€– โˆ™ โ„Ž1

2+โ€–๐ธ๐‘„โ€ฒโ€– โˆ™ โ„Ž2

2=โ€–๐‘โ€ฒ๐ทโ€–

2(โ„Ž1 +

โ€–๐ธ๐‘„โ€–

โ€–๐‘๐ทโ€–โˆ™ โ„Ž2)

=โ€–๐‘โ€ฒ๐ทโ€–

2โˆ™ (โ„Ž1 +

โ„Ž2โ„Ž1โˆ™ โ„Ž2) =

โ€–๐‘โ€ฒ๐ทโ€–

2โ„Ž1[(โ„Ž1 โˆ’ โ„Ž2)

2 + 2โ„Ž1โ„Ž2].

โˆ†๐ด๐‘€๐‘ is minimal when โ„Ž1 = โ„Ž2โŸน๐ท is in the middle of |๐‘ƒ๐‘„|. The construction is

thus: โˆ†๐ด๐‘๐‘€ where ๐‘๐‘€ || ๐ธ๐‘โ€ฒ. In this case we have |๐‘๐ท| โ‰ก |๐ท๐‘€|.

Solution to Problem 20.

๐œŽ[๐ด๐ต๐ถ] =โ€–๐ต๐ถโ€– โˆ™ โ€–๐ด๐ดโ€ฒโ€–

2

Let the median be |๐ด๐ธ|, and ๐‘ƒ be the centroid of the triangle.

Let ๐‘ƒ๐ท โŠฅ ๐ต๐ถ. ๐œŽ[๐ต๐‘ƒ๐ถ] =โ€–๐ต๐ถโ€–โˆ™โ€–๐‘ƒ๐ทโ€–

2 .

๐ด๐ดโ€ฒ โŠฅ ๐ต๐ถ๐‘ƒ๐ท โŠฅ ๐ต๐ถ

} โ‡’ ๐ด๐ดโ€ฒ โˆฅ ๐‘ƒ๐ท โ‡’ โˆ†๐‘ƒ๐ท๐ธ~โˆ†๐ด๐ดโ€ฒ๐ธ โ‡’โ€–๐‘ƒ๐ทโ€–

โ€–๐ด๐ดโ€ฒโ€–=โ€–๐‘ƒ๐ธโ€–

โ€–๐ด๐ธโ€–=1

3โ‡’ โ€–๐‘ƒ๐ทโ€– =

โ€–๐ด๐ดโ€ฒโ€–

3โ‡’ ๐œŽ[๐ต๐‘ƒ๐ถ]

=โ€–๐ต๐ถโ€– โˆ™

โ€–๐ด๐ดโ€ฒโ€–3

2=1

3

โ€–๐ต๐ถโ€– โˆ™ โ€–๐ด๐ดโ€ฒโ€–

2=1

3๐œŽ[๐ด๐ต๐ถ].

We prove in the same way that ๐œŽ[๐‘ƒ๐ด๐ถ] = ๐œŽ[๐‘ƒ๐ด๐ต] =1

3๐œŽ[๐ด๐ต๐ถ], so the specific

point is the centroid.

Page 24: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

23

Solution to Problem 21.

Let ๐‘€,๐‘ โˆˆ ๐ด๐ต such that ๐‘€ โˆˆ |๐ด๐‘|.

We take ๐‘€๐‘€โ€ฒ โˆฅ ๐ต๐ถ, ๐‘€๐‘โ€ฒ โˆฅ ๐ต๐ถ.

โˆ†๐ด๐‘€๐‘€โ€ฒ~โˆ†๐ด๐ต๐ถ โ‡’๐œŽ[๐ด๐‘€๐‘€โ€ฒ]

๐œŽ[๐ด๐ต๐ถ]= (๐ด๐‘€

๐ด๐ต)

๐œŽ[๐ด๐‘€๐‘€โ€ฒ] =1

3๐œŽ, (

โ€–๐ด๐‘€โ€–

โ€–๐ด๐ตโ€–)

2

=1

3 , โ€–๐ด๐‘€โ€– =

โ€–๐ด๐ตโ€–

โˆš3; โˆ†๐ด๐‘๐‘โ€ฒ~โˆ†๐ด๐ต๐ถ โŸน

๐œŽ[๐ด๐‘๐‘โ€ฒ]

๐œŽ[๐ด๐ต๐ถ]= (

โ€–๐ด๐‘โ€–

โ€–๐ด๐ตโ€–)

2

๐œŽ[๐ด๐‘๐‘โ€ฒ] =2

3๐œŽ[๐ด๐ต๐ถ]

}

โŸน (โ€–๐ด๐‘โ€–

โ€–๐ด๐ตโ€–)

2

=2

3โŸน โ€–๐ด๐‘โ€– = โˆš

2

3โ€–๐ด๐ตโ€– .

Solution to Problem 22.

โ€–๐‘‚๐ทโ€– = ๐‘Ž, โ€–๐‘‚๐ดโ€– = ๐‘ ;

๐œŽ[โˆ†๐ถ๐‘€โ€ฒ๐‘€] = ๐œŽ[๐‘€๐‘€โ€ฒ๐‘โ€ฒ๐‘] = ๐œŽ[๐‘๐‘โ€ฒ๐ต๐ด] =1

3๐œŽ[๐ด๐ต๐ถ๐ท] ;

โˆ†๐‘‚๐ท๐ถ~โˆ†๐‘‚๐ด๐ต โŸน๐œŽ[๐‘‚๐ท๐ถ]

๐œŽ[๐‘‚๐ด๐ต]=โ€–๐‘‚๐ทโ€–2

โ€–๐‘‚๐ดโ€–2=๐‘Ž

๐‘ โŸน

๐œŽ[๐‘‚๐ท๐ถ]

๐œŽ[๐‘‚๐ด๐ต] โˆ’ ๐œŽ[๐‘‚๐ท๐ถ]=

๐‘Ž2

๐‘2 โˆ’ ๐‘Ž2โŸน

๐œŽ[๐‘‚๐ท๐ถ]

๐œŽ[๐ด๐ต๐ถ๐ท]

=๐‘Ž2

๐‘2 โˆ’ ๐‘Ž2 (1)

Page 25: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

24

โˆ†๐‘‚๐ท๐ถ~โˆ†๐‘‚๐‘€๐‘€โ€ฒโŸน๐œŽ[๐‘‚๐ท๐ถ]

๐œŽ[๐‘‚๐‘€๐‘€โ€ฒ]= (

โ€–๐‘‚๐ทโ€–

โ€–๐‘‚๐‘€โ€–)

2

โŸน๐œŽ[๐‘‚๐ท๐ถ]

๐œŽ[๐‘‚๐‘€๐‘€โ€ฒ] โˆ’ ๐œŽ[๐‘‚๐ท๐ถ]=

๐‘Ž2

โ€–๐‘‚๐‘€โ€–2

โŸน๐œŽ[๐‘‚๐ท๐ถ]

๐œŽ[๐ท๐ถ๐‘€๐‘€โ€ฒ]=

๐‘Ž2

โ€–๐‘‚๐‘€โ€–2 โˆ’ ๐‘Ž2โŸน

๐œŽ[๐‘‚๐ท๐ถ]

13๐œŽ[๐ด๐ต๐ถ๐ท]

=๐‘Ž2

โ€–๐‘‚๐‘€โ€–2 โˆ’ ๐‘Ž2 (2)

โˆ†๐‘‚๐‘๐‘โ€ฒ~โˆ†๐‘‚๐ท๐ถ โŸน๐œŽ[๐‘‚๐ท๐ถ]

๐œŽ[๐ท๐‘๐‘โ€ฒ]=โ€–๐‘‚๐ทโ€–

โ€–๐‘‚๐‘โ€–=

๐‘Ž2

โ€–๐‘‚๐‘โ€–โŸน

๐œŽ[๐ผ๐ท๐ถ]

๐œŽ[๐‘‚๐‘๐‘โ€ฒ] โˆ’ ๐œŽ[๐‘‚๐ท๐ถ]=

๐‘Ž2

โ€–๐‘‚๐‘โ€–2

โŸน๐œŽ[๐‘‚๐ท๐ถ]

๐œŽ[๐ท๐ถ๐‘๐‘โ€ฒ]=

๐‘Ž2

โ€–๐‘‚๐‘โ€–2 โˆ’ ๐‘Ž2โŸน

๐œŽ[๐‘‚๐ท๐ถ]

23๐œŽ[๐ด๐ต๐ถ๐ท]

=๐‘Ž2

โ€–๐‘‚๐‘โ€–2 โˆ’ ๐‘Ž2 (3)

We divide (1) by (3):

2

3=โ€–๐‘‚๐‘โ€–2 โˆ’ ๐‘Ž2

๐‘2 โˆ’ ๐‘Ž2 โŸน 3โ€–๐‘‚๐‘โ€–2 โˆ’ 3๐‘Ž2 = 2๐‘2 โˆ’ 2๐‘Ž2โŸน โ€–๐‘‚๐‘โ€–2 =

๐‘Ž2 + 2๐‘2

3 .

Solution to Problem 23.

โ€–๐‘‚๐ดโ€– = ๐‘Ÿ โ†’ โ€–๐ท๐ธโ€– = 2๐‘Ÿ; ๐œŽhexagon =3๐‘Ÿ2โˆš2

2 (1)

๐ท๐ธ๐น๐‘‚ a square inscribed in the circle with radius ๐‘… โŸน

โŸน ๐‘™4 = ๐‘…โˆš2 = โ€–๐ท๐ธโ€– โŸน ๐‘ƒโˆš2 = 2๐‘Ÿ โŸน ๐‘… = ๐‘Ÿโˆš2

โ€–๐‘‚๐‘€โ€– = ๐‘… = ๐‘Ÿโˆš2

๐œŽ[๐‘‚๐‘€๐‘] =โ€–๐‘‚๐‘€โ€– โˆ™ โ€–๐‘‚๐‘โ€– sin 120

2=๐‘Ÿโˆš2 โˆ™ ๐‘Ÿโˆš2 โˆ™

โˆš32

2=๐‘Ÿ2โˆš3

2

๐œŽ[๐‘€๐‘๐‘ƒ] = 3๐œŽ[๐‘‚๐‘€๐‘] = 3๐‘Ÿ2โˆš3

2=3๐‘Ÿ2โˆš2

2 (2)

From (1) and (2) โŸน ๐œŽ[๐‘€๐‘๐‘ƒ] = ๐œŽhexagon.

Page 26: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

25

Solution to Problem 24.

โ€–๐ด๐ตโ€–2 = โ€–๐ต๐ถโ€– โˆ™ โ€–๐ต๐ดโ€ฒโ€–

We construct the squares ๐ต๐ถ๐ธ๐ท on the hypotenuse and ๐ด๐ต๐น๐บ on the leg.

We draw ๐ด๐ดโ€ฒ โŠฅ ๐ต๐ถ.

๐œŽ[๐ด๐ต๐น๐บ] = โ€–๐ด๐ตโ€–2 ๐œŽ[๐ดโ€ฒ๐ต๐ท๐ป] = โ€–๐ต๐ทโ€– โˆ™ โ€–๐ต๐ดโ€ฒโ€– = โ€–๐ต๐ถโ€– โˆ™ โ€–๐ต๐ดโ€ฒโ€–โ€ฆ

Solution to Problem 25.

๐œŽ(๐‘ 1) = ๐œŽ[๐ด๐ต๐ถ] โˆ’ 3๐œŽ[sect. ๐ด๐ท๐ป]

๐œŽ[๐ด๐ต๐ถ] =๐‘™2โˆš3

4=(2๐‘Ž)2โˆš3

4= ๐‘Ž2โˆš3

๐œŽ[sect. ๐ด๐ท๐ป] =๐‘Ÿ2

2๐‘š(๐ท๏ฟฝ๏ฟฝ)

๐‘š(๐ท๏ฟฝ๏ฟฝ) =๐œ‹

180๐‘š(๐ท๏ฟฝ๏ฟฝ) =

๐œ‹

180โˆ™ 600 =

๐œ‹

3

๐œŽ[sect. ๐ด๐ท๐ป] =๐‘Ž2

2โˆ™๐œ‹

3=๐œ‹๐‘Ž2

2

๐œŽ(๐‘ 1) = ๐‘Ž2โˆš3 โˆ’ 3

๐œ‹๐‘Ž2

6= ๐‘Ž2โˆš3 โˆ’

๐œ‹๐‘Ž2

2 (1)

Page 27: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

26

๐œŽ(๐‘ 2) = ๐œŽ[sect. ๐ด๐ธ๐บ] โˆ’ ๐œŽ[sect. ๐ด๐ต๐ถ] โˆ’ ๐œŽ[sect. ๐ธ๐ถ๐น] โˆ’ ๐œŽ[sect. ๐บ๐ต๐น]

=(3๐‘Ž)2

2โˆ™๐œ‹

180โˆ™ 60 โˆ’ ๐‘Ž2โˆš3 โˆ’

๐‘Ž2

2โˆ™๐œ‹

180โˆ™ 120 =

9๐‘Ž2

2โˆ™๐œ‹

3โˆ’ ๐‘Ž2โˆš3 โˆ’

๐œ‹๐‘Ž2

3โˆ’๐œ‹๐‘Ž2

3

=3๐œ‹๐‘Ž2

2โˆ’2๐œ‹๐‘Ž2

3โˆ’ ๐‘Ž2โˆš3 (2)

From (1) and (2)

โŸน ๐œŽ(๐‘ 1) + ๐œŽ(๐‘ 2) =3๐œ‹๐‘Ž2

2โˆ’2๐œ‹๐‘Ž2

3โˆ’๐œ‹๐‘Ž2

2=2๐œ‹๐‘Ž2

6=๐œ‹๐‘Ž2

3 .

Solution to Problem 26.

โ€–๐ด๐ทโ€–2 = ๐‘Ÿ22 โˆ’ ๐‘Ÿ1

2

๐œŽ[๐ฟ(๐‘‚, ๐‘Ÿ1)] = ๐œ‹๐‘Ÿ12

๐œŽ[๐ฟ(๐‘‚, ๐‘Ÿ2)] = ๐œ‹๐‘Ÿ22

๐œŽ[annulus] = ๐œ‹๐‘Ÿ22 โˆ’ ๐œ‹๐‘Ÿ1

2 = ๐œ‹(๐‘Ÿ22 โˆ’ ๐‘Ÿ1

2) (1)

๐œŽ[disk diameterโ€–๐ด๐ตโ€–] = ๐œ‹โ€–๐ด๐ทโ€–2 = ๐œ‹(๐‘Ÿ22 โˆ’ ๐‘Ÿ1

2) (2)

From (1) and (2) โŸน ๐œŽ[annulus] = ๐œŽ[disk diameter].

Solution to Problem 27.

Page 28: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

27

๐œŽ[๐ถ๐ท๐ธ๐น] =๐œŽ[๐ถ๐ท๐ทโ€ฒ๐ถโ€ฒ]

2

๐œŽ[๐ถ๐ท๐ทโ€ฒ๐ถโ€ฒ] = ๐œŽseg[๐ถ๐ท๐ต๐ทโ€ฒ๐ถโ€ฒ] โˆ’ ๐œŽseg[๐ท๐ต๐ทโ€ฒ]

We denote ๐‘š(๐ด๏ฟฝ๏ฟฝ) = ๐‘š(๐ต๏ฟฝ๏ฟฝ) = ๐‘Ž โŸน ๐‘š(๐ถ๏ฟฝ๏ฟฝ) =๐œ‹

2โˆ’ 2๐‘Ž

๐œŽsect. =๐‘Ÿ2

2(๐›ผ โˆ’ sin๐›ผ)

๐œŽ[๐ถ๐ท๐ต๐ทโ€ฒ๐ถโ€ฒ] =๐‘Ÿ2

2[๐œ‹ โˆ’ 2๐›ผ โˆ’ sin(๐œ‹ โˆ’ 2๐›ผ)] = ๐‘ž

๐‘Ÿ2

2[๐œ‹ โˆ’ 2๐›ผ โˆ’ sin(๐œ‹ โˆ’ 2๐›ผ)]

๐œŽ๐ด =๐‘Ÿ2

2(2๐›ผ โˆ’ sin 2๐›ผ)

๐œŽ[๐ถ๐ท๐ทโ€ฒ๐ถโ€ฒ] = ๐œŽ[๐ถ๐ท๐ต๐ทโ€ฒ๐ถโ€ฒ] โˆ’ ๐œŽ[๐ท๐ต๐ทโ€ฒ] =๐‘Ÿ2

2(๐œ‹ โˆ’ 2๐›ผ โˆ’ sin2๐›ผ) =

๐‘Ÿ2

2(2๐›ผ โˆ’ sin2๐›ผ)

=๐‘Ÿ2

2(๐œ‹ โˆ’ 2๐›ผ โˆ’ sin 2๐›ผ โˆ’ 2๐›ผ + sin 2๐›ผ) =

๐‘Ÿ2

2(๐œ‹ โˆ’ 4๐›ผ)

โŸน ๐œŽ[๐ถ๐ท๐ธ๐น] =๐œŽ[๐ถ๐ท๐ทโ€ฒ๐ถโ€ฒ]

2=๐‘Ÿ2

4(๐œ‹ โˆ’ 4๐›ผ) =

๐‘Ÿ2

2(๐œ‹

2โˆ’ 2๐›ผ) (1)

๐œŽ[sect. ๐ถ๐‘‚๐ท] =๐‘Ÿ2

2๐‘š(๐ถ๏ฟฝ๏ฟฝ) =

๐‘Ÿ2

2(๐œ‹

2โˆ’ 2๐›ผ) (2)

From (1) and (2) โŸน ๐œŽ[๐ถ๐ท๐ธ๐น] = ๐œŽ[sect. ๐ถ๐‘‚๐ท].

โ€–๐‘‚1๐นโ€– = โ€–๐‘‚๐ธโ€–

๐œŽ[square] = โ€–๐ท๐ธโ€–2 = โ€–๐‘‚๐ดโ€–2 =๐‘๐‘

2= ๐‘‰[๐ด๐ต๐ถ]

Solution to Problem 28.

๐œ‡(๐ด๐‘‚๏ฟฝ๏ฟฝ) =๐œ‹

4

๐œŽ[๐ด๐‘‚๐ต] =๐‘Ÿ2 sin

๐œ‹4

2=๐‘Ÿ2โˆš222

=๐‘Ÿ2โˆš2

4

๐œŽ[orthogon] = 8 โˆ™๐‘Ÿ2โˆš2

4= 2โˆš2๐‘Ÿ2

Page 29: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

28

Solution to Problem 29.

๐œŽ[๐ด๐ต๐ถ] = ๐œŽ[๐ด๐‘€๐ต] + ๐œŽ[๐ด๐‘€๐ถ] + ๐œŽ[๐‘€๐ต๐ถ] โŸน ๐‘Žโ„Ž๐‘Ž = ๐‘Ž๐‘‘3 + ๐‘Ž๐‘‘2 + ๐‘Ž๐‘‘1

๐‘‘1 + ๐‘‘2 + ๐‘‘3 = โ„Ž๐‘Ž (๐‘Ž is the side of equilateral triangle)

โŸน ๐‘‘1 + ๐‘‘2 + ๐‘‘3 =๐‘Žโˆš3

2 (because โ„Ž๐‘Ž =

๐‘Žโˆš3

2 ).

Solution to Problem 30.

๐ด๐ต๐ถ โˆ’ given โˆ† โŸน ๐‘Ž, ๐‘, ๐‘, โ„Ž โˆ’ constant

๐œŽ[๐ด๐ต๐ถ] =๐‘Žโ„Ž

2

๐œŽ[๐ด๐ต๐ถ] = ๐œŽ[๐ด๐‘€๐ต] + ๐œŽ[๐ด๐‘€๐ถ]

โŸน๐‘Žโ„Ž

2=๐‘๐‘ฅ

2+๐‘๐‘ฆ

2โŸน ๐‘๐‘ฅ + ๐‘๐‘ฆ = ๐‘Ž๐‘ โŸน

๐‘

๐‘Žโ„Ž๐‘ฅ +

๐‘

๐‘Žโ„Ž๐‘ฆ = 1 โŸน ๐‘˜๐‘ฅ + ๐‘™๐‘ฆ = 1,

where ๐‘˜ =๐‘

๐‘Žโ„Ž and ๐‘™ =

๐‘

๐‘Žโ„Ž .

Solution to Problem 31.

Page 30: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

29

We draw ๐ด๐ดโ€ฒ โŠฅ ๐ต๐ถ;๐‘๐‘โ€ฒ โŠฅ ๐ต๐ถ;๐ท๐ทโ€ฒ โŠฅ ๐ต๐ถ โ‡’๐ด๐ดโ€ฒ โˆฅ ๐‘๐‘โ€ฒ โˆฅ ๐ท๐ทโ€ฒ

โ€–๐ด๐‘โ€– = โ€–๐‘๐ทโ€–} โŸน ๐‘€๐‘โ€ฒmedian line in

the trapezoid ๐ด๐ดโ€ฒ๐ทโ€ฒ๐ท โŸน โ€–๐‘๐‘โ€ฒโ€– =โ€–๐ด๐ดโ€ฒโ€–+โ€–๐ท๐ทโ€ฒโ€–

2, ๐œŽ[๐ต๐ถ๐‘] =

โ€–๐ต๐ถโ€–+โ€–๐‘๐‘โ€ฒโ€–

2.

Solution to Problem 32.

First, we construct a quadrilateral with the same area as the given pentagon. We

draw through C a parallel to BD and extend |AB| until it intersects the parallel at M.

๐œŽ[๐ด๐ต๐ถ๐ท๐ธ] = ๐œŽ[๐ด๐ต๐ท๐ธ] + ๐œŽ[๐ต๐ถ๐ท],

๐œŽ[๐ต๐ถ๐ท] = ๐œŽ[๐ต๐ท๐‘€] (have the vertices on a parallel at the base).

Therefore, ๐œŽ[๐ด๐ต๐ถ๐ท๐ธ] = ๐œŽ[๐ด๐‘€๐ท๐ธ].

Then, we consider a triangle with the same area as the quadrilateral ๐ด๐‘€๐ท๐ธ.

We draw a parallel to ๐ด๐ท,๐‘ is an element of the intersection with the same

parallel.

๐œŽ[๐ด๐‘€๐ท๐ธ] = ๐œŽ[๐ด๐ท๐ธ] + ๐œŽ[๐ด๐ท๐ธ] = ๐œŽ[๐ด๐ท๐ธ] + ๐œŽ[๐ด๐ท๐‘] = ๐œŽ[๐ธ๐ท๐‘].

Page 31: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

30

Solution to Problem 33.

โ€–๐ด๐ธโ€– = โ€–๐ธ๐ถโ€–

โ€–๐ธ๐นโ€–๐ต๐ท โŸน ๐œŽ[๐ต๐ท๐น] = ๐œŽ[๐ต๐ท๐ธ]

๐œŽ[๐ด๐ต๐น๐ท] = ๐œŽ[๐ด๐ต๐ธ๐ท] (1)

๐œŽ[๐ด๐ท๐ธ] = ๐œŽ[๐ท๐ธ๐ถ] equal bases and the same height;

๐œŽ[๐ด๐ท๐ธ] = ๐œŽ[๐ท๐ธ๐ถ]

๐œŽ[๐ด๐ต๐ธ๐ท] = ๐œŽ[๐ต๐ธ๐ท๐ถ] (2)

๐œŽ[๐ท๐ธ๐น] = ๐œŽ[๐ต๐ธ๐น] the same base and the vertices on parallel lines at the base;

Page 32: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

31

Solution to Problem 34.

It is proved in the same way that:

โŸน๐‘€๐‘๐‘ƒ๐‘„ rhombus with right angleโŸน๐‘€๐‘๐‘ƒ๐‘„ is a square.

It is proved in the same way that all the peaks of the octagon are elements of the

axis of symmetry of the square, thus the octagon is regular.

Page 33: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

32

Consider the square separately.

Solution to Problem 35.

โ€–๐‘‚๐‘€โ€– = โ€–๐‘๐‘€โ€– = โ€–๐‘๐ตโ€– โ€–๐ท๐ถโ€–?โŸน โˆ†๐‘€๐‘‚๐ถ = โˆ†๐‘๐ต๐ด โŸน โ€–๐‘€๐ถโ€– = โ€–๐ด๐‘โ€–

It is proved in the same way that โˆ†๐ท๐ด๐‘€ = โˆ†๐ต๐ถ๐‘ โŸน โ€–๐‘€๐ถโ€– = โ€–๐‘๐ถโ€–.

Thus ๐ด๐‘๐ถ๐‘€ is a parallelogram.

Page 34: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

33

Solution to Problem 36.

To determine the angle ฮฑ:

We write

thus we have established the positions of the lines of the locus.

constant for ๐ด, ๐ต, ๐ถ, ๐ท โ€“ fixed points.

We must find the geometrical locus of points ๐‘€ such that the ratio of the

distances from this point to two concurrent lines to be constant.

Page 35: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

34

โ€–๐‘€๐ธโ€–

โ€–๐‘€๐นโ€–= ๐‘˜. Let M' be another point with the same property, namely

โ€–๐‘€โ€ฒ๐ธโ€ฒโ€–

โ€–๐‘€โ€ฒ๐นโ€ฒโ€–= ๐‘˜.

๐‘ƒ,๐‘€,๐‘€โ€ฒ collinear โŸน the locus is a line that passes through ๐‘ƒ.

When the points are in โˆข๐ถ๐‘ƒ๐ต we obtain one more line that passes through ๐‘ƒ.

Thus the locus is formed by two concurrent lines through ๐‘ƒ, from which we

eliminate point ๐‘ƒ, because the distances from ๐‘ƒ to both lines are 0 and their ratio is

indefinite.

Vice versa, if points ๐‘ and ๐‘โ€ฒ are on the same line passing through ๐‘ƒ, the ratio

of their distances to lines ๐ด๐ต and ๐ถ๐ท is constant.

Solution to Problem 37.

We show in the same way as in the previous problem that:

โ€–๐‘€๐ธโ€–

โ€–๐‘€๐นโ€–= ๐‘˜ โŸน

โ€–๐‘€๐ธโ€–

โ€–๐‘€๐นโ€– + โ€–๐‘€๐ธโ€–=

๐‘˜

1 โˆ’ ๐‘˜โŸน โ€–๐‘€๐ธโ€– =

๐‘˜๐‘‘

1 + ๐‘˜ ,

and the locus of the points which are located at a constant distance from a given

line is a parallel to the respective line, located between the two parallels.

If ||๐ด๐ต|| > ||๐ถ๐ท|| โŸน ๐‘‘(๐‘€๐ด๐ธ) < ๐‘‘(๐‘€๐ถ๐ท).

Page 36: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

35

Then, if

๐‘€๐ธ

๐‘€๐น= ๐‘˜ โŸน

๐‘€๐ธ

๐‘€๐น โˆ’๐‘€๐ธ=

๐‘˜

1 โˆ’ ๐‘˜โŸน๐‘€๐ธ

๐‘‘=

๐‘˜

1 โˆ’ ๐‘˜โŸน ๐‘€๐ธ =

๐‘˜๐‘‘

1 โˆ’ ๐‘˜ ,

thus we obtain one more parallel to ๐ด๐ต.

Solution to Problem 38.

Solution no. 1

We suppose that ABCD is not a parallelogram. Let {๐ผ} = ๐ด๐ต โˆฉ ๐ถ๐ท. We build ๐ธ โˆˆ

(๐ผ๐ด such that ๐ผ๐ธ = ๐ด๐ต and ๐น โˆˆ (๐ผ๐ถ such that ๐ผ๐น = ๐ถ๐ท. If ๐‘€ a point that verifies

๐œŽ[๐ด๐ต๐‘€] + ๐œŽ[๐ถ๐ท๐‘€] = 1 (1), then, because ๐œŽ[๐ด๐ต๐‘€] = ๐œŽ[๐‘€๐ผ๐ธ] and ๐œŽ[๐ถ๐ท๐‘€] = ๐œŽ[๐‘€๐ผ๐น], it

results that ๐œŽ[๐‘€๐ผ๐ธ] + ๐œŽ[๐‘€๐ผ๐น] = ๐‘˜ (2).

We obtain that ๐œŽ[๐‘€๐ธ๐ผ๐น] = ๐‘˜.

On the other hand, the points ๐ธ, ๐น are fixed, therefore ๐œŽ[๐ผ๐ธ๐น] = ๐‘˜โ€ฒ = const. That

is, ๐œŽ[๐‘€๐ธ๐น] = ๐‘˜ โˆ’ ๐‘˜โ€ฒ = const.

Because ๐ธ๐น = const., we have ๐‘‘(๐‘€, ๐ธ๐น) =2(๐‘˜โˆ’๐‘˜โ€ฒ)

๐ธ๐น= const., which shows that ๐‘€

belongs to a line that is parallel to ๐ธ๐น, taken at the distance 2(๐‘˜โˆ’๐‘˜โ€ฒ)

๐ธ๐น .

Therefore, the locus points are those on the line parallel to ๐ธ๐น, located inside the

quadrilateral ๐ด๐ต๐ถ๐ท. They belong to the segment [๐ธโ€ฒ๐นโ€ฒ] in Fig. 1.

Reciprocally, if ๐‘€ โˆˆ [๐ธโ€ฒ๐นโ€ฒ], then ๐œŽ[๐‘€๐ด๐ต] + ๐œŽ[๐‘€๐ถ๐ท] = ๐œŽ[๐‘€๐ผ๐ธ] + ๐œŽ[๐‘€๐ผ๐น] =

๐œŽ[๐‘€๐ธ๐ผ๐น] = ๐œŽ[๐ผ๐ธ๐น] + ๐œŽ[๐‘€๐ธ๐‘ƒ] = ๐‘˜โ€ฒ +๐ธ๐นโˆ™2(๐‘˜โˆ’๐‘˜โ€ฒ)

2โˆ™๐ธ๐น= ๐‘˜.

Page 37: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

36

In conclusion, the locus of points ๐‘€ inside the quadrilateral ๐ด๐ต๐ถ๐ท which occurs

for relation (1) where ๐‘˜ is a positive constant smaller than ๐‘† = ๐œŽ[๐ด๐ต๐ถ๐ท] is a line

segment.

If ๐ด๐ต๐ถ๐ท is a trapeze having ๐ด๐ต and ๐ถ๐ท as bases, then we reconstruct the

reasoning as ๐ด๐ท โˆฉ ๐ต๐ถ = {๐ผ} and ๐œŽ[๐‘€๐ด๐ท] + ๐œŽ[๐‘€๐ต๐ถ] = ๐‘  โˆ’ ๐‘˜ = const.

If ๐ด๐ต๐ถ๐ท is a parallelogram, one shows without difficulty that the locus is a

segment parallel to ๐ด๐ต.

Solution no. 2 (Ion Patrascu)

We prove that the locus of points ๐‘€ which verify the relationship ๐œŽ[๐‘€๐ด๐ต] +

๐œŽ[๐‘€๐ถ๐ท] = ๐‘˜ (1) from inside the convex quadrilateral ๐ด๐ต๐ถ๐ท of area ๐‘  (๐‘˜ โŠ‚ ๐‘ ) is a line

segment.

Letโ€™s suppose that ๐ด๐ต โˆฉ ๐ถ๐ท = {๐ผ}, see Fig. 2. There is a point ๐‘ƒ of the locus which

belongs to the line ๐ถ๐ท. Therefore, we have (๐‘ƒ; ๐ด๐ต) =2๐‘˜

๐ด๐ต . Also, there is the point

๐‘„ โˆˆ ๐ด๐ต such that ๐‘‘(๐‘„; ๐ถ๐ท) =2๐‘˜

๐ถ๐ท .

Now, we prove that the points from inside the quadrilateral ๐ด๐ต๐ถ๐ท that are on

the segment [๐‘ƒ๐‘„] belong to the locus.

Let ๐‘€ โˆˆ int[๐ด๐ต๐ถ๐ท] โˆฉ [๐‘ƒ๐‘„]. We denote ๐‘€1 and ๐‘€2 the projections of ๐‘€ on ๐ด๐ต and

๐ถ๐ท respectively. Also, let ๐‘ƒ1 be the projection of ๐‘ƒ on ๐ด๐ต and ๐‘„1 the projection of

๐‘„ on ๐ถ๐ท. The triangles ๐‘ƒ๐‘„๐‘„1 and ๐‘ƒ๐‘€๐‘€2 are alike, which means that

๐‘€๐‘€2๐‘„๐‘„1

=๐‘€๐‘ƒ

๐‘ƒ๐‘„ (2),

Page 38: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

37

and the triangles ๐‘€๐‘€1๐‘„ and ๐‘ƒ๐‘ƒ1๐‘„ are alike, which means that

๐‘€๐‘€1๐‘ƒ๐‘ƒ1

=๐‘€๐‘„

๐‘ƒ๐‘„ (3).

By adding member by member the relations (2) and (3), we obtain

๐‘€๐‘€2๐‘„๐‘„1

+๐‘€๐‘€1๐‘ƒ๐‘ƒ1

=๐‘€๐‘ƒ +๐‘€๐‘„

๐‘ƒ๐‘„= 1 (4).

Substituting in (4), ๐‘„๐‘„1 =2๐‘˜

๐ถ๐ท and ๐‘ƒ1 =

2๐‘˜

๐ด๐ต , we get ๐ด๐ต โˆ™ ๐‘€๐‘€1 + ๐ถ๐ท โˆ™ ๐‘€๐‘€2 = 2๐‘˜, that

is ๐œŽ[๐‘€๐ด๐ต] + ๐œŽ[๐‘€๐ถ๐ท] = ๐‘˜.

We prove now by reductio ad absurdum that there is no point inside the

quadrilateral ๐ด๐ต๐ถ๐ท that is not situated on the segment [๐‘ƒ๐‘„], built as shown, to

verify the relation (1).

Let a point ๐‘€โ€ฒ inside the quadrilateral ๐ด๐ต๐ถ๐ท that verifies the relation (1), ๐‘€โ€ฒ โˆ‰

[๐‘ƒ๐‘„]. We build ๐‘€โ€ฒ๐‘‡ โˆฉ ๐ด๐ต, ๐‘€โ€ฒ๐‘ˆ โˆฅ ๐ถ๐ท, where ๐‘‡ and ๐‘ˆ are situated on [๐‘ƒ๐‘„], see Fig. 3.

We denote ๐‘€1โ€ฒ , ๐‘‡1, ๐‘ˆ1 the projections of ๐‘€1, ๐‘‡, ๐‘ˆ on ๐ด๐ต and ๐‘€2

โ€ฒ , ๐‘‡2, ๐‘ˆ2 the

projections of the same points on ๐ถ๐ท.

We have the relations:

๐‘€โ€ฒ๐‘€1โ€ฒ โˆ™ ๐ด๐ต +๐‘€โ€ฒ๐‘€2

โ€ฒ โˆ™ ๐ถ๐ท = 2๐‘˜ (5),

๐‘‡๐‘‡1 โˆ™ ๐ด๐ต + ๐‘‡๐‘‡2 โˆ™ ๐ถ๐ท = 2๐‘˜ (6).

Because ๐‘€โ€ฒ๐‘€1โ€ฒ = ๐‘‡๐‘‡1 and ๐‘€โ€ฒ๐‘€2

โ€ฒ = ๐‘ˆ๐‘ˆ2, substituting in (5), we get:

๐‘‡๐‘‡1 โˆ™ ๐ด๐ต + ๐‘ˆ๐‘ˆ2 โˆ™ ๐ถ๐ท = 2๐‘˜ (7).

From (6) and (7), we get that ๐‘‡๐‘‡2 = ๐‘ˆ๐‘ˆ2, which drives us to ๐‘ƒ๐‘„ โˆฅ ๐ถ๐ท, false!

Page 39: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

38

Problems in Geometry and Trigonometry

39. Find the locus of the points such that the sum of the distances to two

concurrent lines to be constant and equal to ๐‘™.

Solution to Problem 39

40. Show that in any triangle ๐ด๐ต๐ถ we have:

a. ๐‘ ๐‘๐‘œ๐‘ ๐ถ + ๐‘ ๐‘๐‘œ๐‘ ๐ต = ๐‘Ž; b. ๐‘ ๐‘๐‘œ๐‘ ๐ต + ๐‘ ๐‘๐‘œ๐‘ ๐ถ = ๐‘Ž ๐‘๐‘œ๐‘ (๐ต โˆ’ ๐ถ).

Solution to Problem 40

41. Show that among the angles of the triangle ๐ด๐ต๐ถ we have:

a. ๐‘ ๐‘๐‘œ๐‘ ๐ถ โˆ’ ๐‘ ๐‘๐‘œ๐‘ ๐ต =๐‘2โˆ’๐‘Ž2

๐‘Ž;

b. 2(๐‘๐‘ ๐‘๐‘œ๐‘ ๐ด + ๐‘Ž๐‘ ๐‘๐‘œ๐‘ ๐ต + ๐‘Ž๐‘ ๐‘๐‘œ๐‘ ๐ถ = ๐‘Ž2 + ๐‘2 + ๐‘2.

Solution to Problem 41

42. Using the law of cosines prove that 4๐‘š2

๐‘Ž= 2(๐‘2 + ๐‘2) โˆ’ ๐‘Ž2, where ๐‘š๐‘Ž is the

length of the median corresponding to the side of ๐‘Ž length.

Solution to Problem 42

43. Show that the triangle ๐ด๐ต๐ถ where ๐‘Ž+๐‘

๐‘= cot

๐ต

2 is right-angled.

Solution to Problem 43

44. Show that, if in the triangle ๐ด๐ต๐ถ we have cot ๐ด + cot๐ต = 2 cot ๐ถ โ‡’ ๐‘Ž2 +

๐‘2 = 2๐‘2.

Solution to Problem 44

45. Determine the unknown elements of the triangle ๐ด๐ต๐ถ, given:

a. ๐ด, ๐ต and ๐‘;

b. ๐‘Ž + ๐‘ = ๐‘š, ๐ด and ๐ต;

c. ๐‘Ž, ๐ด; ๐‘ โˆ’ ๐‘ = ๐‘Ž.

Solution to Problem 45

Page 40: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

39

46. Show that in any triangle ๐ด๐ต๐ถ we have tan๐ดโˆ’๐ต

2tan

๐ถ

2=๐‘Žโˆ’๐‘

๐‘Ž+๐‘ (tangents

theorem).

Solution to Problem 46

47. In triangle ๐ด๐ต๐ถ it is given ๏ฟฝ๏ฟฝ = 60ยฐ and ๐‘

๐‘= 2 + โˆš3. Find tan

๐ตโˆ’๐ถ

2 and angles

๐ต and ๐ถ.

Solution to Problem 47

48. In a convex quadrilateral ๐ด๐ต๐ถ๐ท, there are given โ€–๐ด๐ทโ€– = 7(โˆš6 โˆ’ โˆš2), โ€–๐ถ๐ทโ€– =

13, โ€–๐ต๐ถโ€– = 15, ๐ถ = arccos33

65, and ๐ท =

๐œ‹

4+ arccos

5

13 . The other angles of the

quadrilateral and โ€–๐ด๐ตโ€– are required.

Solution to Problem 48

49. Find the area of โˆ†๐ด๐ต๐ถ when:

a. ๐‘Ž = 17, ๐ต = arcsin 24

25, ๐ถ = arcsin

12

13;

b. ๐‘ = 2, ๏ฟฝ๏ฟฝ โˆˆ 135ยฐ, ๏ฟฝ๏ฟฝ โˆˆ 30ยฐ;

c. ๐‘Ž = 7, ๐‘ = 5, ๐‘ = 6;

d. ๏ฟฝ๏ฟฝ โˆˆ 18ยฐ, ๐‘ = 4, ๐‘ = 6.

Solution to Problem 49

50. How many distinct triangles from the point of view of symmetry are there

such that ๐‘Ž = 15, ๐‘ = 13, ๐‘  = 24?

Solution to Problem 50

51. Find the area of โˆ†๐ด๐ต๐ถ if ๐‘Ž = โˆš6, ๏ฟฝ๏ฟฝ โˆˆ 60ยฐ, ๐‘ + ๐‘ = 3 + โˆš3.

Solution to Problem 51

52. Find the area of the quadrilateral from problem 48.

Solution to Problem 52

Page 41: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

40

53. If ๐‘†๐‘› is the area of the regular polygon with ๐‘› sides, find:

๐‘†3, ๐‘†4, ๐‘†6, ๐‘†8, ๐‘†12, ๐‘†20 in relation to ๐‘…, the radius of the circle inscribed in the

polygon.

Solution to Problem 53

54. Find the area of the regular polygon ๐ด๐ต๐ถ๐ทโ€ฆ๐‘€ inscribed in the circle with

radius ๐‘…, knowing that: 1

โ€–๐ด๐ตโ€–=

1

โ€–๐ด๐ถโ€–+

1

โ€–๐ด๐ทโ€– .

Solution to Problem 54

55. Prove that in any triangle ABC we have:

a. ๐‘Ÿ = (๐‘ โˆ’ ๐‘Ž) tan๐ด

2;

b. ๐‘† = (๐‘ โˆ’ ๐‘Ž) tan๐ด

2;

c. ๐‘ = 4๐‘… cos๐ด

2cos

๐ต

2cos

๐ถ

2;

d. ๐‘ โˆ’ ๐‘Ž = 4๐‘… cos๐ด

2cos

๐ต

2cos

๐ถ

2;

e. ๐‘š๐‘Ž2 = ๐‘…2(sin2 ๐ด + 4 cos๐ด sin ๐ต sin ๐ถ;

f. โ„Ž๐‘Ž = 2๐‘… sin๐ต sin ๐ถ.

Solution to Problem 55

56. If ๐‘™ is the center of the circle inscribed in triangle ๐ด๐ต๐ถ show that โ€–๐ด๐ผโ€– =

4๐‘… sin๐ต

2sin

๐ถ

2 .

Solution to Problem 56

57. Prove the law of sine using the analytic method.

Solution to Problem 57

58. Using the law of sine, show that in a triangle the larger side lies opposite

to the larger angle.

Solution to Problem 58

59. Show that in any triangle ๐ด๐ต๐ถ we have:

a.๐‘Ž cos ๐ถ โˆ’ ๐‘ cos๐ต

๐‘Ž cos๐ต โˆ’ ๐‘ cos๐ด+ cos๐ถ = 0, ๐‘Ž โ‰  ๐‘;

Page 42: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

41

b.sin(๐ด โˆ’ ๐ต) sin๐ถ

1 + cos(๐ด โˆ’ ๐ต) cos๐ถ=๐‘Ž2 โˆ’ ๐‘2

๐‘Ž2 + ๐‘2;

c. (๐‘Ž + ๐‘) cos๐ต

4+ ๐‘Ž cos(๐ด +

3๐ต

4) = 2๐‘ cos

๐ต

2cos๐ต

4 .

Solution to Problem 59

60. In a triangle ๐ด๐ต๐ถ, ๐ด โˆˆ 45ยฐ, โ€–๐ด๐ตโ€– = ๐‘Ž, โ€–๐ด๐ถโ€– =2โˆš2

3๐‘Ž. Show that tan๐ต = 2.

Solution to Problem 60

61. Let ๐ดโ€ฒ, ๐ตโ€ฒ, ๐ถโ€ฒ be tangent points of the circle inscribed in a triangle ๐ด๐ต๐ถ with

its sides. Show that ๐œŽ[๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ]

๐œŽ[๐ด๐ต๐ถ]=

๐‘Ÿ

2๐‘….

Solution to Problem 61

62. Show that in any triangle ๐ด๐ต๐ถ sin๐ด

2โ‰ค

๐‘Ž

2โˆš๐‘๐‘ .

Solution to Problem 62

63. Solve the triangle ๐ด๐ต๐ถ, knowing its elements ๐ด, ๐ต and area ๐‘†.

Solution to Problem 63

64. Solve the triangle ๐ด๐ต๐ถ, knowing ๐‘Ž = 13, arc cos4

5 , and the corresponding

median for side ๐‘Ž,๐‘š๐‘Ž =1

2โˆš15โˆš3 .

Solution to Problem 64

65. Find the angles of the triangle ๐ด๐ต๐ถ, knowing that ๐ต โˆ’ ๐ถ =2๐œ‹

3 and ๐‘… = 8๐‘Ÿ,

where ๐‘… and ๐‘Ÿ are the radii of the circles circumscribed and inscribed in the

triangle.

Solution to Problem 65

Page 43: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

42

Solutions

Solution to Problem 39.

Let ๐‘‘1 and ๐‘‘2 be the two concurrent lines. We draw 2 parallel lines to ๐‘‘1 located

on its both sides at distance ๐‘™. These intersect on ๐‘‘2 at ๐ท and ๐ต, which will be

points of the locus to be found, because the sum of the distances ๐‘‘(๐ต, ๐‘‘1) +

๐‘‘(๐ต, ๐‘‘2) = ๐‘™ + 0 verifies the condition from the statement.

We draw two parallel lines with ๐‘‘2 located at distance ๐‘™ from it, which cut ๐‘‘1 in ๐ด

and ๐ถ, which are as well points of the locus to be found. The equidistant parallel

lines determine on ๐‘‘2 congruent segments โŸน|๐ท๐‘‚| โ‰ก |๐‘‚๐ต||๐ด๐‘‚| โ‰ก |๐‘‚๐ถ|

, in the same way ๐ด๐ต๐ถ๐ท

is a parallelogram.

โˆ†๐ต๐‘‚๐ถ,โ€–๐ถ๐ถโ€ฒโ€– = ๐‘‘(๐ถ, ๐‘‘2)

โ€–๐ต๐ตโ€ฒโ€– = ๐‘‘(๐ต, ๐‘‘1)} โŸน โ€–๐ถ๐ถโ€ฒโ€– = โ€–๐ต๐ตโ€ฒโ€–

โŸน โˆ†๐ต๐‘‚๐ถ is isosceles.

โŸน ||๐‘‚๐ถ|| = ||๐‘‚๐ต|| โŸน ๐ด๐ต๐ถ๐ท is a rectangle. Any point ๐‘€ we take on the sides of this

rectangle, we have ||๐‘…1, ๐‘‘1|| + ||๐‘€, ๐‘‘2|| = ๐‘™, using the propriety according to which

the sum of the distances from a point on the base of an isosceles triangle at the

sides is constant and equal to the height that starts from one vertex of the base,

namely ๐‘™. Thus the desired locus is rectangle ๐ด๐ต๐ถ๐ท.

Solution to Problem 40.

Page 44: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

43

Solution to Problem 41.

Solution to Problem 42.

๐‘š๐‘Ž2 = ๐‘2 +

๐‘Ž2

4โˆ’ 2

๐‘Ž

2๐‘ cos๐ต ;

4๐‘š๐‘Ž2 = 4๐‘2 + ๐‘Ž2 โˆ’ 4๐‘Ž๐‘ cos๐ต = 4๐‘2 + ๐‘Ž2 โˆ’ 4๐‘Ž๐‘

๐‘Ž2 + ๐‘2 โˆ’ ๐‘2

2๐‘Ž๐‘= 4๐‘2 + ๐‘Ž2 โˆ’ 2๐‘Ž โˆ’ 2๐‘2 + 2๐‘2

= 2๐‘2 + 2๐‘2 โˆ’ ๐‘Ž2 = 2(๐‘2 + ๐‘2) โˆ’ ๐‘Ž2 .

Page 45: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

44

Solution to Problem 43.

Using the sine theorem, ๐‘Ž = ๐‘šsin๐ด.

๐ด โˆ’ ๐ถ

2= โˆ’

๐ต

2โŸน ๐ด โˆ’ ๐ต = ๐ถ or ๐ด โˆ’ ๐ถ = ๐ต โŸน

๐ด = ๐ต + ๐ถ 2๐ด = 1800 ๐ด = 900

or โŸน or โŸน or๐ด + ๐ต = ๐ถ 2๐ถ = 1800 ๐ถ = 900

Solution to Problem 44.

By substitution:

Page 46: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

45

Solution to Problem 45.

a. Using the law of sine,

b.

c.

Therefore,

We solve the system, and find ๐ต and ๐ถ. Then we find ๐‘ =๐‘Ž sin๐ต

sin๐ด and ๐‘ = ๐‘ โˆ’ ๐‘‘.

Solution to Problem 46.

๐‘Ž

sin๐ด=

๐‘

sin๐ต=

๐‘

sin๐ถ= ๐‘šโŸน

๐‘Ž = ๐‘šsin๐ด๐‘ = ๐‘šsin๐ต

;

๐‘Ž โˆ’ ๐‘

๐‘Ž + ๐‘=๐‘šsin๐ด โˆ’๐‘šsin๐ต

๐‘š sin๐ด +๐‘šsin๐ต=sin๐ด โˆ’ sin๐ต

sin๐ด + sin๐ต=2 sin

๐ด โˆ’ ๐ต2 cos

๐ด + ๐ต2

2 sin๐ด + ๐ต2 cos

๐ด โˆ’ ๐ต2

= tan๐ด โˆ’ ๐ต

2

sin๐ถ2

cos๐ถ2

= tan๐ด โˆ’ ๐ต

2tan๐ถ

2 .

Page 47: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

46

Solution to Problem 47.

Using tangentsโ€™ theorem,

So

Solution to Problem 48.

In โˆ†๐ต๐ท๐ถ we have

Page 48: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

47

In โˆ†๐ด๐ท๐ต,

In โˆ†๐ด๐ท๐ต we apply sineโ€™s theorem:

Or we find ๐œ‡(๐ท๐ต๏ฟฝ๏ฟฝ) and we add it to ๐œ‹

6 .

Solution to Problem 49.

Page 49: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

48

sin๐ด =โˆ’1+โˆš5

4, because ๐‘š(๐ด) < 1800 and sin๐ด > 0.

Solution to Problem 50.

Page 50: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

49

Solution to Problem 51.

Page 51: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

50

Solution to Problem 52.

At problem 9 weโ€™ve found that

With Heronโ€™s formula, we find the area of each triangle and we add them up.

Solution to Problem 53.

The formula for the area of a regular polygon:

Page 52: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

51

Solution to Problem 54.

In โˆ†๐ต๐‘‚๐‘€:

In โˆ†๐‘๐‘‚๐ถ:

In โˆ†๐‘ƒ๐‘‚๐ท:

Substituting (1), (2), (3) in the given relation:

or

which is impossible.

๐‘› =๐‘š(complete circle)

๐‘š(๐ด๏ฟฝ๏ฟฝ)=2๐œ‹

2๐œ‹7

= 7.

Thus the polygon has 7 sides.

Page 53: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

52

Solution to Problem 55.

Solution to Problem 56.

Page 54: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

53

We apply the law of sine in โˆ†๐ด๐ต๐ผ:

The law of sine applied in โˆ†๐ด๐ต๐ถ:

Solution to Problem 57.

In โˆ†๐ด๐ถ๐ถโ€ฒ: sin(1800 โˆ’ ๐ด) =โ€–๐ถ๐ถโ€ฒโ€–

๐‘โŸน โ€–๐ถ๐ถโ€ฒโ€– = ๐‘ sin๐ด ; cos(1800 โˆ’ ๐ด) = ๐‘ cos๐ด.

So the coordinates of ๐ถ are (โˆ’๐‘ cos๐ด , ๐‘ sin๐ด).

The center of the inscribed circle is at the intersection of the perpendicular lines

drawn through the midpoints of sides ๐ด๐ต and ๐ด๐ถ.

The equation of the line ๐ธ๐‘‚:

Page 55: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

54

If we redo the calculus for the same draw, we have the following result:

(๐‘ cos๐ด , ๐‘ sin๐ด).

using the law of cosine.

Solution to Problem 58.

๐‘Ž

sin๐ด=

๐‘

sin๐ต=

๐‘

sin๐ถ= 2๐‘….

We suppose that ๐‘Ž > ๐‘. Letโ€™s prove that ๐ด > ๐ต.

๐‘Ž

sin๐ด=

๐‘

sin๐ตโ‡’๐‘Ž

๐‘=sin๐ด

sin๐ต

๐‘Ž > ๐‘ โ‡’๐‘Ž

๐‘> 1

}โŸนsin๐ด

sin๐ต> 1 โŸน ๐ด,๐ต, ๐ถ โˆˆ (0, ๐œ‹) โŸน sin๐ต > 0 โŸน sin๐ด > sin๐ต

โŸน sin๐ด โˆ’ sin๐ต > 0 โŸน 2sin๐ด โˆ’ ๐ต

2cos๐ด + ๐ต

2> 0 โŸน

๐ด+ ๐ต

2=1800 โˆ’ ๐ถ

2

= 900 โˆ’๐ถ

2 .

Page 56: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

55

cos๐ด+๐ต

2= cos (90circ โˆ’

๐ถ

2) = sin

๐ถ

2> 0, therefore

๐ดโˆ’๐ต

2> 0โŸน ๐ด > ๐ต;

(โˆ’๐œ‹

2<๐ด โˆ’ ๐ต

2<๐œ‹

2).

Solution to Problem 59.

b. We transform the product into a sum:

From (1) and (2) โŸน

We consider the last two terms:

Page 57: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

56

Solution to Problem 60.

We apply the law of cosines in triangle ABC:

Solution to Problem 61.

โ€–๐ผ๐ดโ€– = โ€–๐ผ๐ตโ€– = โ€–๐ผ๐ถโ€– = ๐‘Ÿ ๐ผ๐ถโ€ฒ โŠฅ ๐ด๐ต๐ผ๐ดโ€ฒ โŠฅ ๐ต๐ถ

} โ‡’ ๐ผ๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ inscribable quadrilateral

๐‘š(๐ดโ€ฒ๐ผ๐ถโ€ฒ) = 180 โˆ’ ๏ฟฝ๏ฟฝ โŸน sin(๐ดโ€ฒ๐ผ๐ถโ€ฒ) = sin ๏ฟฝ๏ฟฝ

Similarly, ๐ดโ€ฒ๐ผ๐ตโ€ฒ = sin๐ถ and ๐ถโ€ฒ๐ผ๐ตโ€ฒ = sin๐ด.

Page 58: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

57

In the same way,

Solution to Problem 62.

0 < ๐ด โ‡’<๐ด

2<๐œ‹

2โ‡’ sin

๐ด

2> 0 ;

sin๐ด

2=โˆš

1 โˆ’ cos๐ด

2โŸน

sin2๐ด

2=1 โˆ’ cos๐ด

2

cos๐ด =๐‘2 + ๐‘2 โˆ’ ๐‘Ž2

2๐‘๐‘

}

โŸน sin2๐ด

2=1 โˆ’

๐‘2 โˆ’ ๐‘Ž2 + ๐‘2

2๐‘๐‘2

=๐‘Ž2 โˆ’ (๐‘ โˆ’ ๐‘)2

4๐‘๐‘โ‰ค๐‘Ž2

4๐‘๐‘โŸน sin

๐ด

2โ‰ค

๐‘Ž

2โˆš๐‘๐‘ .

Solution to Problem 63.

๐ถ = ๐œ‹ โˆ’ (๐ด + ๐ต)

๐‘† =๐‘Ž2 sin๐ต sin๐ถ

2 sin๐ด

๐ด, ๐ต, ๐ถ are known} โŸน We find ๐‘Ž.

๐‘Ž

sin๐‘Ž=

๐‘

sin๐‘โŸน ๐‘ =

๐‘Ž sin๐ต

sin๐ด. In the same way, we find ๐‘.

Solution to Problem 64.

Page 59: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

58

๐‘2 + ๐‘2 = 841๐‘๐‘ = 420

} โŸน {๐‘ = 21๐‘ = 20

or {๐‘ = 20๐‘ = 21

We find ๐ต.

We find the sum.

Or

Solution to Problem 65.

We already know that

๐‘Ÿ

๐‘…= 4 sin

๐ด

2sin๐ต

2sin๐ถ

2

We write sin๐ด

2= ๐‘ก. We have

Page 60: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

59

From this system we find ๐ต and ๐ถ.

Page 61: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

60

Other Problems in Geometry

and Trigonometry (10th grade)

66. Show that a convex polygon canโ€™t have more than three acute angles.

Solution to Problem 66

67. Let ๐ด๐ต๐ถ be a triangle. Find the locus of points ๐‘€ โˆˆ (๐ด๐ต๐ถ), for which

๐œŽ[๐ด๐ต๐‘€] = ๐œŽ[๐ด๐ถ๐‘€].

Solution to Problem 67

68. A convex quadrilateral ๐ด๐ต๐ถ๐ท is given. Find the locus of points ๐‘€ โˆˆ

๐‘–๐‘›๐‘ก. ๐ด๐ต๐ถ๐ท, for which ๐œŽ[๐‘€๐ต๐ถ๐ท] = ๐œŽ[๐‘€๐ต๐ด๐ท].

Solution to Problem 68

69. Determine a line ๐‘€๐‘, parallel to the bases of a trapezoid ๐ด๐ต๐ถ๐ท (๐‘€ โˆˆ

|๐ด๐ท|, ๐‘ โˆˆ |๐ต๐ถ|) such that the difference of the areas of [๐ด๐ต๐‘๐‘€] and [๐‘€๐‘๐ถ๐ท]

to be equal to a given number.

Solution to Problem 69

70. On the sides of โˆ†๐ด๐ต๐ถ we take the points ๐ท, ๐ธ, ๐น such that ๐ต๐ท

๐ท๐ถ=๐ถ๐ธ

๐ธ๐ด=๐ด๐น

๐น๐ต= 2.

Find the ratio of the areas of triangles ๐ท๐ธ๐น and ๐ด๐ต๐ถ.

Solution to Problem 70

71. Consider the equilateral triangle ๐ด๐ต๐ถ and the disk [๐ถ (๐‘‚,๐‘Ž

3)], where ๐‘‚ is the

orthocenter of the triangle and ๐‘Ž = โ€–๐ด๐ตโ€–. Determine the area [๐ด๐ต๐ถ] โˆ’

[๐ถ (๐‘‚,๐‘Ž

3)].

Solution to Problem 71

Page 62: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

61

72. Show that in any triangle ๐ด๐ต๐ถ we have:

a. 1 + cos๐ด cos(๐ต โˆ’ ๐ถ) =๐‘2+๐‘2

4๐‘…2;

b. (๐‘2 + ๐‘2 = ๐‘Ž2) tan๐ด = 4๐‘†;

c. ๐‘+๐‘

2๐‘ cos๐ด

2

=sin(

๐ด

2+๐ถ)

sin(๐ด+๐ต);

d. ๐‘ = ๐‘Ÿ (cot๐ด

2+ cot

๐ต

2+ cot ๐ถ2);

e. cot๐ด

2+cot

๐ต

2+ cot

๐ถ

2=๐‘

๐‘Ÿ .

Solution to Problem 72

73. If ๐ป is the orthocenter of triangle ๐ด๐ต๐ถ, show that:

a. โ€–๐ด๐ปโ€– = 2๐‘… cos ๐ด;

b. ๐‘Žโ€–๐ด๐ปโ€– + ๐‘โ€–๐ต๐ปโ€– + ๐‘โ€–๐ถ๐ปโ€– = 4๐‘†.

Solution to Problem 73

74. If ๐‘‚ is the orthocenter of the circumscribed circle of triangle ๐ด๐ต๐ถ and ๐ผ is

the center of the inscribed circle, show that โ€–๐‘‚๐ผโ€–2 = ๐‘…(๐‘… โ€“ 2๐‘Ÿ).

Solution to Problem 74

75. Show that in any triangle ๐ด๐ต๐ถ we have: cos2๐ตโˆ’๐ถ

2โ‰ฅ2๐‘Ÿ

๐‘… .

Solution to Problem 75

76. Find ๐‘ง๐‘› +1

๐‘ง๐‘› knowing that ๐‘ง +

1

๐‘ง= 2 sin ๐›ผ.

Solution to Problem 76

77. Solve the equation: (๐‘ง + 1)๐‘› โˆ’ (๐‘ง โˆ’ 1)๐‘› = 0.

Solution to Problem 77

78. Prove that if ๐‘ง <1

2 then |(1 + ๐‘–)๐‘ง3 + ๐‘–๐‘ง| โ‰ค

3

4 .

Solution to Problem 78

Page 63: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

62

79. One gives the lines ๐‘‘ and ๐‘‘โ€ฒ. Show that through each point in the space

passes a perpendicular line to ๐‘‘ and ๐‘‘โ€ฒ.

Solution to Problem 79

80. There are given the lines ๐‘‘ and ๐‘‘โ€ฒ, which are not in the same plane, and

the points ๐ด โˆˆ ๐‘‘, ๐ต โˆˆ ๐‘‘โ€ฒ. Find the locus of points ๐‘€ for which pr๐‘‘๐‘€ = ๐ด and

pr๐‘‘โ€ฒ๐‘€ = ๐ต.

Solution to Problem 80

81. Find the locus of the points inside a trihedral angle ๐‘Ž๐‘๏ฟฝ๏ฟฝ equally distant

from the edges of ๐‘Ž, ๐‘, ๐‘.

Solution to Problem 81

82. Construct a line which intersects two given lines and which is perpendicular

to another given line.

Solution to Problem 82

83. One gives the points ๐ด and ๐ต located on the same side of a plane; find in

this plane the point for which the sum of its distances to ๐ด and ๐ต is

minimal.

Solution to Problem 83

84. Through a line draw a plane onto which the projections of two lines to be

parallel.

Solution to Problem 84

85. Consider a tetrahedron [๐ด๐ต๐ถ๐ท] and centroids ๐ฟ,๐‘€,๐‘ of triangles

๐ต๐ถ๐ท, ๐ถ๐ด๐ท, ๐ด๐ต๐ท.

a. Show that (๐ด๐ต๐ถ) โˆฅ (๐ฟ๐‘€๐‘);

b. Find the ratio ๐œŽ[๐ด๐ต๐ถ]

๐œŽ[๐ฟ๐‘€๐‘] .

Solution to Problem 85

Page 64: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

63

86. Consider a cube [๐ด๐ต๐ถ๐ท๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ๐ทโ€ฒ]. The point ๐ด is projected onto ๐ดโ€ฒ๐ต, ๐ดโ€ฒ๐ถ, ๐ดโ€ฒ๐ท

respectively in ๐ด1, ๐ด2, ๐ด3. Show that:

a. ๐ดโ€ฒ๐ถ โŠฅ (๐ด1๐ด2๐ด3);

b. ๐ด๐ด1 โŠฅ ๐ด1๐ด2, ๐ด๐ด3 โŠฅ ๐ด3๐ด2;

c. ๐ด๐ด1๐ด2๐ด3 is an inscribable quadrilateral.

Solution to Problem 86

87. Consider the right triangles ๐ต๐ด๐ถ and ๐ด๐ต๐ท (๐‘š(๐ต๐ด๏ฟฝ๏ฟฝ)) = ๐‘š((๐ด๐ต๐ท) = 900)

located on perpendicular planes ๐‘€ and ๐‘, being midpoints of segments

[๐ด๐ต], [๐ถ๐ท]. Show that ๐‘€๐‘ โŠฅ ๐ถ๐ท.

Solution to Problem 87

88. Prove that the bisector half-plane of a dihedral angle inside a tetrahedron

divides the opposite edge in proportional segments with the areas of the

adjacent faces.

Solution to Problem 88

89. Let ๐ด be a vertex of a regular tetrahedron and ๐‘ƒ, ๐‘„ two points on its

surface. Show that ๐‘š(๐‘ƒ๐ด๏ฟฝ๏ฟฝ) โ‰ค 600.

Solution to Problem 89

90. Show that the sum of the measures of the dihedral angles of a tetrahedron

is bigger than 360ยฐ.

Solution to Problem 90

91. Consider lines ๐‘‘1, ๐‘‘2 contained in a plane ๐›ผ and a line ๐ด๐ต which intersects

plane ๐›ผ at point ๐ถ. A variable line, included in ๐›ผ and passing through ๐ถ all

๐‘‘1, ๐‘‘2 respectively at ๐‘€๐‘. Find the locus of the intersection ๐ด๐‘€ โˆฉ ๐ต๐‘. In

which case is the locus an empty set?

Solution to Problem 91

Page 65: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

64

92. A plane ๐›ผ intersects sides [๐ด๐ต], [๐ต๐ถ], [๐ถ๐ท], [๐ท๐ด] of a tetrahedron [๐ด๐ต๐ถ๐ท] at

points ๐ฟ,๐‘€,๐‘, ๐‘ƒ. Prove that โ€–๐ด๐ฟโ€– โˆ™ โ€–๐ต๐‘€โ€– โˆ™ โ€–๐ถ๐‘โ€– โˆ™ โ€–๐‘ƒ๐ทโ€– = โ€–๐ต๐ฟโ€– โˆ™ โ€–๐ถ๐‘€โ€– โˆ™

โ€–๐ท๐‘โ€– โˆ™ โ€–๐ด๐‘ƒโ€–.

Solution to Problem 92

93. From a point ๐ด located outside a plane ๐›ผ, we draw the perpendicular line

๐ด๐‘‚, ๐‘‚ โˆˆ ๐›ผ, and we take ๐ต, ๐ถ โˆˆ ๐›ผ. Let ๐ป,๐ป1 be the orthocenters of triangles

๐ด๐ต๐ถ, ๐‘‚๐ต๐ถ; ๐ด๐ท and ๐ต๐ธ heights in triangle ๐ด๐ต๐ถ; and ๐ต๐ธ1 height in triangle

๐‘‚๐ต๐ถ. Show that:

a. ๐ป๐ป1 โŠฅ (๐ด๐ต๐ถ);

b. โ€–๐‘‚๐ด

๐ด๐ทโ€– โˆ™ โ€–

๐ท๐ป1

๐ป1๐ตโ€– โˆ™ โ€–

๐ต๐ธ

๐ธ๐ธ1โ€– = 1.

Solution to Problem 93

94. Being given a tetrahedron [๐ด๐ต๐ถ๐ท] where ๐ด๐ต โŠฅ ๐ถ๐ท and ๐ด๐ถ โŠฅ ๐ต๐ท, show that:

a. โ€–๐ด๐ตโ€–2 + โ€–๐ถ๐ทโ€–2 = โ€–๐ต๐ถโ€–2 + โ€–๐ด๐ทโ€–2 = โ€–๐ถ๐ดโ€–2 + โ€–๐ต๐ทโ€–2;

b. The midpoints of the 6 edges are located on a sphere.

Solution to Problem 94

95. It is given a triangular prism [๐ด๐ต๐ถ๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ] which has square lateral faces. Let

๐‘€ be a mobile point [๐ด๐ตโ€ฒ], ๐‘ the projection of ๐‘€ onto (๐ต๐ถ๐ถโ€ฒ) and ๐ดสบ the

midpoint of [๐ตโ€ฒ๐ถสบ]. Show that ๐ดโ€ฒ๐‘ and ๐‘€๐ดสบ intersect in a point ๐‘ƒ and find

the locus of ๐‘ƒ.

Solution to Problem 95

96. We have the tetrahedron [๐ด๐ต๐ถ๐ท] and let ๐บ be the centroid of triangle

๐ต๐ถ๐ท. Show that if ๐‘€ โˆˆ ๐ด๐บ then ๐œ[๐‘€๐บ๐ต๐ถ] = ๐œ[๐‘€๐บ๐ถ๐ท] = ๐œ[๐‘€๐บ๐ท๐ต].

Solution to Problem 96

97. Consider point ๐‘€ โˆˆ the interior of a trirectangular tetrahedron with its

vertex in ๐‘‚. Draw through ๐‘€ a plane which intersects the edges of the

Page 66: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

65

respective tetrahedron in points ๐ด, ๐ต, ๐ถ so that ๐‘€ is the orthocenter of

โˆ†๐ด๐ต๐ถ.

Solution to Problem 97

98. A pile of sand has as bases two rectangles located in parallel planes and

trapezoid side faces. Find the volume of the pile, knowing the dimensions

๐‘Žโ€ฒ, ๐‘โ€ฒ of the small base, ๐‘Ž, ๐‘ of the larger base, and โ„Ž the distance between

the two bases.

Solution to Problem 98

99. A pyramid frustum is given, with its height โ„Ž and the areas of the bases ๐ต

and ๐‘. Unite any point ๐œŽ of the larger base with the vertices ๐ด, ๐ต, ๐ดโ€ฒ, ๐ตโ€ฒ of a

side face. Show that ๐œ[๐‘‚๐ดโ€ฒ๐ตโ€ฒ๐ด] =โˆš6

โˆš๐ต๐œ[๐‘‚๐ด๐ต๐ตโ€ฒ].

Solution to Problem 99

100. A triangular prism is circumscribed to a circle of radius ๐‘…. Find the area

and the volume of the prism.

Solution to Problem 100

101. A right triangle, with its legs ๐‘ and ๐‘ and the hypotenuse ๐‘Ž, revolves by

turns around the hypotenuse and the two legs, ๐‘‰1, ๐‘‰2, ๐‘‰3; ๐‘†1, ๐‘†2, ๐‘†3 being the

volumes, respectively the lateral areas of the three formed shapes, show

that:

a. 1

๐‘‰12 =

1

๐‘‰22 =

1

๐‘‰32;

b. ๐‘†2

๐‘†3+๐‘†3

๐‘†2=๐‘†2+๐‘†3

๐‘†1 .

Solution to Problem 101

102. A factory chimney has the shape of a cone frustum and 10m height, the

bases of the cone frustum have external lengths of 3,14m and 1,57m, and

the wall is 18cm thick. Calculate the volume of the chimney.

Solution to Problem 102

Page 67: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

66

103. A regular pyramid, with its base a square and the angle from the peak of

a side face of measure ๐›ผ is inscribed in a sphere of radius ๐‘…. Find:

a. the volume of the inscribed pyramid;

b. the lateral and total area of the pyramid;

c. the value ๐›ผ when the height of the pyramid is equal to the radius of

the sphere.

Solution to Problem 103

Page 68: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

67

Solutions

Solution to Problem 66.

Let ๐ด1, ๐ด2โ€ฆ๐ด๐‘› the vertices of the convex polygon. Letโ€™s assume that it has four

acute angles. The vertices of these angles form a convex quadrilateral ๐ด๐‘™๐ด๐‘˜๐ด๐‘š๐ด๐‘›.

Due to the fact that the polygon is convex, the segments |๐ด๐‘™๐ด๐‘˜|, |๐ด๐‘˜๐ด๐‘š|, |๐ด๐‘š๐ด๐‘›|,

|๐ด๐‘›๐ด๐‘™| are inside the initial polygon. We find that the angles of the quadrilateral are

acute, which is absurd, because their sum is 360ยฐ.

Another solution: We assume that ๐ด๐‘™๐ด๐‘˜๐ด๐‘š๐ด๐‘› is a convex polygon with all its

angles acute โŸน the sum of the external angles is bigger than 360ยฐ, which is absurd

(the sum of the measures of the external angles of a convex polygon is 360ยฐ).

Solution to Problem 67.

Page 69: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

68

Let |๐ด๐ดโ€ฒ| be the median from ๐ด and ๐ถ๐‘„ โŠฅ ๐ด๐ดโ€ฒ, ๐ต๐‘ƒ โŠฅ ๐ด๐ดโ€ฒ.

โˆ†๐ต๐ดโ€ฒ๐‘ƒ โ‰ก ๐ถ๐ดโ€ฒ๐‘„ because:

{๐‘ƒ๐ต๏ฟฝ๏ฟฝ โ‰ก ๐ต๐ถ๏ฟฝ๏ฟฝ alternate interior

๐‘ƒ๐ดโ€ฒ๏ฟฝ๏ฟฝ โ‰ก ๐ถ๐ดโ€ฒ๏ฟฝ๏ฟฝ vertical angles

๐ต๐ดโ€ฒ โ‰ก ๐ดโ€ฒ๐ถ

โŸน ||๐ต๐‘ƒ|| = ||๐‘„๐ถ|| and by its construction ๐ต๐‘ƒ โŠฅ ๐ด๐ดโ€ฒ, ๐ถ๐‘„ โŠฅ ๐ด๐ดโ€ฒ.

The desired locus is median |๐ด๐ดโ€ฒ|. Indeed, for any ๐‘€ โˆˆ |๐ด๐ดโ€ฒ| we have ๐œŽ[๐ด๐ต๐‘€] =

๐œŽ[๐ด๐ถ๐‘€], because triangles ๐ด๐ต๐‘€ and ๐ด๐ถ๐‘€ have a common side |๐ด๐‘€| and its

corresponding height equal ||๐ต๐‘ƒ|| = ||๐‘„๐ถ||.

Vice-versa. If ๐œŽ[๐ด๐ต๐‘€] = ๐œŽ[๐ด๐ถโ€ฒ๐‘€], letโ€™s prove that ๐‘€ โˆˆ |๐ด๐ดโ€ฒ|.

Indeed: ๐œŽ[๐ด๐ต๐‘€] ๐œŽ[๐ด๐ถ๐‘€] โ‡’ ๐‘‘ (๐ต, ๐ด๐‘€) = ๐‘‘(๐ถ, ๐ด๐‘€), because |๐ด๐‘€| is a common

side, ๐‘‘ (๐ต, ๐ด๐‘€) = ||๐ต๐‘ƒ|| and ๐‘‘(๐ถ, ๐ด๐‘€) = ||๐ถ๐‘„|| and both are perpendicular to ๐ด๐‘€ โŸน

๐‘ƒ๐ต๐‘„๐ถ is a parallelogram, the points ๐‘ƒ,๐‘€, ๐‘„ are collinear (๐‘ƒ, ๐‘„ the feet of the

perpendicular lines from ๐ต and ๐ถ to ๐ด๐‘€).

In parallelogram ๐‘ƒ๐ต๐‘„๐ถ we have |๐‘ƒ๐‘„| and |๐ต๐ถ| diagonals โŸน ๐ด๐‘€ passes through

the middle of |๐ต๐ถ|, so ๐‘€ โˆˆ |๐ด๐ดโ€ฒ|, the median from ๐ด.

Solution to Problem 68.

Let ๐‘‚ be the midpoint of diagonal |๐ด๐ถ| โŸน โ€–๐ด๐‘‚โ€– = โ€–๐‘‚๐ถโ€–.

๐œŽ[๐ด๐‘‚๐ท] = ๐œŽ[๐ถ๐‘‚๐ท] (1)

Because {โ€–๐ด๐‘‚โ€– = โ€–๐‘‚๐ถโ€–

โ€–๐‘‚๐ทโ€ฒโ€– common height

๐œŽ[๐ด๐‘‚๐ต] = ๐œŽ[๐ถ๐‘‚๐ต] (2)

Page 70: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

69

the same reasons; we add up (1) and (2) โŸน

๐œŽ[๐ด๐ท๐‘‚๐ต] = ๐œŽ[๐ท๐ถ๐ต๐‘‚] (3),

so ๐‘‚ is a point of the desired locus.

We construct through ๐‘‚ a parallel to ๐ต๐ท until it cuts sides |๐ต๐ถ| and |๐ท๐ถ| at ๐‘ƒ

respectively ๐‘„. The desired locus is |๐‘ƒ๐‘„|.

Indeed (โˆ€)๐‘€ โˆˆ |๐‘ƒ๐‘„| we have:

๐œŽ[๐ต๐ท๐‘‚] = ๐œŽ[๐ต๐ท๐‘€] because ๐‘€ and ๐‘„ belongs to a parallel to ๐ต๐ท.

๐ต,๐ท โˆˆ a parallel to ๐‘‚๐‘€.

So ๐œŽ[๐‘€๐ต๐ด๐ท] = ๐œŽ[๐ด๐ต๐‘‚๐ท]

and ๐œŽ[๐ต๐ถ๐ท๐‘€] = ๐œŽ[๐‘‚๐ต๐ถ๐ท]

and from (3)} โŸน ๐œŽ[๐‘€๐ต๐ด๐ท] = ๐œŽ[๐ต๐ถ๐ท๐‘€].

Vice-versa: If ๐œŽ[๐‘€๐ต๐ถ๐ท] = ๐œŽ[๐‘€๐ต๐ด๐ท], letโ€™s prove that ๐‘€ โˆˆ parallel line through ๐‘‚ to

๐ต๐ท. Indeed:

๐œŽ[๐ต๐ถ๐ท๐‘€] = ๐œŽ[๐‘€๐ต๐ด๐ท]

and because ๐œŽ[๐ต๐ถ๐ท๐‘€] + ๐œŽ[๐‘€๐ต๐ด๐ท] = ๐œŽ[๐ด๐ต๐ถ๐ท] } โŸน ๐œŽ[๐‘€๐ต๐ถ๐ท] = ๐œŽ[๐‘€๐ต๐ด๐ท] =

๐œŽ[๐ด๐ต๐ถ๐ท]

2 (2).

So, from (1) and (2) โŸน ๐œŽ[๐‘€๐ต๐ด๐ท] = ๐œŽ[๐ด๐ต๐‘‚๐ท] โŸน ๐œŽ[๐ด๐ต๐ท] + ๐œŽ[๐ต๐ท๐‘‚] = ๐œŽ[๐ด๐ต๐ท] +

๐œŽ[๐ต๐ท๐‘€] โŸน ๐œŽ[๐ต๐ท๐‘€] โŸน ๐‘€ and ๐‘‚ are on a parallel to ๐ต๐ท.

Solution to Problem 69.

We write ||๐ธ๐ด|| = ๐‘Ž and ||๐ธ๐ท|| = ๐‘, ||๐ธ๐‘€|| = ๐‘ฅ.

Page 71: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

70

We subtract (2) from (3)

We subtract (2) from (4)

From the relation (3), by writing [๐ด๐ต๐ถ๐ท] โˆ’ ๐‘† โŸน ๐œŽ[๐ธ๐ถ๐ท] =๐‘†๐‘2

๐‘Ž2โˆ’๐‘2 .

We substitute this in the relation of ๐‘ฅยฒ and we obtain:

and taking into consideration that ||๐ธ๐‘€|| = ||๐ท๐‘€|| + ๐‘, we have

so we have the position of point ๐‘€ on the segment |๐ท๐ด| (but it was sufficient to

find the distance ||๐ธ๐‘€||).

Solution to Problem 70.

We remark from its construction that ๐ธ๐‘„||๐ด๐ต||๐‘…๐ท, more than that, they are

equidistant parallel lines. Similarly, ๐ธ๐‘„, ๐‘ƒ๐ท, ๐ด๐ถ and ๐ด๐ต, ๐ธ๐‘„, ๐‘…๐ท are also equidistant

parallel lines.

from the hypothesis

Page 72: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

71

We write ๐œŽ[๐ต๐น๐‘„] = ๐‘†.

Based on the following properties:

two triangles have equal areas if they have equal bases and the same

height;

two triangles have equal areas if they have the same base and the third

peak on a parallel line to the base,

we have:

by additionโ‡’

So ๐œŽ[๐ท๐ธ๐น]

๐œŽ[๐ด๐ต๐ถ]=3๐‘†

9๐‘†=1

3 .

(If necessary the areas ๐‘† can be arranged).

Solution to Problem 71.

โ€–๐‘‚๐ตโ€– =๐‘Žโˆš3

6 (๐ต๐ตโ€ฒ median)

In โˆ†๐‘€๐‘‚๐ตโ€ฒ:

So (๐‘€๐‘‚๏ฟฝ๏ฟฝ) =๐œ‹

3 .

We mark with ๐›ด the disk surface bordered by a side of the triangle outside the

triangle.

Page 73: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

72

๐œŽ[๐›ด] = ๐œŽ[circle sector ๐‘€๐‘‚๐‘] โˆ’ ๐œŽ[๐‘€๐‘‚๐‘]

=๐œ‹๐‘Ž2

9 โˆ™ 6โˆ’๐‘Ž2

9 โˆ™ 2sin 600 =

๐œ‹๐‘Ž2

9 โˆ™ 6โˆ’๐‘Ž2โˆš3

4 โˆ™ 9=๐‘Ž2

18โˆ™ (๐œ‹

3โˆ’โˆš3

2).

If through the disk area we subtract three times ๐œŽ[๐›ด], we will find the area of the

disk fraction from the interior of ๐ด๐ต๐ถ. So the area of the disk surface inside ๐ด๐ต๐ถ is:

The desired area is obtained by subtracting the calculated area form ๐œŽ[๐ด๐ต๐ถ].

So:

Solution to Problem 72.

a. 1 + cos๐ด โˆ™ cos(๐ต โˆ’ ๐ถ) =๐‘2+๐‘2

4๐‘…2

b. We prove that tan๐ด =4๐‘†

๐‘2+๐‘2โˆ’๐‘Ž2 .

Page 74: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

73

โŸน All terms reduce.

d. Letโ€™s prove that cot๐ด

2+ cot

๐ต

2+ cot ๐ถ2 =

๐‘

๐‘Ÿ .

Indeed

We now have to prove that:

Solution to Problem 73.

Page 75: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

74

a. In triangle ๐ด๐ต๐ตโ€ฒ: โ€–๐ด๐ตโ€ฒโ€– = ๐‘ cos๐ด

In triangle ๐ด๐ป๐ตโ€ฒ:

We used:

Solution to Problem 74.

Using the power of point ๐ผ in relation to circle ๐ถ(๐‘‚, ๐‘…)

Taking into consideration (1), we have โ€–๐ผ๐ดโ€– โˆ™ โ€–๐ผ๐ทโ€– = ๐‘…2 โˆ’ โ€–๐‘‚๐ผโ€–ยฒ.

We now find the distances ||IA|| and ||ID||

In triangle โˆ†๐ผ๐ด๐‘ƒ,

We also find โ€–๐ผ๐ทโ€–: ๐œ‡(๐ต๐ผ๏ฟฝ๏ฟฝ) = ๐œ‡(๐ท๐ต๐ผ ) have the same measure, more exactly:

Page 76: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

75

In โˆ†๐ด๐ต๐ท according to the law of sine, we have:

So taking into consideration (3),

Returning to the relation โ€–๐ผ๐ดโ€– โˆ™ โ€–๐ผ๐ทโ€– = ๐‘…2 โˆ’ โ€–๐‘‚๐ผโ€–ยฒ. with (2) and (4) we have:

Solution to Problem 75.

Note. We will have to show that

Indeed:

(by Heronโ€™s formula).

Page 77: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

76

Solution to Problem 76.

So:

We calculate for ๐‘ง1 and ๐‘ง2:

so ๐‘ง๐‘› +1

๐‘ง๐‘› takes the same value for ๐‘ง1 and for ๐‘ง2 and it is enough if we

calculate it for ๐‘ง1.

Analogously:

Solution to Problem 77.

Page 78: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

77

(we substitute โˆ’1 with ๐‘–ยฒ at denominator)

Solution to Problem 78.

Solution to Problem 79.

We construct ๐›ผ โŠฅ ๐‘‘ and ๐ด โˆˆ ๐›ผ. The so constructed plane is unique. Similarly we

construct ๐›ฝ โŠฅ ๐‘‘โ€ฒ and ๐ด โŠฅ ๐›ฝ, ๐›ผ โˆฉ ๐›ฝ = ๐‘Ž โˆ‹ ๐ด.

From ๐›ผ โŠฅ ๐‘‘ โ‡’ ๐‘‘ โŠฅ ๐‘Ž๐›ฝ โŠฅ ๐‘‘โ€ฒ โ‡’ ๐‘‘โ€ฒ โŠฅ ๐‘Ž

} โŸน ๐‘Ž is a line which passes through ๐ด and is perpendicular

to ๐‘‘ and ๐‘‘โ€ฒ. The line ๐‘Ž is unique, because ๐›ผ and ๐›ฝ constructed as above are unique.

Solution to Problem 80.

We construct plane ๐›ผ such that ๐ด โˆˆ ๐›ผ and ๐‘‘ โŠฅ ๐›ผ. We construct plane ๐›ฝ such that

๐ต โˆˆ ๐›ฝ and ๐‘‘โ€ฒ โŠฅ ๐›ฝ.

Page 79: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

78

The so constructed planes ๐›ผ and ๐›ฝ are unique.

Let ๐‘Ž = ๐›ผ โˆฉ ๐›ฝ โŸน ๐‘Ž โŠ‚ ๐›ผ so (โˆ€) ๐‘€ โˆˆ ๐‘Ž has the property pr๐‘‘๐‘€ = ๐ด.

๐›ผ โŠ‚ ๐›ฝ โŸน (โˆ€) ๐‘€ โˆˆ ๐‘Ž has the property ๐‘๐‘Ÿ๐‘‘โ€ฒ๐‘€ = ๐ต.

Vice-versa. If there is a point ๐‘€ in space such that pr๐‘‘๐‘€ = ๐ด and ๐‘๐‘Ÿ๐‘‘โ€ฒ๐‘€ = ๐ต โŸน

๐‘€ โˆˆ ๐‘Ž and ๐‘€ โˆˆ ๐›ฝ โŸน๐‘€ โˆˆ ๐›ผ โˆฉ ๐›ฝ โŸน ๐‘€ โˆˆ ๐‘Ž (๐›ผ and ๐›ฝ previously constructed).

Solution to Problem 81.

Let ๐ด โˆˆ ๐‘Ž, ๐ต โˆˆ ๐‘, ๐ถ โˆˆ ๐‘ such that โ€–๐‘‚๐ดโ€– = โ€–๐‘‚๐ตโ€– = โ€–๐‘‚๐ถโ€–. Triangles ๐‘‚๐ด๐ต,๐‘‚๐ต๐ถ, ๐‘‚๐ด๐ถ

are isosceles. The mediator planes of segments โ€–๐ด๐ตโ€–, โ€–๐ด๐ถโ€–, โ€–๐ต๐ถ โ€– pass through ๐‘‚

and ๐‘‚โ€ฒ (the center of the circumscribed circle of triangle ๐ด๐ต๐ถ). Ray |๐‘‚๐‘‚โ€ฒ| is the

desired locus.

Indeed (โˆ€) ๐‘€ โˆˆ |๐‘‚๐‘‚โ€ฒ| โŸน ๐‘€ โˆˆ mediator plane of segments |๐ด๐ต|, |๐ด๐ถ| and |๐ต๐ถ| โŸน

๐‘€ is equally distant from ๐‘Ž, ๐‘ and ๐‘.

Vice-versa: (โˆ€) ๐‘€ with the property: ๐‘‘(๐‘€, ๐‘Ž) = ๐‘‘(๐‘€, ๐‘) = ๐‘‘(๐‘€, ๐‘) โŸน ๐‘€ โˆˆ mediator

plan, mediator planes of segments |๐ด๐ต|, |๐ด๐ถ| and |๐ต๐ถ| โŸน ๐‘€ โˆˆ the intersection of

these planes โŸน๐‘€ โˆˆ |๐‘‚๐‘‚โ€ฒ|.

Page 80: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

79

Solution to Problem 82.

Let ๐‘Ž, ๐‘, ๐‘ be the 3 lines in space.

I. We assume ๐‘Ž โŠฅ ๐‘ and ๐‘ โŠฅ ๐‘. Let ๐›ผ be a plane such that:

The construction is possible because โŠฅ ๐‘ and ๐‘ โŠฅ ๐‘. Line ๐ด๐ต meets ๐‘Ž on ๐‘ and it is

perpendicular to ๐‘, because ๐ด๐ต โŠ‚ ๐›ผ and ๐‘ โŠฅ ๐›ผ.

II. If ๐‘Ž โŠฅ ๐‘ or ๐‘ โŠฅ ๐‘, the construction is not always possible, only if plane ๐‘(๐‘Ž, ๐‘)

is perpendicular to ๐‘.

III. If ๐‘Ž โŠฅ ๐‘ and ๐‘ โŠฅ ๐‘, we construct plane ๐‘Ž โŠฅ ๐‘ so that ๐‘Ž โŠ‚ ๐›ผ and ๐‘ โŠ‚ ๐›ผ โ‰  โˆ…. Any

point on line a connected with point ๐‘ โˆฉ ๐›ผ is a desired line.

Solution to Problem 83.

We construct ๐ดโ€ฒ the symmetrical point of ๐ด in relation to ๐›ผ. ๐ดโ€ฒ and ๐ต are on

different half-spaces, ๐›ผ โˆฉ |๐ดโ€ฒ๐ต| = ๐‘‚.

Page 81: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

80

๐‘‚ is the desired point, because ||๐‘‚๐ด|| + ||๐‘‚๐ต|| = ||๐‘‚๐ดโ€ฒ|| + ||๐‘‚๐ต|| is minimal when

๐‘‚ โˆˆ |๐ดโ€ฒ๐ต|, thus the desired point is ๐‘‚ = |๐ดโ€ฒ๐ต| โˆฉ ๐›ผ.

Solution to Problem 84.

Let ๐‘Ž, ๐‘, ๐‘‘ be the 3 given lines and through ๐‘‘ we construct a plane in which ๐‘Ž and

๐‘ to be projected after parallel lines.

Let ๐ด be an arbitrary point on ๐‘Ž. Through ๐ด we construct line ๐‘โ€ฒ||๐‘. It results from

the figure ๐‘||๐›ผ, ๐›ผ = ๐‘(๐‘Ž, ๐‘โ€ฒ).

Let ๐›ฝ such that ๐‘‘ โŠ‚ ๐›ฝ and ๐›ฝ โŠฅ ๐›ผ.

Lines ๐‘Ž and ๐‘โ€ฒ are projected onto ๐›ฝ after the same line ๐‘. Line ๐‘ is projected onto

๐›ฝ after ๐‘1 and ๐‘1 โˆฅ ๐‘.

If ๐‘1 โˆฆ ๐‘,

absurd because ๐‘||๐›ผ(๐‘||๐‘โ€ฒ).

Solution to Problem 85.

๐‘€ is the centroid in โˆ†๐ด๐ถ๐ท โŸน

โŸน|๐‘€๐ท|

|๐‘€๐‘ƒ|= 2 (1)

Page 82: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

81

๐‘ is the centroid in โˆ†๐ด๐ต๐ท โŸน

โŸน|๐‘๐ท|

|๐‘๐‘„|= 2 (2)

๐ฟ is the centroid in โˆ†๐ต๐ถ๐ท โŸน

โŸน|๐ฟ๐ท|

|๐ฟ๐‘†|= 2 (3)

From 1 and 2,

and from 2 and 3

because:

So

Solution to Problem 86.

๐ต๐ท โŠฅ (๐ด๐ดโ€ฒ๐ถ) from the hypothesis ๐ด๐ต๐ถ๐ท๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ๐ทโ€ฒ cube (1).

๐ด1 midpoint of segment |๐ต๐ดโ€ฒ|

(๐ด๐ต๐ดโ€ฒ) isosceles and ๐ด๐ด1 โŠฅ ๐ต๐ดโ€ฒ

๐ด3 midpoint of |๐ดโ€ฒ๐ท|

} |๐ด1๐ด3| mid-side in โˆ†๐ดโ€ฒ๐ต๐ท โŸน ๐ด1๐ด3 โˆฅ ๐ต๐ท (2)

From (1) and (2) โŸน ๐ด1๐ด3 โˆฅ (๐ด๐ดโ€ฒ๐ถ) โŸน ๐ดโ€ฒ๐ถ โŠฅ ๐ด1๐ด3 (3)

Page 83: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

82

From โˆ†๐ด๐ถ๐ดโ€ฒ:

From โˆ†๐ด๐ต๐ดโ€ฒ:

Similarly

In โˆ†๐ด๐ถ๐ดโ€ฒ:

and

๐ด1๐ด2๐ดโ€ฒ right with ๐‘š(๐ดโ€ฒ๐ด2๐ด1) = 90 because

From (4) and (3) โŸน ๐ดโ€ฒ๐ถ โŠฅ (๐ด1๐ด2๐ด3).

As ๐ดโ€ฒ๐ถ โŠฅ (๐ด1๐ด2๐ด3)

๐ดโ€ฒ๐ถ โŠฅ ๐ด2๐ด (by construction)} โŸน ๐ด1๐ด2๐ด3๐ด coplanar โŸน ๐ด1๐ด2๐ด3๐ด quadrilateral with

opposite angles ๐ด1 and ๐ด3 right โŸน ๐ด1๐ด2๐ด3๐ด inscribable quadrilateral.

Solution to Problem 87.

The conclusion is true only if ||๐ต๐ท|| = ||๐ด๐ถ|| that is ๐‘ = ๐‘.

๐‘€๐‘ โŠฅ ๐ท๐ถ if

Page 84: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

83

Solution to Problem 88.

bisector plane

(๐‘ bisector half-plane)

In triangle ๐ท๐ท1๐ทโ€ฒ:

But

Page 85: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

84

From 1, 2, 3 โŸน๐œŽ[๐ด๐ต๐ท]

๐œŽ[๐ด๐ต๐ถ]=โ€–๐ท๐ธโ€–

โ€–๐ธ๐ถโ€– q.e.d.

Solution to Problem 89.

Because the tetrahedron is regular ๐ด๐ต = โ€ฆ =

we increase the denominator

If one of the points ๐‘ƒ or ๐‘„ is on face ๐ถ๐ต๐ท the problem is explicit.

Solution to Problem 90.

We consider tetrahedron ๐‘‚๐‘ฅ๐‘ฆ๐‘ง, and prove that the sum of the measures of the

dihedral angles of this trihedron is bigger than 360ยฐ. Indeed: let 100โ€ฒ be the internal

bisector of trihedron ๐‘‚๐‘ฅ๐‘ฆ๐‘ง (1000โ€ฒ the intersection of the bisector planes of the 3

dihedral angles) of the trihedron in ๐ด, ๐ต, ๐ถ.

Page 86: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

85

The size of each dihedron with edges ๐‘œ๐‘ฅ, ๐‘œ๐‘ฆ, ๐‘œ๐‘ง is bigger than the size of the

corresponding angles of ๐ด๐ต๐ถ, the sum of the measures of the dihedral angles of

trihedron ๐‘‚๐‘ฅ๐‘ฆ๐‘ง is bigger than 180ยฐ.

Let (๐‘Ž, ๐‘) be a plane โŠฅ to ๐‘œ๐‘ง at ๐ถ; ๐‘Ž โŠฅ ๐‘œ๐‘ง, ๐‘ โŠฅ ๐‘œ๐‘ง, but |๐ถ๐ด and |๐ถ๐ต are on the same

half-space in relation to (๐‘Ž๐‘) โ‡’ ๐‘š(๏ฟฝ๏ฟฝ) < ๐‘š(๐‘Ž๏ฟฝ๏ฟฝ).

In tetrahedron ๐ด๐ต๐ถ๐ท, let ๐‘Ž1, ๐‘Ž2, ๐‘Ž3, ๐‘Ž4, ๐‘Ž5 and ๐‘Ž6 be the 6 dihedral angles formed

by the faces of the tetrahedron.

according to the inequality previously established.

Solution to Problem 91.

We mark with a the intersection of planes (๐ด, ๐‘‘1) and (๐ต, ๐‘‘2). So

Let ๐‘ be a variable line that passes through ๐ถ and contained in ๐›ผ, which cuts ๐‘‘1

and ๐‘‘2 at ๐‘€ respectively ๐‘. We have: ๐‘€๐ด โŠ‚ (๐ด, ๐‘‘1),๐‘€๐ด โˆฉ ๐‘๐ต = ๐‘ƒ(๐‘€๐ด and ๐‘๐ต

intersect because they are contained in the plane determined by (๐ด๐‘€, ๐‘)).

Thus ๐‘ƒ โˆˆ (๐ด, ๐‘‘1) and ๐‘ƒ โˆˆ (๐ต, ๐‘‘2), โŸน๐‘ƒ โˆˆ ๐‘Ž, so ๐‘ƒ describes line a the intersection of

planes (๐ด, ๐‘‘1) and (๐ต, ๐‘‘2).

Vice-versa: let ๐‘„ โˆˆ ๐‘Ž.

In the plane (๐ด, ๐‘‘1): ๐‘„๐ด โˆฉ ๐‘‘1 = ๐‘€โ€ฒ

In the plane (๐ต, ๐‘‘2): ๐‘„๐ต โˆฉ ๐‘‘2 = ๐‘โ€ฒ

Page 87: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

86

Lines ๐‘โ€ฒ๐‘€โ€ฒ and ๐ด๐ต are coplanar (both are on plane (๐‘„, ๐ด, ๐ต)). But because ๐‘โ€ฒ๐‘€โ€ฒ โŠ‚

๐›ผ and ๐ด๐ต has only point ๐ถ in common with ๐›ผ โŸน ๐‘€โ€ฒ๐‘โ€ฒ โˆฉ ๐ด๐ต = ๐ถ.

So ๐‘€โ€ฒ๐‘โ€ฒ passes through ๐ถ. If planes (๐ด, ๐‘‘1) and (๐ต, ๐‘‘2) are parallel, the locus is the

empty set.

Solution to Problem 92.

Remember the theorem: If a plane ๐›พ intersects two planes ๐›ผ and ๐›ฝ such that

๐œŽ||๐›ผ โŸน (๐›พ โˆฉ ๐›ผ)||(๐›พ โˆฉ ๐›ฝ). If plane (๐ฟ๐‘€๐‘๐‘ƒ)||๐ต๐ท we have:

If (๐ฟ๐‘€๐‘๐‘ƒ)||๐ด๐ถ we have:

โŸน relation ๐‘Ž.

Solution:

Let ๐ดโ€ฒ, ๐ตโ€ฒ, ๐ถโ€ฒ, ๐ทโ€ฒ the projections of points ๐ด, ๐ต, ๐ถ, ๐ท onto plane (๐‘€๐‘๐‘ƒ๐ฟ).

For ex. points ๐ตโ€ฒ, ๐ฟ, ๐ดโ€ฒ are collinear on plane (๐ฟ๐‘ƒ๐‘€๐‘) because they are on the

projection of line ๐ด๐ต onto this plane.

Similarly we obtain:

Page 88: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

87

By multiplying the 4 relations,

โŸน relation (๐‘Ž) from ๐‘‘.

Solution to Problem 93.

๐‘€ โ€“ Midpoint of |๐ต๐ถ|.

Solution to Problem 94.

(1) ๐ด๐ต โŠฅ ๐ถ๐ท (hypothesis)

From 1 and 2

height in โˆ†๐ด๐ต๐ถ a

From 3 and 4 ๐ด๐ถ โŠฅ (๐ต๐ท๐ป) โŸน ๐ด๐ถ โŠฅ ๐ต๐ป โŸน ๐ต๐ป height in โˆ†๐ด๐ต๐ถ b

From a and b โŸน๐ป orthocenter โˆ†๐ด๐ต๐ถ. Let ๐ถ1 be the diametrical opposite point to

๐ถ in circle ๐ถ(๐ด๐ต๐ถ)๐ถ๐ถ1 diameter ๐‘š(๐ถ1๐ต๏ฟฝ๏ฟฝ) = 900 but ๐ด๐ป โŠฅ ๐ต๐ถ โŸน ๐ด๐ป โˆฅ ๐ต๐ถ1. Similarly

๐ต๐ป||๐ถ1๐ด, so ๐ด๐ป๐ต๐ถ1 parallelogram, we have:

Page 89: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

88

similarly

diametrical opposite to B

but

by substituting above, we have:

Let ๐‘,๐‘€,๐‘„, ๐‘ƒ, ๐‘†, ๐‘… midpoints of the edges of the quadrilateral ๐‘๐‘€๐‘ƒ๐‘„ because:

๐‘๐‘€||๐ถ๐ท||๐‘ƒ๐‘„ (median lines), ๐‘„๐‘€||๐ด๐ต||๐‘ƒ๐‘ (median lines), but ๐ถ๐ท โŠฅ ๐ด๐ต โ‡’ ๐‘€๐‘๐‘„๐‘ƒ

rectangle |๐‘๐‘„| โˆฉ |๐‘ƒ๐‘€| = {0}.

Similarly ๐‘€๐‘†๐‘ƒ๐‘… rectangle with |๐‘€๐‘ƒ| common diagonal with a, the first rectangle,

so the 6 points are equally distant from โ€œ๐‘‚โ€ the midpoint of diagonals in the two

rectangles โŸน the 6 points are on a sphere.

Solution to Problem 95.

๐‘€ arbitrary point on |๐ด๐ตโ€ฒ|

๐ดสบ midpoint of segment [๐ตโ€ฒ๐ถโ€ฒ]

When ๐‘€ = ๐ตโ€ฒ, point ๐‘ƒ is in the position ๐ตโ€ฒ.

Page 90: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

89

When ๐‘€ = ๐ด, point ๐‘ƒ is in the position {๐‘ƒ1} = [๐ดโ€ฒ๐ด1] โˆฉ [๐ด๐ดโ€ฒโ€ฒ]

(๐ดโ€ฒ๐ดโ€ฒโ€ฒ๐ด1๐ด rectangle, so ๐‘ƒ1 is the intersection of the diagonals of the rectangle)

[The locus is [๐ตโ€ฒ๐‘ƒ1]].

Let ๐‘€ be arbitrary point ๐‘€ โˆˆ |๐ด๐ตโ€ฒ|.

because:

By the way it was constructed

โŸน (โˆ€) plane that contains ๐ด๐ด1 is perpendicular to (๐ตโ€ฒ๐ถ๐ถโ€ฒโ€ฒ), particularly to (๐ตโ€ฒ๐ด๐ด1) โŠฅ

(๐ตโ€ฒ๐ถโ€ฒ๐ถ).

because ๐ตโ€ฒ, ๐‘ƒ โˆˆ (๐ตโ€ฒ๐ด๐ดโ€ฒโ€ฒ)

from this reason ๐ตโ€ฒ, ๐‘ƒ1 โˆˆ (๐ดโ€ฒ๐ตโ€ฒ๐ด1).

From 1 and 2

Let

So (โˆ€) ๐‘€ โˆˆ |๐ตโ€ฒ๐ด|

and we have

Vice-versa. Let ๐‘ƒ arbitrary point, ๐‘ƒ โˆˆ |๐ตโ€ฒ๐‘ƒ1| and

In plane

In plane

Indeed: ๐ดโ€ฒ๐ดโ€ฒโ€ฒ || (๐ตโ€ฒ๐ด๐ด1) thus any plane which passes through ๐ดโ€ฒ๐ดโ€ฒโ€ฒ will intersect

(๐ตโ€ฒ๐ด๐ด1) after a parallel line to ๐ดโ€ฒ๐ดโ€ฒโ€ฒ. Deci ๐‘€๐‘||๐ดโ€ฒ๐ดโ€ฒโ€ฒ or ๐‘€๐‘||๐ด๐ด1 as ๐‘€ โˆˆ (๐ตโ€ฒ๐ด๐ด1) โŸน

๐‘€๐‘ โŠฅ (๐ตโ€ฒ๐ถ๐ถโ€ฒโ€ฒ).

Weโ€™ve proved

Page 91: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

90

and

we have

describes |๐ตโ€ฒ๐‘ƒ1| and vice-versa,

there is ๐‘€|๐ตโ€ฒ๐ด| and ๐‘|๐ตโ€ฒ๐ด1| such that

and ๐‘ƒ is the intersection of the diagonals of the quadrilateral ๐ดโ€ฒ๐‘๐‘€๐ดโ€ฒโ€ฒ.

Solution to Problem 96.

known result

From 1 and 3

Solution to Problem 97.

From the hypothesis:

๐‘‚๐ด โŠฅ ๐‘‚๐ต โŠฅ ๐‘‚๐ถ โŠฅ ๐‘‚๐ด

We assume the problem is solved.

Let ๐‘€ be the orthocenter of triangle ๐ด๐ต๐ถ.

Page 92: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

91

But ๐ถ๐ถโ€ฒ โŠฅ ๐ด๐ต โŸน๐ด๐ต โŠฅ (๐‘‚๐ถ๐ถโ€ฒ)

๐‘€๐‘‚ โŠฅ (๐ถ๐‘‚๐ถโ€ฒ)} โŸน ๐ด๐ต โŠฅ ๐‘‚๐‘€ โŸน๐‘€๐‘‚ โŠฅ ๐ด๐ต (1)

๐ด๐‘‚ โŠฅ (๐ถ๐‘‚๐ต) โŸน ๐ด๐‘‚ โŠฅ ๐ต๐ถ, but ๐ด๐ดโ€ฒ โŠฅ ๐ต๐ถ โŸน๐ต๐ถ โŠฅ (๐ด๐‘‚๐ดโ€ฒ)

๐‘€๐‘‚ โŠ‚ (๐ด๐‘‚๐ดโ€ฒ)} โŸน ๐ต๐ถ โŠฅ ๐‘€๐‘‚ โŸน ๐‘€๐‘‚ โŠฅ ๐ต๐ถ (2)

From (1) and (2) โŸน๐‘€๐‘‚ โŠฅ (๐ด๐ต๐ถ)

So the plane (๐ด๐ต๐ถ) that needs to be drawn must be perpendicular to ๐‘‚๐‘€ at ๐‘€.

Solution to Problem 98.

๐ดโ€ฒ๐‘ โŠฅ ๐ด๐ท, ๐ตโ€ฒ๐‘€ โŠฅ ๐ต๐ถ

โ€–๐ต๐‘€โ€– =๐‘Žโˆ’๐‘Žโ€ฒ

2, โ€–๐‘ƒ๐‘€โ€– =

๐‘โˆ’๐‘โ€ฒ

2

๐‘ฃ[๐ต๐‘€๐‘ƒ๐‘†๐ตโ€ฒ] =๐‘Ž โˆ’ ๐‘Žโ€ฒ

2โˆ™๐‘ โˆ’ ๐‘โ€ฒ

2โˆ™โ„Ž

3

๐‘ฃ[๐‘†๐‘ƒ๐‘Š๐‘…๐ดโ€ฒ๐ตโ€ฒ] =๐œŽ[๐‘†๐‘ƒ๐ตโ€ฒ] โˆ™ โ€–๐ตโ€ฒ๐ดโ€ฒโ€–

3=๐‘Ž โˆ’ ๐‘Žโ€ฒ

2โˆ™โ„Ž

2โˆ™ ๐‘โ€ฒ

๐‘ฃ[๐ตโ€ฒ๐ดโ€ฒ๐‘๐‘€๐ถโ€ฒ๐ทโ€ฒ๐ท1๐ถ1] =(๐‘ + ๐‘โ€ฒ)โ„Ž

2โˆ™ ๐‘Žโ€ฒ

๐‘ฃ[๐ด๐ต๐ดโ€ฒ๐ตโ€ฒ๐ถ๐ท๐ถโ€ฒ๐ทโ€ฒ] = 2 [2 โˆ™๐‘Žโˆ’๐‘Žโ€ฒ

2โˆ™๐‘โˆ’๐‘โ€ฒ

2โˆ™โ„Ž

3+๐‘Žโˆ’๐‘Žโ€ฒ

2โˆ™โ„Ž

2โˆ™ ๐‘โ€ฒ] + (

(๐‘+๐‘โ€ฒ)โ„Ž

2) โˆ™ ๐‘Žโ€ฒ =

โ„Ž

6(2๐‘Ž๐‘ โˆ’ 2๐‘Ž๐‘โ€ฒ โˆ’ 2๐‘Žโ€ฒ๐‘โ€ฒ + 3๐‘Ž๐‘โ€ฒ โˆ’ 3๐‘Žโ€ฒ๐‘โ€ฒ + 3๐‘Žโ€ฒ๐‘ + 3๐‘Žโ€ฒ๐‘โ€ฒ) =

โ„Ž

6[๐‘Ž๐‘ + ๐‘Žโ€ฒ๐‘โ€ฒ +

(๐‘Ž + ๐‘Žโ€ฒ)(๐‘ + ๐‘โ€ฒ)].

Page 93: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

92

Solution to Problem 99.

๐‘ฃ[๐‘‚๐ด๐ต๐ตโ€ฒ] =๐ต โˆ™ โ„Ž

2

๐‘ฃ[๐‘‚๐ดโ€ฒ๐ตโ€ฒ๐ด] = ๐‘ฃ[๐ด๐ต๐‘‚๐‘‚โ€ฒ๐ดโ€ฒ๐ตโ€ฒ] โˆ’ ๐‘ฃ[๐ด๐ต๐ตโ€ฒ๐‘‚] โˆ’ ๐‘ฃ[๐ดโ€ฒ๐ตโ€ฒ๐‘‚โ€ฒ๐‘‚] =โ„Ž

3(๐ต + ๐‘ + โˆš๐ต๐‘) โˆ’

๐ตโ„Ž

3โˆ’๐‘โ„Ž

3=

โ„Ž

3โˆš๐‘๐ต.

So:

๐‘ฃ[๐‘‚๐ดโ€ฒ๐ตโ€ฒ๐ด]

๐‘ฃ[๐ท๐ด๐ต๐ตโ€ฒ]=

โ„Ž3โˆš๐ต๐‘ โˆ™ โˆš๐ต๐‘

๐ตโ„Ž3 โˆ™ ๐ต

=โˆš๐‘

โˆš๐ตโŸน ๐‘ฃ[๐‘‚๐ดโ€ฒ๐ตโ€ฒ๐ด] =

โˆš๐‘

โˆš๐ตโˆ™ ๐‘ฃ[๐‘‚๐ด๐ต๐ตโ€ฒ]

For the relation above, determine the formula of the volume of the pyramid

frustum.

Solution to Problem 100.

๐‘‘(๐บ๐บโ€ฒ) = โ„Ž = 2๐‘…

Let ๐‘™ = โ€–๐ด๐ถโ€– โŸน โ€–๐ด๐ทโ€– =๐‘™โˆš3

2โŸน โ€–๐บ๐ทโ€– =

๐‘™โˆš3

6

Figure ๐บ๐ท๐‘€๐‘‚ rectangle โŸน โ€–๐บ๐ทโ€– = โ€–๐‘‚๐‘€โ€– โŸน๐‘™โˆš3

6= ๐‘… = 2โˆš3๐‘…

Page 94: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

93

So, the lateral area is ๐‘†๐‘™ = 3 โˆ™ 2โˆš3๐‘… โˆ™ ๐‘… = 12โˆš3๐‘…2.

๐‘ฃ[๐ด๐ต๐ถ๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ] = ๐œŽ[๐ด๐ต๐ถ] โˆ™ 2๐‘… = 2โˆš3๐‘… โˆ™2โˆš3๐‘…โˆš3

4โˆ™ 2๐‘… = 6โˆš3๐‘…2.

The total area:

๐‘†๐‘ก = ๐‘†๐‘™ + 2๐œŽ[๐ด๐ต๐ถ] = 12โˆš3๐‘…2 + 2 โˆ™ 3๐‘…โˆš3๐‘…2 = 18โˆš3๐‘…2

Solution to Problem 101.

Let ๐‘‰1 and ๐‘†1 be the volume, respectively the area obtained revolving around ๐‘Ž.

๐‘‰2 and ๐‘†2 be the volume, respectively the area obtained after revolving around ๐‘.

๐‘‰3 and ๐‘†3 be the volume, respectively the area obtained after revolving around c.

So:

๐‘‰1 =๐œ‹ โˆ™ ๐‘–2(โ€–๐ถ๐ทโ€– + โ€–๐ท๐ตโ€–)

3=๐œ‹ โˆ™ ๐‘–2 โˆ™ ๐‘Ž

3

๐‘†1 = ๐œ‹ โˆ™ ๐‘– โˆ™ ๐‘ + ๐œ‹ โˆ™ ๐‘– โˆ™ ๐‘ = ๐œ‹ โˆ™ ๐‘– โˆ™ (๐‘ + ๐‘)

๐‘‰2 =๐œ‹๐‘2๐‘

3=๐œ‹๐‘2๐‘2

3๐‘=๐œ‹๐‘2๐‘2๐‘Ž

3๐‘Ž2

๐‘†2 = ๐œ‹ โˆ™ ๐‘ โˆ™ ๐‘Ž

๐‘‰3 =๐œ‹๐‘2๐‘

3=๐œ‹๐‘2๐‘2

3๐‘=๐œ‹๐‘2๐‘2

3๐‘Ž

๐‘†3 = ๐œ‹ โˆ™ ๐‘ โˆ™ ๐‘Ž

Therefore:

1

๐‘‰12 =

1

๐‘‰22 +

1

๐‘‰32โŸบ

9๐‘Ž2

(๐œ‹๐‘2๐‘2)2=

9๐‘2

(๐œ‹๐‘2๐‘2)2+

9๐‘2

(๐œ‹๐‘2๐‘2)2

๐‘†2๐‘†3+๐‘†3๐‘†2=๐‘†2 + ๐‘†3๐‘†1

โŸบ๐‘

๐‘+๐‘

๐‘=๐œ‹๐‘Ž(๐‘ + ๐‘)

๐œ‹๐‘–(๐‘ + ๐‘)โŸบ๐‘2 + ๐‘2

๐‘ โˆ™ ๐‘=๐‘Ž

๐‘–

But ๐‘– โˆ™ ๐‘Ž = ๐‘ โˆ™ ๐‘ โŸน๐‘2+๐‘2

๐‘๐‘=๐‘Ž2

๐‘๐‘ , โ€–๐ด๐ทโ€– = ๐‘–.

Page 95: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

94

Solution to Problem 102.

๐‘Ÿ = โ€–๐‘‚๐ดโ€– = 25 ๐‘๐‘š

๐‘… = โ€–๐‘‚โ€ฒ๐ตโ€– = 50 ๐‘๐‘š

2๐œ‹๐‘Ÿ = 1,57 โŸน ๐‘Ÿ = 0,25 ๐‘š

2๐œ‹๐‘… = 3,14 โŸน ๐‘… = 0,50 ๐‘š

โ€–๐ถ๐‘โ€– = 18 ๐‘๐‘š = 0,18 ๐‘š

โ€–๐ดโ€ฒ๐ตโ€– = 25 ๐‘๐‘š

โ€–๐ด๐ตโ€– = โˆš100 + 0,0625 = 10,003125

โ€–๐ดโ€ฒ๐‘€โ€– =โ€–๐ด๐ดโ€ฒโ€– โˆ™ โ€–๐ดโ€ฒ๐ตโ€–

โ€–๐ด๐ตโ€–=10 โˆ™ 0,25

10,003125โ‰ˆ 0,25

โ€–๐ถ๐‘โ€–

โ€–๐ดโ€ฒ๐‘€โ€–=โ€–๐ถ๐ตโ€–

โ€–๐ต๐ดโ€ฒโ€–โŸน0,18

0,25=โ€–๐ถ๐ตโ€–

0,25โŸน โ€–๐ถ๐ตโ€– = 0,18

โ€–๐‘‚โ€ฒ๐ถโ€– = ๐‘…โ€ฒ = 0,50 โˆ’ 0,18 = 0,32

โ€–๐‘‚๐‘ƒโ€– = ๐‘Ÿโ€ฒ = 0,25 โˆ’ 0,18 = 0,07

๐‘‰ =๐œ‹1

3(๐‘…2 + ๐‘Ÿ2 + ๐‘…๐‘Ÿ)

๐‘‰ =๐œ‹10

3(0,502 + 0,252 + 0,50 โˆ™ 0,25 โˆ’ 0,322 โˆ’ 0,072 โˆ’ 0,32 โˆ™ 0,07)

=๐œ‹10

3(0,4375 โˆ’ 0,1297) = 1,026๐œ‹๐‘š3

Solution to Problem 103.

โ€–๐‘‰๐‘ƒโ€– =๐‘Ž

2 sin๐›ผ2

cos๐›ผ

2

In โˆ†๐‘‰๐ด๐‘ƒ: โ€–๐‘‰๐ดโ€– =๐ด

2 sin๐›ผ

2

.

Page 96: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

95

In โˆ†๐‘‰๐ด๐‘‚โ€ฒ: โ€–๐‘‰๐‘‚โ€ฒโ€–2 =๐‘Ž2

4 sin2๐›ผ

2

โˆ’๐‘Ž2

2 .

โ€–๐‘‰๐‘‚โ€ฒโ€– =๐‘Žโˆšcos๐›ผ

2 sin๐›ผ2

In โˆ†๐‘‰๐‘‚๐‘‚โ€ฒ: โ€–๐‘‚๐‘‚โ€ฒโ€– =๐‘Žโˆšcos๐›ผ

2 sin๐›ผ

2

โˆ’ ๐‘….

๐‘…2 =๐‘Ž2

2+ (

๐‘Žโˆšcos๐›ผ

2 sin๐›ผ2

โˆ’ ๐‘…)

2

โŸน๐‘Ž2

2+๐‘Ž2 cos ๐›ผ

4 sin2๐›ผ2

โˆ’2๐‘Ž๐‘…โˆšcos๐›ผ

2 sin๐›ผ2

โŸน ๐‘Ž =4๐‘…โˆšcos๐›ผ sin2

๐›ผ2

sin๐›ผ2(2 cos2

๐›ผ2+ cos๐›ผ)

โŸน ๐‘Ž = 4๐‘…โˆšcos๐›ผ โˆ™ sin๐›ผ

2

๐ด๐‘™ = 4๐‘Ž2 cos

๐›ผ2

2 โˆ™ 2 sin๐›ผ2

=๐‘Ž2 cos

๐›ผ2

sin๐›ผ2

= 16๐‘…2 cos ๐›ผ sin2๐›ผ

2โˆ™cos๐›ผ2

sin๐›ผ2

= 8๐‘…2 cos๐›ผ sin๐›ผ = 4๐‘…2 sin 2๐›ผ

๐ด๐‘ก = ๐ด๐‘™ + ๐‘Ž2 = 4๐‘…2 sin 2๐›ผ + 16๐‘…2 cos๐›ผ sin2

๐›ผ

2

โ€–๐‘‰๐‘‚โ€ฒโ€– = ๐‘… โŸน ๐‘… =๐‘Žโˆšcos๐›ผ

2 sin๐‘Ž2

โŸน ๐‘… = 4๐‘…โˆšcos๐›ผ sin๐›ผ

2โˆ™โˆšcos๐›ผ

2 sin๐›ผ2

โŸน 2cos๐›ผ = 1 โŸน ๐›ผ = 600.

Page 97: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

96

Various Problems

104. Determine the set of points in the plane, with affine coordinates ๐‘ง that

satisfy:

a. |๐‘ง| = 1;

b. ๐œ‹ < arg ๐‘ง โ‰ค3๐œ‹

2; ๐‘ง โ‰  0;

c. arg ๐‘ง >4๐œ‹

3, ๐‘ง โ‰  0;

d. |๐‘ง + ๐‘–| โ‰ค 2 .

Solution to Problem 104

105. Prove that the ๐‘› roots of the unit are equal to the power of the particular

root ํœ€1.

Solution to Problem 105

106. Knowing that complex number ๐‘ง verifies the equation ๐‘ง๐‘› = ๐‘›, show that

numbers 2, โˆ’๐‘–๐‘ง and ๐‘–๐‘ง verify this equation.

Application: Find (1 โˆ’ 2๐‘–)4 and deduct the roots of order 4 of the number

โˆ’7 + 24๐‘–.

Solution to Problem 106

107. Show that if natural numbers ๐‘š and ๐‘› are coprime, then the equations

๐‘ง๐‘š โˆ’ 1 = 0 and ๐‘ง๐‘› โˆ’ 1 = 0 have a single common root.

Solution to Problem 107

108. Solve the following binomial equation: (2 โˆ’ 3๐‘–)๐‘ง6 + 1 + 5๐‘– = 0.

Solution to Problem 108

109. Solve the equations:

Page 98: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

97

Solution to Problem 109

110. Solve the equation ๐‘ง = ๐‘ง๐‘›โˆ’1, ๐‘› โˆˆ ๐‘, where ๐‘ง the conjugate of ๐‘ง.

Solution to Problem 110

111. The midpoints of the sides of a quadrilateral are the vertices of a

parallelogram.

Solution to Problem 111

112. Let ๐‘€1๐‘€2๐‘€3๐‘€4 and ๐‘1๐‘2๐‘3๐‘4 two parallelograms and ๐‘ƒ๐‘– the midpoints of

segments [๐‘€๐‘–๐‘๐‘–], ๐‘– โˆˆ {1, 2, 3, 4}. Show that ๐‘ƒ1๐‘ƒ2๐‘ƒ3๐‘ƒ4 is a parallelogram or a

degenerate parallelogram.

Solution to Problem 112

113. Let the function ๐‘“: ๐ถ โ†’ ๐ถ, ๐‘“(๐‘ง) = ๐‘Ž๐‘ง + ๐‘; (๐‘Ž, ๐‘, ๐‘ โˆˆ ๐ถ, ๐‘Ž โ‰  0). If ๐‘€1 and

๐‘€2 are of affixes ๐‘ง1 and ๐‘ง2, and ๐‘€1โ€ฒ and ๐‘€2

โ€ฒ are of affixes ๐‘“(๐‘ง1), ๐‘“(๐‘ง2), show

that โ€–๐‘€1โ€ฒ๐‘€2

โ€ฒโ€– = |๐‘Ž| โˆ™ โ€–๐‘€1๐‘€2โ€–. We have โ€–๐‘€1โ€ฒ๐‘€2

โ€ฒโ€– = โ€–๐‘€1๐‘€2โ€– โ‡” |๐‘Ž| = 1.

Solution to Problem 113

114. Prove that the function z โ†’ z, z โˆˆ C defines an isometry.

Solution to Problem 114

115. Let M1M2 be of affixes ๐‘ง1, ๐‘ง2 โ‰  0 and z2 = ฮฑz1. Show that rays |OM1, |OM2

coincide (respectively are opposed) โŸบ ฮฑ > 0 (respectively ฮฑ < 0).

Solution to Problem 115

Page 99: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

98

116. Consider the points M1M2M3 of affixes ๐‘ง1๐‘ง2๐‘ง3 and ๐‘€1 โ‰  ๐‘€2. Show that:

a. M3 โˆˆ |M1M2โŸบz3โˆ’z1

z2โˆ’z1> 0;

b. M3 โˆˆ M1M2โŸบz3โˆ’z1

z2โˆ’z1โˆˆ R .

Solution to Problem 116

117. Prove Pompeiuโ€™s theorem. If the point ๐‘€ from the plane of the equilateral

triangle ๐‘€1๐‘€2๐‘€3 โˆ‰ the circumscribed circle โˆ† ๐‘€1๐‘€2๐‘€3 there exists a

triangle having sides of length โ€–๐‘€๐‘€1โ€–, โ€–๐‘€๐‘€2โ€–, โ€–๐‘€๐‘€3โ€–.

Solution to Problem 117

Page 100: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

99

Solutions

Solution to Problem 104.

a. |๐‘ง| = 1

|๐‘ง| = โˆš๐‘ฅ2 + ๐‘ฆ2} โŸน ๐‘ฅ2 + ๐‘ฆ2 = 1, so the desired set is the circle ๐ถ(0,1).

b. ๐œ‹ < arg๐‘ง โ‰ค3๐œ‹

2 .

The desired set is given by all the points of quadrant III, to which ray |๐‘‚๐‘ฆ is added,

so all the points with ๐‘ฅ < 0, ๐‘ฆ < 0.

c. arg๐‘ง >

4๐œ‹

3 , ๐‘ง โ‰  0

arg๐‘ง โˆˆ [0, 2๐œ‹]} โŸน

4๐œ‹

2< arg๐‘ง < 2๐œ‹

The desired set is that of the internal points of the angle with its sides positive

semi-axis and ray |๐‘‚๐ต.

d. |๐‘ง + ๐‘–| โ‰ค 2; ๐‘ง = ๐‘ฅ + ๐‘ฆ๐‘–, its geometric image ๐‘€.

where ๐‘‚โ€ฒ(0,โˆ’1).

Thus, the desired set is the disk centered at ๐‘‚(0,โˆ’1)โ€ฒ and radius 2.

Page 101: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

100

Solution to Problem 105.

Solution to Problem 106.

Let the equation ๐‘ง4 = ๐‘›. If ๐‘ง4 = 4 (๐‘ง is the solution) then: (โˆ’๐‘ง)4 = (โˆ’1)4๐‘ง4 = 1 โˆ™ ๐‘› =

๐‘›, so โ€“ ๐‘ง is also a solution.

โŸน ๐‘–๐‘ง is the solution;

โŸนโˆ’๐‘–๐‘ง is the solution;

โŸน is the solution of the equation ๐‘ง4 = โˆ’7 + 24๐‘–.

The solutions of this equation are:

but based on the first part, if ๐‘ง โˆ’ 1 โˆ’ 2๐‘– is a root, then

are solutions of the given equation.

Solution to Problem 107.

If there exist ๐‘˜ and ๐‘˜โ€ฒ with ๐‘ง๐‘˜ = ๐‘ง๐‘˜โ€ฒ, then

Page 102: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

101

because (๐‘š, ๐‘›) = 1. Because ๐‘˜โ€ฒ < ๐‘›, ๐‘˜ < ๐‘š, we have ๐‘˜โ€ฒ = 0, ๐‘˜ = 0.

Thus the common root is ๐‘ง0.

Solution to Problem 108.

Solution to Problem 109.

Solution to Problem 110.

As:

Page 103: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

102

From:

positive

The given equation becomes

Solution to Problem 111.

We find the sum of the abscissa of the opposite points:

โŸน๐‘€๐‘๐‘ƒ๐‘„ a parallelogram.

Solution to Problem 112.

In the quadrilateral ๐‘€1๐‘€3๐‘3๐‘1 by connecting the midpoints we obtain the

parallelogram ๐‘‚โ€ฒ๐‘ƒ1๐‘‚โ€ฒโ€ฒ๐‘ƒ3, with its diagonals intersecting at ๐‘‚, the midpoint of |๐‘‚โ€ฒ๐‘‚โ€ฒโ€ฒ|

and thus |๐‘ƒ1๐‘‚| โ‰ก |๐‘‚๐‘ƒ3|. (1)

Page 104: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

103

In the quadrilateral ๐‘€4๐‘€2๐‘2๐‘4 by connecting the midpoints of the sides we obtain

the parallelogram ๐‘‚โ€ฒ๐‘ƒ2๐‘‚โ€ฒโ€ฒ๐‘ƒ4 with its diagonals intersecting in ๐‘‚, the midpoint of

|๐‘‚โ€ฒ๐‘‚โ€ฒโ€ฒ| and thus |๐‘ƒ2๐‘‚| โ‰ก |๐‘‚๐‘ƒ4|. (2)

From (1) and (2) ๐‘ƒ1๐‘ƒ2๐‘ƒ3๐‘ƒ4 a parallelogram.

Solution to Problem 113.

If:

If:

Solution to Problem 114.

Let ๐‘€1 and ๐‘€2 be of affixes ๐‘ง1 and ๐‘ง2. Their images through the given function

๐‘€1โ€ฒ and ๐‘€2

โ€ฒ with affixes ๐‘ง1 and ๐‘ง2, so

Page 105: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

104

From (1) and (2) โŸน โ€–๐‘€1๐‘€2โ€– = โ€–๐‘€1โ€ฒ๐‘€2

โ€ฒโ€– or โ€–๐‘€1โ€ฒ๐‘€2

โ€ฒโ€– = |๐‘ง2๐‘ง1| = |โˆš๐‘ง2 โˆ’ ๐‘ง1| =

|๐‘ง2 โˆ’ ๐‘ง1| = โ€–๐‘€1๐‘€2โ€–.

So ๐‘“: ๐ถ โ†’ ๐ถ, ๐‘“(๐‘ง) = ๐‘ง defines an isometry because it preserves the distance

between the points.

Solution to Problem 115.

We know that the argument (๐‘Ž๐‘ง1) = arg๐‘ง1 + arg๐‘ง๐›ผ โˆ’ 2๐‘˜๐œ‹, where ๐‘˜ = 0 or ๐‘˜ = 1.

Because arg๐‘ง2 = arg(๐‘Ž๐‘ง1), arg๐‘ง2 = arg๐‘ง1 + arg๐‘ง๐›ผ โˆ’ 2๐‘˜๐œ‹.

a. We assume that

Vice versa,

b. Let |๐‘‚๐‘€1 and |๐‘‚๐‘€2 be opposed โŸน arg๐‘ง2 = arg๐‘ง1 + ๐œ‹

โˆˆ to the negative ray |๐‘‚๐‘ฅโ€ฒโŸน ๐›ผ < 0. Vice versa,

๐‘˜ = 0 or ๐‘˜ = 1 โŸน

arg๐‘ง2 = arg๐‘ง1 + ๐œ‹or

arg๐‘ง2 = arg๐‘ง1 โˆ’ ๐œ‹} โŸน |๐‘‚๐‘€1 and |๐‘‚๐‘€2 are opposed.

Page 106: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

105

Solution to Problem 116.

If n and ๐‘›โ€ฒ are the geometric images of complex numbers ๐‘ง and ๐‘งโ€ฒ, then the image

of the difference ๐‘งโ€“ ๐‘งโ€ฒ is constructed on |OM1| and |๐‘€โ€ฒ๐‘€| as sides.

We assume that ๐‘€3 โˆˆ |๐‘€1๐‘€2

We construct the geometric image of ๐‘ง2โ€“ ๐‘ง1 . It is the fourth vertex of the

parallelogram ๐‘‚๐‘€1๐‘€2๐‘„1. The geometric image of ๐‘ง3โ€“ ๐‘ง1 is ๐‘„2, the fourth vertex of the

parallelogram ๐‘‚๐‘€1๐‘€3๐‘„2.

๐‘‚๐‘„1 โˆฅ ๐‘€1๐‘€2๐‘‚๐‘„2 โˆฅ ๐‘€1๐‘€3

๐‘€1๐‘€2๐‘€3collinear } โŸน ๐‘„1, ๐‘„2, ๐‘„3 collinear โŸน

Vice versa, we assume that

If ๐‘€3 and ๐‘€2 โˆˆ the opposite ray to ๐‘‚, then ๐‘ง3โ€“ ๐‘ง1 = ๐›ผ(๐‘ง2โ€“ ๐‘ง1) with ๐›ผ < 0.

We repeat the reasoning from the previous point for the same case.

Page 107: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

106

Thus, when ๐‘€3 โˆˆ ๐‘€1๐‘€2๐‘€3 +๐‘€2 we obtain for the respective ratio positive,

negative or having ๐‘€3 = ๐‘€1, so z3โˆ’z1

z2โˆ’z1โˆˆ R.

Solution to Problem 117.

The images of the roots of order 3 of the unit are the peaks of the equilateral

triangle.

But ษ›1 = ษ›22, so if we write ษ›2 = ํœ€, then ษ›1 = ษ›2.

Thus ๐‘€1(1),๐‘€2(ํœ€),๐‘€3(ํœ€2).

We use the equality:

adequate (โˆ€)๐‘ง โˆˆ โ„‚.

But

Therefore,

By substitution:

but

Page 108: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

107

thus

Therefore โ€–๐‘€๐‘€1โ€–, โ€–๐‘€๐‘€2โ€–, โ€–๐‘€๐‘€3โ€– sides of a โˆ†.

Then we use โ€–๐‘ฅ| โˆ’ |๐‘ฆโ€– โ‰ค |๐‘ฅ โˆ’ ๐‘ฆ| and obtain the other inequality.

Page 109: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

108

Problems in Spatial Geometry

118. Show that if a line ๐‘‘ is not contained in plane ๐›ผ, then ๐‘‘ โˆฉ ๐›ผ is โˆ… or it is

formed of a single point.

Solution to Problem 118

119. Show that (โˆ€) ๐›ผ, (โˆƒ) at least one point which is not situated in ๐›ผ.

Solution to Problem 119

120. The same; there are two lines with no point in common.

Solution to Problem 120

121. Show that if there is a line ๐‘‘ (โˆƒ) at least two planes that contain line ๐‘‘.

Solution to Problem 121

122. Consider lines ๐‘‘, ๐‘‘โ€ฒ, ๐‘‘โ€ฒโ€ฒ, such that, taken two by two, to intersect. Show

that, in this case, the 3 lines have a common point and are located on the

same plane.

Solution to Problem 122

123. Let ๐ด, ๐ต, ๐ถ be three non-collinear points and ๐ท a point located on the

plane (๐ด๐ต๐ถ). Show that:

a. The points ๐ท, ๐ด, ๐ต are not collinear, and neither are ๐ท, ๐ต, ๐ถ; ๐ท, ๐ถ, ๐ด.

b. The intersection of planes (๐ท๐ด๐ต), (๐ท๐ต๐ถ), (๐ท๐ถ๐ด) is formed of a single

point.

Solution to Problem 123

Page 110: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

109

124. Using the notes from the previous exercise, take the points ๐ธ, ๐น, ๐บ distinct

from ๐ด, ๐ต, ๐ถ, ๐ท, such that ๐ธ โˆˆ ๐ด๐ท, ๐น โˆˆ ๐ต๐ท, ๐บ โˆˆ ๐ถ๐ท. Let ๐ต๐ถ โˆฉ ๐น๐บ = {๐‘ƒ}, ๐บ๐ธ โˆฉ

๐ถ๐ด = {๐‘„}, ๐ธ๐น โˆฉ ๐ด๐ต = {๐‘…}. Show that ๐‘ƒ, ๐‘„, ๐‘… are collinear (T. Desarques).

Solution to Problem 124

125. Consider the lines ๐‘‘ and ๐‘‘โ€ฒ which are not located on the same plane and

the distinct points ๐ด, ๐ต, ๐ถ โˆˆ ๐‘‘ and ๐ท, ๐ธ โˆˆ ๐‘‘โ€ฒ. How many planes can we draw

such that each of them contains 3 non-collinear points of the given points?

Generalization.

Solution to Problem 125

126. Show that there exist infinite planes that contain a given line ๐‘‘.

Solution to Problem 126

127. Consider points ๐ด, ๐ต, ๐ถ, ๐ท which are not located on the same plane.

a. How many of the lines ๐ด๐ต, ๐ด๐ถ, ๐ด๐ท, ๐ต๐ถ, ๐ต๐ท, ๐ถ๐ท can be intersected by a

line that doesnโ€™t pass through ๐ด, ๐ต, ๐ถ, ๐ท?

b. Or by a plane that doesnโ€™t pass through ๐ด, ๐ต, ๐ถ, ๐ท?

Solution to Problem 127

128. The points ๐›ผ and ๐›ฝ are given, ๐ด, ๐ต โˆˆ ๐›ผ. Construct a point ๐‘€ โˆˆ ๐›ผ at an

equal distance from ๐ด and ๐ต, that โˆˆ also to plan ๐›ฝ.

Solution to Problem 128

129. Determine the intersection of three distinct planes ๐›ผ, ๐›ฝ, ๐›พ.

Solution to Problem 129

130. Given: plane ๐›ผ, lines ๐‘‘1, ๐‘‘2 and points ๐ด, ๐ต โˆ‰ ๐›ผ โˆช ๐‘‘1 โˆช ๐‘‘2. Find a point ๐‘€ โˆˆ

๐›ผ such that the lines ๐‘€๐ด,๐‘€๐ต intersect ๐‘‘1 and ๐‘‘2.

Solution to Problem 130

Page 111: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

110

131. There are given the plane ๐›ผ, the line ๐‘‘ โˆ‰ ๐›ผ, the points ๐ด, ๐ต โˆ‰ ๐›ผ โˆช ๐‘‘, and

๐ถ โˆˆ ๐›ผ. Let ๐‘€ โˆˆ ๐‘‘ and ๐ดโ€ฒ, ๐ตโ€ฒ the points of intersection of the lines ๐‘€๐ด,๐‘€๐ต

with plane ๐›ผ (if they exist). Determine the point ๐‘€ such that the points

๐ถ, ๐ดโ€ฒ, ๐ตโ€ฒ to be collinear.

Solution to Problem 131

132. If points ๐ด and ๐ต of an open half-space ๐œŽ, then [๐ด๐ต] โŠ‚ ๐œŽ. The property is

as well adherent for a closed half-space.

Solution to Problem 132

133. If point ๐ด is not situated on plane ๐›ผ and ๐ต โˆˆ ๐›ผ then |๐ต๐ด โŠ‚ |๐›ผ๐ด.

Solution to Problem 133

134. Show that the intersection of a line ๐‘‘ with a half-space is either line ๐‘‘ or

a ray or an empty set.

Solution to Problem 134

135. Show that if a plane ๐›ผ and the margin of a half-space ๐œŽ are secant

planes, then the intersection ๐œŽ โˆฉ ๐›ผ is a half-plane.

Solution to Problem 135

136. The intersection of a plane ๐›ผ with a half-space is either the plane ๐›ผ or a

half-plane, or an empty set.

Solution to Problem 136

137. Let ๐ด, ๐ต, ๐ถ, ๐ท four non coplanar points and ๐›ผ a plane that doesnโ€™t pass

through one of the given points, but it passes trough a point of the line

|๐ด๐ต|. How many of the segments |๐ด๐ต|, |๐ด๐ถ|, |๐ด๐ท|, |๐ต๐ถ|, |๐ต๐ท|, |๐ถ๐ท| can be

intersected by plane ๐›ผ?

Solution to Problem 137

Page 112: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

111

138. Let ๐‘‘ be a line and ๐›ผ, ๐›ฝ two planes such that ๐‘‘ โˆฉ ๐›ฝ = โˆ… and ๐›ผ โˆฉ ๐›ฝ = โˆ….

Show that if ๐ด โˆˆ ๐‘‘ and ๐ต โˆˆ ๐›ผ, then ๐‘‘ โŠ‚ |๐›ฝ๐ด and ๐›ผ โŠ‚ |๐›ฝ๐ต.

Solution to Problem 138

139. Let |๐›ผ๐ด and |๐›ฝ๐ต be two half-spaces such that ๐›ผ โ‰  ๐›ฝ and |๐›ผ๐ด โŠ‚ |๐›ฝ๐ต or

|๐›ผ๐ด โˆฉ |๐›ฝ๐ต = โˆ…. Show that ๐›ผ โˆฉ ๐›ฝ = โˆ….

Solution to Problem 139

140. Show that the intersection of a dihedral angle with a plane ๐›ผ can be: a

right angle, the union of two lines, a line, an empty set or a closed half-

plane and cannot be any other type of set.

Solution to Problem 140

141. Let ๐‘‘ be the edge of a proper dihedron โˆ ๐›ผโ€ฒ๐›ฝโ€ฒ, ๐ด โˆˆ ๐›ผโ€ฒโ€“ ๐‘‘, ๐‘ โˆˆ ๐›ฝโ€ฒโ€“ ๐‘‘ and

๐‘ƒ โˆˆ int.โˆ ๐›ผโ€ฒ๐›ฝโ€ฒ. Show that:

a. (๐‘ƒ๐‘‘) โˆฉ int.โˆ ๐›ผโ€ฒ๐›ฝโ€ฒ = |๐‘‘๐‘ƒ;

b. If ๐‘€ โˆˆ ๐‘‘, int.โˆ ๐ด๐‘€๐ต = int. ๐›ผโ€ฒ๐›ฝโ€ฒ โˆฉ (๐ด๐‘€๐ต).

Solution to Problem 141

142. Consider the notes from the previous problem. Show that:

a. The points ๐ด and ๐ต are on different sides of the plane (๐‘ƒ๐‘‘);

b. The segment |๐ด๐ต| and the half-plane |๐‘‘๐‘ƒ have a common point.

Solution to Problem 142

143. If โˆ ๐‘Ž๐‘๐‘ is a trihedral angle, ๐‘ƒ โˆˆ int.โˆ ๐‘Ž๐‘๐‘ and ๐ด, ๐ต, ๐ถ are points on edges

๐‘Ž, ๐‘, ๐‘, different from ๐‘‚, then the ray |๐‘‚๐‘ƒ and int. ๐ด๐ต๐ถ have a common

point.

Solution to Problem 143

144. Show that any intersection of convex sets is a convex set.

Solution to Problem 144

Page 113: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

112

145. Show that the following sets are convex planes, half-planes, any open or

closed half-space and the interior of a dihedral angle.

Solution to Problem 145

146. Can a dihedral angle be a convex set?

Solution to Problem 146

147. Which of the following sets are convex:

a. a trihedral angle;

b. its interior;

c. the union of its faces;

d. the union of its interior with all its faces?

Solution to Problem 147

148. Let ๐œŽ be an open half-space bordered by plane ๐›ผ and ๐‘€ a closed convex

set in plane ๐›ผ. Show that the set ๐‘€ โˆฉ ๐œŽ is convex.

Solution to Problem 148

149. Show that the intersection of sphere ๐‘†(๐‘‚, ๐‘Ÿ) with a plane which passes

through ๐‘‚, is a circle.

Solution to Problem 149

150. Prove that the int. ๐‘†(๐‘‚, ๐‘Ÿ) is a convex set.

Solution to Problem 150

151. Show that, by unifying the midpoints of the opposite edges of a

tetrahedron, we obtain concurrent lines.

Solution to Problem 151

Page 114: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

113

152. Show that the lines connecting the vertices of a tetrahedron with the

centroids of the opposite sides are concurrent in the same point as the

three lines from the previous example.

Solution to Problem 152

153. Let ๐ด๐ต๐ถ๐ท be a tetrahedron. We consider the trihedral angles which have

as edges [๐ด๐ต, [๐ด๐ธ, [๐ด๐ท, [๐ต๐ด, [๐ต๐ถ, [๐ต๐ท, [๐ถ๐ด, [๐ถ๐ต, [๐ถ๐ท, [๐ท๐ด, [๐ท๐ต, [๐ท๐ถ. Show that

the intersection of the interiors of these 4 trihedral angles coincides with

the interior of tetrahedron [๐ด๐ต๐ถ๐ท].

Solution to Problem 153

154. Show that (โˆ€) ๐‘€ โˆˆ int. [๐ด๐ต๐ถ๐ท] (โˆƒ) ๐‘ƒ โˆˆ |๐ด๐ต| and ๐‘„ โˆˆ |๐ถ๐ท| such that ๐‘€ โˆˆ

โ€–๐‘ƒ๐‘„.

Solution to Problem 154

155. The interior of tetrahedron [๐ด๐ต๐ถ๐ท] coincides with the union of segments

|๐‘ƒ๐‘„| with ๐‘ƒ โˆˆ |๐ด๐ต| and ๐‘„ โˆˆ |๐ถ๐ท|, and tetrahedron [๐ด๐ต๐ถ๐ท] is equal to the

union of the closed segments [๐‘ƒ๐‘„], when ๐‘ƒ โˆˆ [๐ด๐ต] and ๐‘„ โˆˆ [๐ถ๐ท].

Solution to Problem 155

156. The tetrahedron is a convex set.

Solution to Problem 156

157. Let ๐‘€1 and ๐‘€2 convex sets. Show that by connecting segments [๐‘ƒ๐‘„], for

which ๐‘ƒ โˆˆ ๐‘€1 and ๐‘„ โˆˆ ๐‘€2 we obtain a convex set.

Solution to Problem 157

158. Show that the interior of a tetrahedron coincides with the intersection of

the open half-spaces determined by the planes of the faces and the

opposite peak. Define the tetrahedron as an intersection of half-spaces.

Solution to Problem 158

Page 115: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

114

Solutions

Solution to Problem 118.

We assume that ๐‘‘ โˆฉ ๐›ผ = {๐ด, ๐ต} โ‡’ ๐‘‘ โŠ‚ ๐›ผ.

It contradicts the hypothesis โŸน ๐‘‘ โˆฉ ๐›ผ = {๐ด} or ๐‘‘ โˆฉ ๐›ผ = โˆ….

Solution to Problem 119.

We assume that all the points belong to the plane ๐›ผ โŸน (โˆ„) for the points that

are not situated in the same plane. False!

Solution to Problem 120.

โˆƒ ๐ด, ๐ต, ๐ถ, ๐ท, which are not in the same plane. We assume that ๐ด๐ต โˆฉ ๐ถ๐ท = {0} โŸน

๐ด๐ต and ๐ถ๐ท are contained in the same plane and thus ๐ด, ๐ต, ๐ถ, ๐ท are in the same

plane. False, it contradicts the hypothesis โŸน๐ด๐ต โˆฉ ๐ถ๐ท = โˆ…โŸน (โˆƒ) lines with no

point in common.

Solution to Problem 121.

(โˆƒ) ๐ด โˆ‰ ๐‘‘ (if all the points would โˆˆ ๐‘‘, the existence of the plane and space would

be negated). Let ๐›ผ = (๐‘‘๐ด), (โˆƒ)๐ต โˆ‰ ๐›ผ (otherwise the space wouldnโ€™t exist). Let ๐›ฝ =

(๐ต๐‘‘), ๐›ผ โ‰  ๐›ฝ and both contain line ๐‘‘.

Solution to Problem 122.

We show that ๐‘‘ โ‰  ๐‘‘โ€ฒ โ‰  ๐‘‘โ€ฒโ€ฒ โ‰  ๐‘‘.

Let ๐‘‘ โˆฉ ๐‘‘โ€ฒ = {๐ด} = (๐‘‘, ๐‘‘โ€ฒ) โŸน {๐‘‘ โŠ‚ ๐›ผ๐‘‘โ€ฒ โŠ‚ ๐›ผ

๐‘‘ โˆฉ ๐‘‘โ€ฒ = {๐ต}๐ต โ‰  ๐ด

โŸน {๐ต โˆˆ ๐‘‘๐‘‘ โŠ‚โˆ

โŸน ๐ต โˆˆ ๐‘Ž , ๐ต โˆˆ ๐‘‘โ€ฒ

Page 116: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

115

๐‘‘โ€ฒโ€ฒ โˆฉ ๐‘‘โ€ฒ = {๐ถ}๐ถ โ‰  ๐ต๐ถ โ‰  ๐ด

โŸน ๐ถ โˆˆ ๐‘‘โ€ฒ

๐‘‘โ€ฒ โŠ‚ โˆโŸน ๐ถ โˆˆ ๐›ผ, ๐ถ โˆˆ ๐‘‘โ€ฒโ€ฒ

โŸน๐‘‘ = ๐‘‘โ€ฒ

or๐‘‘ = ๐‘‘โ€ฒโ€ฒ

โŸน ๐‘‘โ€ฒโ€ฒ โŠ‚ ๐›ผ, so the lines are located on the same plane ฮฑ.

If ๐‘‘ โˆฉ ๐‘‘โ€ฒ = {๐ด} โŸน ๐ด โˆˆ ๐‘‘โ€ฒ

๐‘‘โ€ฒโ€ฒ โˆฉ ๐‘‘ = {๐ด} โŸน ๐ด โˆˆ ๐‘‘โ€ฒโ€ฒ} โŸน ๐‘‘โ€ฒ โˆฉ ๐‘‘โ€ฒโ€ฒ = {๐ด}, and the three lines have a point in

common.

Solution to Problem 123.

a. ๐ท โˆ‰ (๐ด๐ต๐ถ).

We assume that ๐ท, ๐ด, ๐ต collinear โŸน (โˆƒ)๐‘‘ such that ๐ท โˆˆ ๐‘‘, ๐ด โˆˆ ๐‘‘, ๐ต โˆˆ ๐‘‘๐ด โˆˆ (๐ด๐ต๐ถ), ๐ต โˆˆ (๐ด๐ต๐ถ)

}๐‘‡2โ‡’ ๐‘‘ โŠ‚

(๐ด๐ต๐ถ) โŸน ๐ท โˆˆ (๐ด๐ต๐ถ) โ€“ false. Therefore, the points ๐ท, ๐ด, ๐ต are not collinear.

b. Let (๐ท๐ด๐ต) โˆฉ (๐ต๐ถ๐ท) โˆฉ (๐ท๐ถ๐ด) = ๐ธ.

As the planes are distinct, their intersections are:

Page 117: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

116

(๐ท๐ด๐ต) โˆฉ (๐ท๐ต๐ถ) = ๐ท๐ต(๐ท๐ด๐ต) โˆฉ (๐ท๐ถ๐ด) = ๐ท๐ด(๐ท๐ต๐ถ) โˆฉ (๐ท๐ถ๐ด) = ๐ท๐ถ

}โŸน If (๐ท๐ด๐ต) = (๐ท๐ต๐ถ) โŸน ๐ด, ๐ต, ๐ถ, ๐ท coplanar, contrary to the hypothesis.

We suppose that (โˆƒ)๐‘€ โˆˆ ๐ธ,๐‘€ โ‰  ๐ท โŸน๐‘€ โˆˆ ๐ท๐ต๐‘€ โˆˆ ๐ท๐ด

} โŸน๐ต โˆˆ ๐‘€๐ท๐ด โˆˆ ๐‘€๐ท

}โŸน ๐ด, ๐ต, ๐ท are collinear

(false, contrary to point a.). Therefore, set ๐ธ has a single point ๐ธ = {๐ท}.

Solution to Problem 124.

We showed at the previous exercise that if ๐ท โˆ‰ (๐ด๐ต๐ถ), (๐ท๐ด๐ต) โ‰  (๐ท๐ต๐ถ). We show

that ๐ธ, ๐น, ๐บ are not collinear. We assume the opposite. Then,

Having three common points ๐ท,๐ต and ๐บ โŸน false. So ๐ธ, ๐น, ๐บ are not collinear and

determine a plane (๐ธ๐น๐บ).

โŸน๐‘ƒ,๐‘„, ๐‘… are collinear because โˆˆ to the line of intersection of the two planes.

Page 118: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

117

Solution to Problem 125.

The planes are (๐ด, ๐‘‘โ€ฒ); (๐ต, ๐‘‘โ€ฒ); (๐ถ, ๐‘‘โ€ฒ).

Generalization: The number of planes corresponds to the number of points on

line ๐‘‘ because ๐‘‘โ€ฒ contains only 2 points.

Solution to Problem 126.

Let line ๐‘‘ be given, and ๐ด any point such that ๐ด โˆ‰ ๐‘‘.

We obtain the plane ๐›ผ = (๐ด, ๐‘‘), and let ๐‘€ โˆ‰ ๐›ผ. The line ๐‘‘โ€ฒ = ๐ด๐‘€, ๐‘‘โ€ฒ โŠ„ ๐›ผ is not

thus contained in the same plane with ๐‘‘. The desired planes are those of type

(๐‘€๐‘‘),๐‘€ โˆˆ ๐‘‘โ€ฒ, that is an infinity of planes.

Solution to Problem 127.

a. (โˆ€) 3 points determine a plane. Let plane (๐ด๐ต๐ท). We choose in this plane ๐‘ƒ โˆˆ

|๐ด๐ท| and ๐‘„ โˆˆ |๐ด๐ต| such that ๐‘ƒ โˆˆ |๐ต๐‘„|, then the line ๐‘ƒ๐‘„ separates the points ๐ด

and ๐ท, but does not separate ๐ด and ๐ต, so it separates ๐‘ƒ and ๐ท โ‡’ ๐‘ƒ๐‘„ โˆฉ |๐ต๐ท| = ๐‘…,

where ๐‘… โˆˆ |๐ต๐ท|.

Thus, the line ๐‘ƒ๐‘„ meets 3 of the given lines. Letโ€™s see if it can meet more.

Page 119: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

118

We assume that

it has two points in common with the plane.

โŸน๐ด,๐ต, ๐ถ, ๐ท coplanar โ€“ false.

Thus,

false.

We show in the same way that ๐‘ƒ๐‘„ does not cut ๐ด๐ถ or ๐ท๐ถ, so a line meets at

most three of the given lines.

b. We consider points ๐ธ, ๐น, ๐บ such that ๐ธ โˆˆ |๐ต๐ถ|, ๐ด โˆˆ |๐ท๐น|, ๐ท โˆˆ |๐ต๐บ|. These points

determine plane (๐ธ๐น๐บ) which obviously cuts the lines ๐ต๐ถ, ๐ต๐ท and ๐ต๐ท. ๐น๐บ does not

separate ๐ด and ๐ท or ๐ต๐ท โŸน it does not separate ๐ด or ๐ต โŸน ๐ด โˆˆ |๐ต๐‘…|.

Page 120: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

119

Letโ€™s show that (๐ธ๐น๐บ) meets as well the lines ๐ด๐ต, ๐ถ๐ท, ๐ด๐ถ. In the plane (๐ด๐ต๐ท) we

consider the triangle ๐น๐ท๐บ and the line ๐ด๐ต.

As this line cuts side |๐น๐ท|, but it does not cut |๐ท๐บ|, it must cut side |๐น๐บ|, so ๐ด๐ต โˆฉ

|๐น๐บ| = {๐‘…} โŸน ๐‘… โˆˆ |๐น๐บ| โŠ‚ (๐ธ๐น๐บ), so ๐ด๐ต โˆฉ (๐ธ๐น๐บ) = {๐‘…}. In the plane (๐ต๐ถ๐ท), the line

๐ธ๐บ cuts |๐ต๐ถ| and does not cut |๐ต๐ท|, so ๐ธ๐บ cuts the side |CD|, ๐ธ๐บ โˆฉ |๐ถ๐ท| = {๐‘ƒ} โŸน

๐‘ƒ โˆˆ ๐ธ๐บ โŠ‚ (๐ธ๐น๐บ) โŸน ๐ถ๐ท โˆฉ (๐ธ๐น๐บ) = {๐‘ƒ}.

๐‘… โˆˆ (๐ธ๐น๐บ), ๐‘… does not separate ๐ด and ๐ต๐ธ separates ๐ต and ๐ถ

} โŸน ๐‘… โˆˆโˆฉ |๐ด๐ถ| = ๐‘„ โŸน ๐‘„ โˆˆ ๐‘…๐ธ โŸน ๐‘„

โˆˆ (๐ธ๐น๐บ) โˆฉ ๐ด๐ถ = {๐‘„}.

Solution to Problem 128.

We assume problem is solved, if ๐‘€ โˆˆ ๐›ผ๐‘€ โˆˆ ๐›ฝ

} โŸน ๐›ผ โˆฉ ๐›ฝ โ‰  โˆ…,โŸน ๐›ผ โˆฉ ๐›ฝ = ๐‘‘.

As ||๐‘€๐ด|| = ||๐‘€๐ต|| โŸน ๐‘€ โˆˆ the bisecting line of the segment [๐ด๐ต].

So, to find ๐‘€, we proceed as follows:

1. We look for the line of intersection of planes ๐›ผ and ๐›ฝ, d. If ๐›ผ โˆฅ ๐›ฝ, the

problem hasnโ€™t got any solution.

2. We construct the bisecting line ๐‘‘โ€ฒ of the segment [๐ด๐ต] in the plane ๐›ผ.

3. We look for the point of intersection of lines ๐‘‘ and ๐‘‘โ€ฒ. If ๐‘‘ โˆฅ ๐‘‘โ€ฒ, the problem

hasnโ€™t got any solution.

Page 121: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

120

Solution to Problem 129.

If ๐›ผ โˆฉ ๐›ฝ = โˆ…โŸน ๐›ผ โˆฉ ๐›ฝ โˆฉ ๐›พ = โˆ…. If ๐›ผ โˆฉ ๐›ฝ = ๐‘‘, the desired intersection is ๐‘‘ โˆฉ ๐›พ, which

can be a point (the 3 planes are concurrent), the empty set (the line of intersection

of two planes is || with the third) or line ๐‘‘ (the 3 planes which pass through ๐‘‘ are

secant).

Solution to Problem 130.

To determine ๐‘€, we proceed as follows:

1. We construct plane (๐ด๐‘‘1) and we look for the line of intersection with ๐›ผ1, ๐‘‘1.

If ๐‘‘1 (/โˆƒ), โˆ„ neither does ๐‘€.

2. We construct plane (๐ต๐‘‘2) and we look for the line of intersection with ๐›ผ, ๐‘‘2โ€ฒ.

If ๐‘‘2โ€ฒ does not exist, neither does ๐‘€.

3. We look for the point of intersection of lines ๐‘‘1โ€ฒ and ๐‘‘2โ€ฒ. The problem has

only one solution if the lines are concurrent, an infinity if they are coinciding

lines and no solution if they are parallel.

Solution to Problem 131.

We assume the problem is solved.

a. First we assume that ๐ด. ๐ต, ๐ถ are collinear. As ๐ด๐ดโ€ฒ and ๐ต๐ตโ€ฒ are concurrent lines,

they determine a plane ๐›ฝ, that intersects ๐›ผ after line ๐ดโ€ฒ๐ตโ€ฒ.

As

and points ๐ถ, ๐ด, ๐ตโ€ฒ are collinear (โˆ€)๐‘€ โˆˆ ๐‘‘.

Page 122: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

121

b. We assume that ๐ด, ๐ต, ๐ถ are not collinear.

We notice that: (๐ด๐ดโ€ฒ, ๐ต๐ตโ€ฒ) = ๐›ฝ (plane determined by 2 concurrent lines).

๐›ฝ โˆช ๐›ผ = ๐‘‘โ€ฒ and ๐ถ โˆˆ ๐‘‘โ€ฒ.

To determine ๐‘€ we proceed as follows:

1) We determine plane (๐ด๐ต๐ถ);

2) We look for the point of intersection of this plane with line ๐‘‘, so ๐‘‘ โˆฉ

(๐ด๐ต๐ถ) = {๐‘€} is the desired point.

Then (๐ด๐ต๐ถ) โˆฉ ๐›ผ = ๐‘‘โ€ฒ.

โŸน ๐ดโ€ฒ,๐ตโ€ฒ, ๐ถโ€ฒ are collinear.

Solution to Problem 132.

๐ด โˆˆ ๐œŽ and ๐ต โˆˆ ๐œŽ โŸน [๐ด๐ต] โˆฉ ๐›ผ โ‰  โˆ….

Let ๐œŽ = |๐›ผ๐ด = |๐›ผ๐ต.

Let ๐‘€ โˆˆ |๐ด๐ต| and we must show that ๐‘€ โˆˆ ๐œŽ(โˆ€)๐‘€ inside the segment.

We assume the contrary that ๐‘€ โˆ‰ ๐œŽ โŸน (โˆƒ)๐‘ƒ such that [๐ด๐‘€] โˆฉ ๐‘‘ = {๐‘ƒ} โŸน ๐‘ƒ โˆˆ

[๐ด๐‘€] โŸน ๐‘ƒ โˆˆ [๐ด๐ต] โŸน [๐ด๐ต] โˆฉ ๐›ผ โ‰  โˆ… false.

๐‘ƒ โˆˆ ๐›ผ, so ๐‘€ โˆˆ ๐œŽ. The property is also maintained for the closed half-space.

Page 123: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

122

Compared to the previous case there can appear the situation when one of the

points ๐ด and ๐ต โˆˆ ๐›ผ or when both belong to ๐›ผ.

If ๐ด โˆˆ ๐›ผ, ๐ต โˆˆ ๐œŽ, |๐ด๐ต| โˆฉ ๐›ผ โ‰  โˆ… and we show as we did above that:

If:

Solution to Problem 133.

Let

So

Solution to Problem 134.

Let ๐›ผ be a plane and ๐œŽ1, ๐œŽ2 the two half-spaces that it determines. We consider

half-space ๐œŽ1.

Page 124: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

123

๐‘ƒ determines on ๐‘‘ two rays, |๐‘ƒ๐ด and |๐‘ƒ๐ต where

๐ด and ๐ต are in different half-spaces.

We assume

Solution to Problem 135.

Let ๐œŽ be an open half-space and ๐‘ its margin and let ๐‘‘ = ๐›ผ โˆฉ ๐›ฝ.

We choose points ๐ด and ๐ต โˆˆ ๐›ผ โ€“ ๐‘‘, on both sides of line ๐‘‘ โŸน

โŸน ๐ด,๐ต are on one side and on the other side of ๐›ฝ and it means that only one of

them is on ๐œŽ.

We assume that ๐ด โˆˆ ๐œŽ โŸน ๐ต โˆˆ ๐œŽ. We now prove ๐›ผ โˆฉ ๐œŽ = |๐‘‘๐ด.

๐›ผ โˆฉ ๐œŽ โŠ‚ |๐‘‘๐ด

Page 125: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

124

Let

[๐‘€๐ต] โˆˆ ๐‘‘ โ‰  โˆ… โŸน ๐‘€ and ๐ต are on one side and on the other side of line ๐‘‘ โŸน ๐‘€ is

on the same side of line ๐‘‘ with ๐ด โŸน ๐‘€ โˆˆ |๐‘‘๐ด

โŸน๐‘€ โˆˆ ๐‘Ž โˆฉ ๐œŽ, so |๐‘‘๐ด โŠ‚ ๐‘Ž โˆฉ ๐œŽ.

Solution to Problem 136.

Let ฯƒ be the considered half-space and ฮฒ its margin. There are more possible

cases:

In this case it is possible that:

Let

is a half-plane according to a previous problem.

Solution to Problem 137.

Page 126: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

125

The intersection of two planes is a line and it cuts only two sides of a triangle.

There are more possible cases:

1. ๐‘‘ cuts |๐ด๐ต| and |๐ต๐ถ|

๐‘‘โ€ฒ cuts |๐ด๐ต| and |๐ด๐ท|, ๐›ผ cuts |๐ด๐ท| so it has a point in common with (๐ด๐ท๐ถ) and let

(๐ด๐ท๐ถ) โˆฉ ๐›ผ = ๐‘‘โ€ฒโ€ฒ.

๐‘‘โ€ฒโ€ฒ cuts |๐ด๐ท| and does not cut |๐ด๐ถ| โŸน ๐‘‘โ€ฒโ€ฒ cuts |๐ท๐ถ|

๐›ผ cuts |๐ท๐ถ| and |๐ต๐ถ| โŸน it does not cut |๐ต๐ท|. In this case ๐›ผ cuts 4 of the 6

segments (the underlined ones).

2. ๐‘‘ cuts |๐ด๐ต| and |๐ด๐ถ|, it does not cut |๐ต๐ท|

๐‘‘โ€ฒ cuts |๐ด๐ต| an |๐ด๐ท|, it does not cut |๐ต๐ท|

๐‘‘โ€ฒโ€ฒ cuts |๐ด๐ท| an |๐ด๐ถ|, it does not cut |๐ท๐ถ|

โŸน ๐›ผ does not intersect plane (๐ต๐ถ๐ท). In this case ๐›ผ intersects only 3 of the 6

segments.

3. ๐‘‘ cuts |๐ด๐ต| and |๐ต๐ถ|, it does not cut |๐ด๐ถ|

๐‘‘โ€ฒ cuts |๐ด๐ต| an |๐ต๐ท|, it does not cut |๐ท๐ถ|

๐›ผ intersects |๐ต๐ท| and |๐ต๐ถ|, so it does not cut |๐ท๐ถ|

In โˆ†๐ต๐ท๐ถ โŸน ๐›ผ does not intersect plane (๐ด๐ท๐ถ)

In this case ๐›ผ intersects only three segments.

4. ๐‘‘ cuts |๐ด๐ต| and |๐ด๐ถ|, it does not cut |๐ต๐ถ|

๐‘‘โ€ฒ cuts |๐ด๐ต| an |๐ต๐ท|, it does not cut |๐ด๐ท|

๐‘‘โ€ฒโ€ฒ cuts |๐ด๐ถ| an |๐ท๐ถ|

๐›ผ does not cut |๐ต๐ถ| in triangle ๐ต๐ท๐ถ. So ๐›ผ intersects 4 or 3 segments.

Solution to Problem 138.

Let

Let

Page 127: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

126

Solution to Problem 139.

We first assume that ๐›ผ โ‰  ๐›ฝ and |๐›ผ๐ด โŠ‚ |๐›ฝ๐ต.

As

The hypothesis can then be written as ๐›ผ โ‰  ๐›ฝ and |๐›ผ๐ด โŠ‚ |๐›ฝ๐ต. Letโ€™s show that ๐›ผ โˆฉ

๐›ฝ = โˆ…. By reductio ad absurdum, we assume that ๐›ผ โˆฉ ๐›ฝ โ‰  โˆ…โŸน (โˆƒ)๐‘‘ = ๐›ผ โˆฉ ๐›ฝ and let

๐‘‚ โˆˆ ๐‘‘, so ๐‘‚ โˆˆ ๐›ผ and ๐‘‚ โˆˆ ๐›ฝ. We draw through ๐ด and ๐‘‚ a plane ๐‘Ÿ, such that ๐‘‘ โˆˆ ๐‘Ÿ, so

the three planes ๐›ผ, ๐›ฝ and ๐‘Ÿ do not pass through this line. As ๐‘Ÿ has the common

point ๐‘‚ with ๐›ผ and ๐›ฝ, it is going to intersect these planes.

which is a common point of the 3 planes. Lines ๐›ฟ and ๐›ฟโ€ฒ determine 4 angles in

plane ๐‘Ÿ, having ๐‘‚ as a common peak, ๐ด โˆˆ the interior of one of them, let ๐ด โˆˆ int.

โ„Ž๏ฟฝ๏ฟฝ. We consider ๐ถ โˆˆ int. โ„Ž๏ฟฝ๏ฟฝ.

Then ๐ถ is on the same side with ๐ด in relation to ๐›ฟโ€ฒ, so ๐ถ is on the same side with

๐ด in relation to ๐›ผ โŸน ๐ถ โˆˆ |๐›ผ๐ด.

Page 128: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

127

But ๐ถ is on the opposite side of ๐ด in relation to ๐›ฟ, so ๐ถ is on the opposite side of

๐ด in relation to ๐›ฝ โŸน ๐ถ โˆ‰ |๐›ฝ๐ด. So |๐›ผ๐ด โŠ„ |๐›ฝ๐ด โ€“ false โ€“ it contradicts the hypothesis โŸน

So ๐›ผ โˆฉ ๐›ฝ = โˆ….

Solution to Problem 140.

Let ๐‘‘ be the edge of the given dihedral angle. Depending on the position of a line

in relation to a plane, there can be identified the following situations:

The ray with its origin in ๐‘‚, so ๐›ผ โŠ‚ ๐›ฝโ€ฒ๐›พโ€ฒ = ๐‘‘โ€ฒ๐‘‘โ€ฒโ€ฒ thus an angle.

Indeed, if we assumed that ๐‘‘โ€ฒ โˆฉ ๐‘‘โ€ฒโ€ฒ โ‰  โˆ… โŸน (โˆƒ)๐‘‚ โˆˆ ๐‘‘โ€ฒ โˆฉ ๐‘‘โ€ฒโ€ฒ.

false โ€“ it contradicts the hypothesis.

Page 129: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

128

Or

in this case ๐›ผ โˆฉ ๐›ฝโ€ฒ๐›พ โ€ฒ = ๐‘‘โ€ฒโ€ฒ - a line.

Then ๐›ผ โˆฉ ๐›ฝโ€ฒ๐›พ โ€ฒ = โˆ….

๐‘‘ โˆฉ ๐›ผ = ๐‘‘, but ๐›ผ โ‰  ๐›ฝ, ๐›ผ โ‰  ๐›พ

๐›ผ โˆฉ ๐›ฝโ€ฒ๐›พ โ€ฒ = ๐‘‘ thus the intersection is a line.

In this case the intersection is a closed half-plane.

Solution to Problem 141.

is a half-plane

Page 130: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

129

From (*) and (**),

Solution to Problem 142.

โŸน points ๐ด and ๐ต are on different sides of (๐‘‘๐‘ƒ).

Solution to Problem 143.

is a half-plane

so they are secant planes

Page 131: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

130

Let rays

As ๐‘ƒ is interior to the dihedron formed by any half-plane passing through ๐‘‚ of the

trihedral, so

So

๐‘ƒ and ๐‘„ in the same half-plane det. ๐‘‚๐ด โ‡’ ๐‘ƒ and ๐‘„ on the same side of ๐‘‚๐ด (1)

โŸน ๐‘ƒ and ๐ด are on the same side of (๐‘‚๐ต๐ถ) โˆฉ ๐›พโ€ฒ โŸน ๐‘ƒ and ๐ด are on the same side of

๐‘‚๐‘„ (2).

From (1) and (2) โŸน

Solution to Problem 144.

Let ๐‘€ and ๐‘€โ€ฒโ€ฒbe two convex sets and ๐‘€ โˆฉ๐‘€โ€ฒ their intersection. Let

so the intersection is convex.

Solution to Problem 145.

a. Let ๐‘ƒ, ๐‘„ โˆˆ ๐›ผ; ๐‘ƒ โ‰  ๐‘„ โŸน |๐‘ƒ๐‘„ = ๐‘ƒ๐‘„ (the line is a convex set)

๐‘ƒ๐‘„ โŠ‚ ๐›ผ, so |๐‘ƒ๐‘„| โŠ‚ ๐›ผ, so the plane is a convex set.

Page 132: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

131

b. Half-planes: Let ๐‘† = |๐‘‘๐ด and ๐‘ƒ, ๐‘„ โˆˆ ๐‘† โŸน |๐‘ƒ๐‘„| โˆฉ ๐‘‘ = โˆ…. Let ๐‘€ โˆˆ |๐‘ƒ๐‘„| โŸน |๐‘ƒ๐‘€| โŠ‚

|๐‘ƒ๐‘„| โŸน |๐‘ƒ๐‘€| โˆฉ ๐‘‘ = โˆ… โŸน ๐‘ƒ and ๐‘€ are in the same half-plane โŸน๐‘€ โˆˆ ๐‘†. So

|๐‘ƒ๐‘„| โŠ‚ ๐‘† and ๐‘† is a convex set.

Let ๐‘†โ€ฒ = [๐‘‘๐ด. There are three situations:

1) ๐‘ƒ, ๐‘„ โˆˆ |๐‘‘๐ด โ€“ previously discussed;

2) ๐‘ƒ, ๐‘„ โˆˆ ๐‘‘ โŸน |๐‘ƒ๐‘„| โŠ‚ ๐‘‘ โŠ‚ ๐‘†โ€ฒ;

3) ๐‘ƒ โˆˆ ๐‘‘, ๐‘„ โˆ‰ ๐‘‘ โŸน |๐‘ƒ๐‘„| โŠ‚ |๐‘‘๐‘„ โŸน |๐‘ƒ๐‘„| โŠ‚ |๐‘‘๐ด โŠ‚ [๐‘‘๐ด so [๐‘‘๐ด is a convex set.

c. Half-spaces: Let ๐œŽ = |๐›ผ๐ด and let ๐‘ƒ, ๐‘„ โˆˆ ๐œŽ โŸน |๐‘ƒ๐‘„| โˆฉ ๐›ผ = โˆ….

Let ๐‘€ โˆˆ |๐‘ƒ๐‘„| โŸน |๐‘ƒ๐‘€| โŠ‚ |๐‘ƒ๐‘„| โŸน |๐‘ƒ๐‘€| โˆฉ ๐›ผ = โˆ….

Let ๐œŽโ€ฒ = [๐›ผ๐ด. There are three situations:

1) ๐‘ƒ, ๐‘„ โˆˆ |๐›ผ๐ด previously discussed;

2) ๐‘ƒ, ๐‘„ โˆˆ ๐›ผ โŸน |๐‘ƒ๐‘„| โŠ‚ ๐›ผ โŠ‚ ๐œŽโ€ฒ;

3) ๐‘ƒ โˆˆ ๐›ผ, ๐‘„ โˆ‰ ๐›ผ.

and so ๐œŽโ€ฒ is a convex set.

d. the interior of a dihedral angle:

๐‘–๐‘›๐‘ก. ๐›ผโ€ฒ๐›ฝโ€ฒ = |๐›ผ๐ด โˆฉ |๐›ฝ๐ต and as each half-space is a convex set and their intersection

is the convex set.

Page 133: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

132

Solution to Problem 146.

No. The dihedral angle is not a convex set, because if we consider it as in the

previous figure ๐ด โˆˆ ๐›ฝโ€ฒ and ๐ต โˆˆ ๐›ผโ€ฒ.

Only in the case of the null or straight angle, when the dihedral angle

becomes a plane or closed half-plane, is a convex set.

Solution to Problem 147.

a. No. The trihedral angle is not the convex set, because, if we take ๐ด โˆˆ ๐‘Ž and ๐‘„ โˆˆ

the int. ๐‘๏ฟฝ๏ฟฝ determined by ๐‘ƒ โˆˆ the int. ๐‘Ž๐‘๏ฟฝ๏ฟฝ, (โˆƒ)๐‘… such that |๐‘‚๐‘ƒ โˆฉ the int. ๐ด๐ต๐ถ =

{๐‘…}, ๐‘… โˆˆ |๐ด๐‘„|, ๐‘… โˆ‰ ๐‘Ž๐‘๏ฟฝ๏ฟฝ.

So ๐ด, ๐‘„ โˆˆ ๐‘Ž๐‘๏ฟฝ๏ฟฝ, but |๐ด๐‘„| โˆ‰ ๐‘Ž๐‘๐‘.

b. ๐›ฃ = (๐‘‚๐ถ๐ด), ๐›พ = (๐‘‚๐ด๐ต) is a convex set as an intersection of convex sets.

C) It is the same set from a. and it is not convex.

D) The respective set is [๐›ผ๐ด โˆฉ [๐›ฝ๐ต โˆฉ [๐›พ๐ถ, intersection of convex sets and, thus, it

is convex.

Solution to Problem 148.

Let ๐œŽ = |๐›ผ๐ด and ๐‘€ โŠ‚ ๐›ผ. Let ๐‘ƒ, ๐‘„ โˆˆ ๐‘€ โˆฉ ๐œŽ.

We have the following situations:

Page 134: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

133

Solution to Problem 149.

Solution to Problem 150.

Let

In plane (๐‘‚๐‘ƒ๐‘„), let ๐‘€ โˆˆ (๐‘ƒ๐‘„).

Solution to Problem 151.

Let: ๐‘ƒ midpoint of |๐ด๐ต|

๐‘… midpoint of |๐ต๐ถ|

๐‘„ midpoint of |๐ท๐ถ|

๐‘† midpoint of |๐ด๐ท|

๐‘‡ midpoint of |๐ต๐ท|

๐‘ˆ midpoint of |๐ด๐ถ|

or

Page 135: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

134

In triangle ABC:

In triangle DAC:

โŸน parallelogram โŸน |๐‘ƒ๐‘„| and |๐‘†๐‘…| intersect at their midpoint ๐‘‚.

โŸน ๐‘†๐‘‡๐‘…๐‘ˆ parallelogram.

โŸน |๐‘‡๐‘ˆ| passes through midpoint ๐‘‚ of |๐‘†๐‘…|.

Thus the three lines ๐‘ƒ๐‘…, ๐‘†๐‘…, ๐‘‡๐‘ˆ are concurrent in ๐‘‚.

Solution to Problem 152.

Let tetrahedron ๐ด๐ต๐ถ๐ท and ๐ธ be the midpoint of |๐ถ๐ท|. The centroid ๐บ of the face

๐ด๐ถ๐ท is on |๐ด๐ธ| at a third from the base. The centroid ๐บโ€ฒ of the face ๐ต๐ถ๐ท is on |๐ต๐ธ|

at a third from the base |๐ถ๐ท|.

We separately consider โˆ†๐ด๐ธ๐ต. Let ๐น be the midpoint of ๐ด๐ต, so ๐ธ๐น is median in

this triangle and, in the previous problem, it was one of the 3 concurrent segments

in a point located in the middle of each.

Let ๐‘‚ be the midpoint of |๐ธ๐น|. We write ๐ด๐‘‚ โˆฉ ๐ธ๐ต = {๐บโ€ฒ} and ๐ต๐บ โˆฉ ๐ธ๐ด = {๐บ}.

Page 136: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

135

From (1) and (2)

โŸน ๐บโ€ฒ is exactly the centroid of face ๐ต๐ถ๐ท, because it is situated on median |๐ธ๐ต| at

a third from ๐ธ. We show in the same way that ๐บ is exactly the centroid of face ๐ด๐ถ๐ท.

Weโ€™ve thus shown that ๐ต๐บ and ๐ด๐บโ€ฒ pass through point ๐‘‚ from the previous

problem.

We choose faces ๐ด๐ถ๐ท and ๐ด๐ถ๐ต and mark by ๐บโ€ฒโ€ฒ the centroid of face ๐ด๐ถ๐ต, we

show in the same way that ๐ต๐บ and ๐ท๐บโ€ฒโ€ฒ pass through the middle of the segment

|๐‘€๐‘| (|๐ด๐‘€| โ‰ก |๐‘€๐ถ|, |๐ต๐‘| โ‰ก |๐‘๐ท|) thus also through point ๐‘‚, etc.

Solution to Problem 153.

We mark planes (๐ด๐ต๐ถ) = ๐›ผ, (๐ด๐ท๐ถ) = ๐›ฝ, (๐ต๐ท๐ถ) = ๐›พ, (๐ด๐ต๐‘‚) = ๐›ฟ.

Let ๐‘€ be the intersection of the interiors of the 4 trihedral angles.

We show that:

๐‘€ = int. [๐ด๐ต๐ถ๐ท], by double inclusion.

1. ๐‘ƒ โˆˆ ๐‘€ โŸน ๐‘ƒ โˆˆ int. ๐‘Ž๐‘๏ฟฝ๏ฟฝ โˆฉ int. ๐‘Ž๐‘“๏ฟฝ๏ฟฝ โˆฉ int. ๐‘‘๐‘’๏ฟฝ๏ฟฝ โˆฉ int. ๐‘๐‘“๏ฟฝ๏ฟฝ โŸน ๐‘ƒ โˆˆ |๐›ผ๐ท โˆฉ |๐›พ๐ถ โˆฉ ๐›ฝ๐ต and

๐‘ƒ โˆˆ |๐›ฟ๐ด โˆฉ |๐›พ๐ถ โˆฉ |๐›ฝ๐ต โŸน ๐‘ƒ โˆˆ |๐›ผ๐ท and ๐‘ƒ โˆˆ |๐›ฝ๐ต and ๐‘ƒ โˆˆ |๐›พ๐ถ and ๐‘ƒ โˆˆ |๐›ฟ๐ถ โŸน ๐‘ƒ โˆˆ

|๐›ผ๐ท โˆฉ |๐›พ๐ถ โˆฉ ๐›ฝ๐ต โˆฉ ๐›ฟ๐ด โŸน ๐‘ƒ โˆˆ int. [๐ด๐ต๐ถ๐ท]. So ๐‘€ โˆˆ [๐ด๐ต๐ถ๐ท].

2. Following the inverse reasoning we show that [๐ด๐ต๐ถ๐ท] โŠ‚ ๐‘€ from where the

equality.

Page 137: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

136

Solution to Problem 154.

such that

such that ๐‘ โˆˆ |๐ถ๐‘ƒ|, (๐ด๐ท๐ต) โˆฉ (๐ท๐‘ƒ๐ถ) = ๐ท๐‘ƒ.

From ๐‘ โˆˆ |๐ถ๐‘ƒ| and โˆˆ |๐ท๐‘| ๐‘™๐‘’๐‘š๐‘š๐‘Žโ‡’ int. ๐ท๐‘ƒ๐ถ โŸน ๐‘€ โˆˆ int. ๐ท๐‘ƒ๐ถ โŸน (โˆƒ)๐‘„ โˆˆ |๐ท๐ถ|.

So we showed that (โˆƒ)๐‘ƒ โˆˆ |๐ด๐ต| and ๐‘„ โˆˆ |๐ท๐ถ| such that ๐‘€ โˆˆ |๐‘ƒ๐‘„|.

Solution to Problem 155.

Let โ„ณ be the union of the open segments |๐‘ƒ๐‘„|. We must prove that: int. [๐ด๐ต๐ถ๐ท] =

โ„ณ through double inclusion.

1. Let ๐‘€ โˆˆ int. [๐ด๐ต๐ถ๐ท] โŸน (โˆ€)๐‘ƒ โˆˆ |๐ด๐ต and ๐‘„ โˆˆ |๐ถ๐ท such that ๐‘€ โˆˆ |๐‘ƒ๐‘„| โŸน ๐‘€ โˆˆ โ„ณ so

int. [๐ด๐ต๐ถ๐ท] โŠ‚ โ„ณ.

2. Let ๐‘€ โˆˆโ„ณ โŸน (โˆƒ)๐‘ƒ โˆˆ |๐ด๐ต| and ๐‘„ โˆˆ |๐ถ๐ท| such that ๐‘€ โˆˆ |๐‘ƒ๐‘„|. Points ๐ท, ๐ถ and ๐‘ƒ

determine plane (๐‘ƒ๐ท๐ถ) and (๐‘ƒ๐ท๐ถ) โˆฉ (๐ด๐ถ๐ต) = ๐‘ƒ๐ถ, (๐‘ƒ๐‘ˆ๐ถ) โˆฉ (๐ด๐ท๐ต) = ๐‘ƒ๐ท.

As (โˆ€)๐‘„ โˆˆ |๐ถ๐ท| such that ๐‘€ โˆˆ |๐‘ƒ๐‘„| โŸน ๐‘€ โˆˆ [๐‘ƒ๐ถ๐ท] โŸน |(โˆ€)๐‘… โˆˆ |๐‘ƒ๐ถ| such that ๐‘€ โˆˆ |๐ท๐‘…|.

If ๐‘ƒ โˆˆ |๐ด๐ต| and ๐‘… โˆˆ |๐‘ƒ๐ถ| โŸน ๐‘… โˆˆ int. ๐ด๐ถ๐ต such that ๐‘€ โˆˆ |๐ท๐‘…| โŸน ๐‘€ int. [๐ด๐ต๐ถ๐ท] โŸน

โ„ณ โŠ‚ int. [๐ด๐ต๐ถ๐ท].

Working with closed segments we obtain that (โˆ€)๐‘… โˆˆ [๐ด๐ถ๐ต] such that ๐‘€ โˆˆ [๐ท๐‘…],

thus obtaining tetrahedron [๐ด๐ต๐ถ๐ท].

Solution to Problem 156.

Let ๐‘€ โˆˆ [๐ด๐ต๐ถ๐ท] โŸน (โˆƒ) ๐‘ƒ โˆˆ [๐ด๐ต๐ถ] such that ๐‘€ โˆˆ [๐ท๐‘ƒ].

Let ๐‘ โˆˆ [๐ด๐ต๐ถ๐ท] โŸน (โˆƒ) ๐‘„ โˆˆ [๐ด๐ต๐ถ] such that ๐‘ โˆˆ [๐ท๐‘„].

The concurrent lines ๐ท๐‘€ and ๐ท๐‘ determine angle ๐ท๐‘€๐‘.

The surface of triangle ๐ท๐‘ƒ๐‘„ is a convex set.

Page 138: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

137

Let

such that ๐‘‚ โˆˆ [๐ท๐‘…]. But [๐‘ƒ๐‘„] โŠ‚ [๐ด๐ต๐ถ] because ๐‘ƒ โˆˆ [๐ด๐ต๐ถ] โˆฉ ๐‘„ โˆˆ [๐ด๐ต๐ถ] and the

surface of the triangle is convex. So (โˆƒ)๐‘… โˆˆ [๐ด๐ต๐ถ] such that

and the tetrahedron is a convex set.

Note: The tetrahedron can be regarded as the intersection of four closed half-

spaces which are convex sets.

Solution to Problem 157.

Let โ„ณ be the union of the segments [๐‘ƒ๐‘„] with ๐‘ƒ โˆˆ โ„ณ1 and ๐‘„ โˆˆ โ„ณ2.

Let ๐‘ฅ, ๐‘ฅโ€™ โˆˆ โ„ณ โŸน (โˆ€)๐‘ƒ โˆˆ โ„ณ1 and ๐‘„ โˆˆ โ„ณ2 such that ๐‘ฅ โˆˆ [๐‘ƒ๐‘„];

(โˆƒ)๐‘ƒโ€ฒ โˆˆ โ„ณ1 and ๐‘„โ€ฒ โˆˆ โ„ณ2 such that ๐‘ฅโ€ฒ โˆˆ [๐‘ƒโ€ฒ๐‘„โ€ฒ].

From ๐‘ƒ, ๐‘ƒโ€ฒ โˆˆ โ„ณ1 โŸน [๐‘ƒ๐‘ƒโ€ฒ]โ€ฒ โˆˆ โ„ณ1 which is a convex set.

From ๐‘„,๐‘„โ€ฒ โˆˆ โ„ณ2โŸน [๐‘„๐‘„โ€ฒ] โˆˆ โ„ณ2 which is a convex set.

The union of all the segments [๐‘€๐‘] with ๐‘€ โˆˆ [๐‘ƒ๐‘ƒโ€ฒ] and ๐‘ โˆˆ [๐‘„๐‘„โ€ฒ] is tetrahedron

[๐‘ƒ๐‘ƒโ€ฒ๐‘„๐‘„โ€ฒ] โŠ‚ โ„ณ.

So from ๐‘ฅ, ๐‘ฅโ€ฒ โˆˆ โ„ณ โŸน |๐‘ฅ๐‘ฅโ€™| โŠ‚ โ„ณ, so set โ„ณ is convex.

Solution to Problem 158.

The interior of the tetrahedron coincides with the union of segments |๐‘ƒ๐‘„|, ๐‘ƒ โˆˆ

|๐ด๐ต| and ๐‘„ โˆˆ |๐ถ๐ท|, that is int. [๐ด๐ต๐ถ๐ท] = {|๐‘ƒ๐‘„| โˆ– ๐‘ƒ โˆˆ |๐ด๐ต|, ๐‘„ โˆˆ |๐ถ๐ท|}.

Letโ€™s show that:

Page 139: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

138

1. Let

2. Let

If we assume ๐‘ โˆˆ |๐ท๐‘€| โŸน |๐ท๐‘€| โˆฉ (๐ด๐ต๐ถ) โ‰  โˆ… โŸน ๐‘€ and ๐ท are in different half-

spaces in relation to (๐ด๐ต๐ถ) โŸน ๐‘€ โˆ‰ (๐ด๐ต๐ถ), ๐ท, false (it contradicts the hypothesis).

So

and the second inclusion is proved.

As regarding the tetrahedron: [๐ด๐ต๐ถ๐ท] = {[๐‘ƒ๐‘„] โˆ– ๐‘ƒ โˆˆ [๐ด๐ต] and ๐‘„ โˆˆ [๐ถ๐ท]}.

Page 140: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

139

If

๐‘ƒ = ๐ด,๐‘„ โˆˆ [๐ถ๐ท], [๐‘ƒ๐‘„] describes face [๐ด๐ท๐ถ]

๐‘ƒ = ๐ต,๐‘„ โˆˆ [๐ถ๐ท], [๐‘ƒ๐‘„] describes face [๐ต๐ท๐ถ]

๐‘„ = ๐ถ, ๐‘ƒ โˆˆ [๐ด๐ต], [๐‘ƒ๐‘„] describes face [๐ด๐ต๐ถ].

Because the triangular surfaces are convex sets and along with their two points ๐‘ƒ,

๐‘„, segment [๐‘ƒ๐‘„] is included in the respective surface.

So, if we add these two situations to the equality from the previous case, we

obtain:

Page 141: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

140

Lines and Planes

159. Let ๐‘‘, ๐‘‘โ€ฒ be two parallel lines. If the line ๐‘‘ is parallel to a plane ๐›ผ, show

that ๐‘‘โ€ฒ||๐›ผ or ๐‘‘โ€ฒ โŠ‚ ๐›ผ.

Solution to Problem 159

160. Consider a line ๐‘‘, parallel to the planes ๐›ผ and ๐›ฝ, which intersects after the

line ๐‘Ž. Show that ๐‘‘โ€–๐‘Ž.

Solution to Problem 160

161. Through a given line ๐‘‘, draw a parallel plane with another given line ๐‘‘โ€ฒ.

Discuss the number of solutions.

Solution to Problem 161

162. Determine the union of the lines intersecting a given line ๐‘‘ and parallel

to another given line ๐‘‘โ€ฒ (๐‘‘ โˆฆ ๐‘‘โ€ฒ).

Solution to Problem 162

163. Construct a line that meets two given lines and that is parallel to a third

given line. Discuss.

Solution to Problem 163

164. If a plane ๐›ผ intersects the secant planes after parallel lines, then ๐›ผ is

parallel to line ๐›ฝ โˆฉ ๐›พ.

Solution to Problem 164

165. A variable plane cuts two parallel lines in points ๐‘€ and ๐‘. Find the

geometrical locus of the middle of segment [๐‘€๐‘].

Solution to Problem 165

Page 142: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

141

166. Two lines are given. Through a given point, draw a parallel plane with

both lines. Discuss.

Solution to Problem 166

167. Construct a line passing through a given point, which is parallel to a

given plane and intersects a given line. Discuss.

Solution to Problem 167

168. Show that if triangles ๐ด๐ต๐ถ and ๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ, located in different planes, have

๐ด๐ต โˆฅ ๐ดโ€ฒ๐ตโ€ฒ, ๐ด๐ถ โˆฅ ๐ดโ€ฒ๐ถโ€ฒ and ๐ต๐ถ โˆฅ ๐ตโ€ฒ๐ถโ€ฒ, then lines ๐ด๐ดโ€ฒ, ๐ต๐ตโ€ฒ, ๐ถ๐ถโ€ฒ are concurrent or

parallel.

Solution to Problem 168

169. Show that, if two planes are parallel, then a plane intersecting one of

them after a line cuts the other one too.

Solution to Problem 169

170. Through the parallel lines ๐‘‘ and ๐‘‘โ€ฒ we draw the planes ๐›ผ and ๐›ผโ€ฒ distinct

from (๐‘‘, ๐‘‘โ€ฒ). Show that ๐›ผ โˆฅ ๐›ผโ€ฒ or (๐›ผ โˆฉ ๐›ผโ€ฒ) โˆฅ ๐‘‘.

Solution to Problem 170

171. Given a plane ๐›ผ, a point ๐ด โˆˆ ๐›ผ and a line ๐‘‘ โŠ‚ ๐›ผ.

a. Construct a line ๐‘‘โ€ฒ such that ๐‘‘โ€ฒ โŠ‚ ๐›ผ, ๐ด โˆˆ ๐‘‘โ€ฒ and ๐‘‘โ€ฒ โˆฅ ๐‘‘.

b. Construct a line through ๐ด included in ๐›ผ, which forms with ๐‘‘ an angle

of a given measure ๐‘Ž. How many solutions are there?

Solution to Problem 171

172. Show that relation ๐›ผ โˆฅ ๐›ฝ defined on the set of planes is an equivalence

relation. Define the equivalence classes.

Solution to Problem 172

Page 143: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

142

173. Consider on the set of all lines and planes the relation โ€œ๐‘ฅ โˆฅ ๐‘ฆโ€ or ๐‘ฅ = ๐‘ฆ,

where ๐‘ฅ and ๐‘ฆ are lines or planes. Have we defined an equivalence

relation?

Solution to Problem 173

174. Show that two parallel segments between parallel planes are concurrent.

Solution to Problem 174

175. Show that through two lines that are not contained in the same plane, we

can draw parallel planes in a unique way. Study also the situation when the

two lines are coplanar.

Solution to Problem 175

176. Let ๐›ผ and ๐›ฝ be two parallel planes, ๐ด, ๐ต โˆˆ ๐›ผ, and ๐ถ๐ท is a parallel line with

๐›ผ and ๐›ฝ. Lines ๐ถ๐ด, ๐ถ๐ต, ๐ท๐ต, ๐ท๐ด cut plane ๐›ฝ respectively in ๐‘€,๐‘, ๐‘ƒ, ๐‘„. Show

that these points are the vertices of a parallelogram.

Solution to Problem 176

177. Find the locus of the midpoints of the segments that have their

extremities in two parallel planes.

Solution to Problem 177

Page 144: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

143

Solutions

Solution to Problem 159.

Let

๐ด โˆˆ ๐›ผ๐‘‘ โˆฅ ๐›ผ ๐‘‘โ€ฒโ€ฒ โˆฅ ๐‘‘

} โŸน ๐‘‘โ€ฒโ€ฒ โˆฅ ๐›ผ

๐‘‘โ€ฒ โˆฅ ๐‘‘๐‘‘โ€ฒโ€ฒ โˆฅ ๐‘‘

} โŸน ๐‘‘โ€ฒ โˆฅ ๐‘‘โ€ฒโ€ฒ}

โŸน ๐‘‘โ€ฒโ€ฒ โˆฅ ๐›ผ or ๐‘‘โ€ฒ โŠ‚ ๐›ผ.

Solution to Problem 160.

Let ๐ด โˆˆ ๐‘Ž โ‡’ ๐ด โˆˆ ๐›ผ โˆฉ ๐ด โˆˆ ๐›ฝ. We draw through A, ๐‘‘โ€ฒ โˆฅ ๐‘‘.

๐ด โˆˆ ๐›ผ,๐‘‘ โˆฅ ๐›ผ๐‘‘โ€ฒ โˆฅ ๐‘‘

} โŸน ๐‘‘โ€ฒ โŠ‚ ๐›ผ

๐ด โˆˆ ๐›ฝ,๐‘‘ โˆฅ ๐›ฝ

๐‘‘โ€ฒ โˆฅ ๐‘‘} โŸน ๐‘‘โ€ฒ โŠ‚ ๐›ฝ

}โŸน๐‘‘โ€ฒ โŠ‚ ๐›ผ โŠ‚ ๐›ฝ๐›ผ โˆฉ ๐›ฝ = ๐‘Ž

} โŸน๐‘‘โ€ฒ = ๐‘Ž๐‘‘โ€ฒ โˆฅ ๐‘‘

} โŸน ๐‘Ž โˆฅ ๐‘‘

Solution to Problem 161.

a. If ๐‘‘ โˆฆ ๐‘‘โ€ฒ there is only one solution and it can be obtained as it follows:

Let ๐ด โˆˆ ๐‘‘. In the plane (๐ด, ๐‘‘โ€ฒโ€ฒ) we draw ๐‘‘โ€ฒโ€ฒ โˆฅ ๐‘‘โ€ฒ. The concurrent lines ๐‘‘ and ๐‘‘โ€ฒโ€ฒ

determine plane ๐‘Ž. As ๐‘‘โ€ฒโ€ฒ โˆฅ ๐‘‘ โŸน ๐‘‘ โˆฅ ๐›ผ, in the case of the non-coplanar lines.

Page 145: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

144

b. If ๐‘‘ โˆฅ ๐‘‘โ€ฒ || d'', (โˆƒ) infinite solutions. Any plane passing through ๐‘‘ is parallel to

๐‘‘โ€ฒโ€ฒ, with the exception of plane (๐‘‘, ๐‘‘โ€ฒ).

c. ๐‘‘ โˆฆ ๐‘‘โ€ฒ, but they are coplanar (โˆ„) solutions.

Solution to Problem 162.

Let ๐ด โˆˆ ๐‘‘, we draw through ๐ด, ๐‘‘1 โˆฅ ๐‘‘โ€ฒ. We write ๐›ผ = (๐‘‘, ๐‘‘1). As ๐‘‘1 โˆฅ ๐‘‘โ€ฒ โŸน ๐‘‘โ€ฒ โˆฅ ๐›ผ.

Let ๐‘€ โˆˆ ๐‘‘, arbitrary โŸน๐‘€ โˆˆ ๐›ผ.

We draw ๐›ฟ โˆฅ ๐›ฟโ€ฒ,๐‘€ โˆˆ ๐›ฟ๐‘‘โ€ฒ โˆฅ ๐‘Ž

} โŸน ๐›ฟ โŠ‚ ๐›ผ, so all the parallel lines to ๐‘‘โ€ฒ intersecting ๐‘‘ are

contained in plane ๐›ผ.

Let ๐›พ โŠ‚ ๐›ผ, ๐›พ โˆฅ ๐‘‘โ€ฒโŸน ๐›พ โˆฉ ๐‘‘ = ๐ต, so (โˆ€) parallel to ๐‘‘โ€ฒ from ๐›ผ intersects ๐‘‘. Thus, the

plane ๐›ผ represents the required union.

Page 146: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

145

Solution to Problem 163.

We draw ๐‘‘ through ๐‘€ such that ๐‘‘ โˆฅ ๐‘‘โ€ฒ๐‘‘โ€ฒ โˆฅ ๐‘‘3

} โŸน ๐‘‘ โˆฅ ๐‘‘3. According to previous

problem: ๐‘‘ โˆฉ ๐‘‘1 = {๐‘}. Therefore,

a. If ๐‘‘3 โˆฅ ๐‘‘1, the plane ๐›ผ is unique, and if ๐‘‘2 โˆฉ ๐›ผ โ‰  โˆ…, the solution is unique.

b. If ๐‘‘1 โˆฅ ๐‘‘3, (โˆ„) ๐‘‘ โˆฅ ๐‘‘1

๐‘‘ โˆฉ ๐‘‘1 โ‰  โˆ…, because it would mean that we can draw through a

point two parallel lines ๐‘‘, ๐‘‘1 to the same line ๐‘‘3. So there is no solution.

c. If ๐‘‘1 โˆฆ ๐‘‘3 and ๐‘‘2 โˆฉ ๐›ผ โ‰  โˆ…, all the parallel lines to ๐‘‘2 cutting ๐‘‘1 are on the plane ๐›ผ

and none of them can intersect ๐‘‘2, so the problem has no solution.

d. If ๐‘‘2 โŠ‚ ๐›ผ, ๐‘‘1 โˆฉ ๐‘‘2 โ‰  โˆ…, let ๐‘‘1 โˆฉ ๐‘‘2 = {๐‘‚}, and the required line is parallel to ๐‘‘3

drawn through ๐‘‚ โŸน one solution.

e. If ๐‘‘2 โŠ‚ ๐›ผ, ๐‘‘1 โˆฅ ๐‘‘2. The problem has infinite solutions, (โˆ€) || to ๐‘‘3 which cuts ๐‘‘1,

also cuts ๐‘‘2.

Page 147: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

146

Solution to Problem 164.

Solution to Problem 165.

The problem is reduced to the geometrical locus of the midpoints of the

segments that have extremities on two parallel lines. ๐‘ƒ is such a point |๐‘€๐‘ƒ| = |๐‘ƒ๐‘|.

We draw ๐ด๐ต โŠฅ ๐‘‘1 โ‡’ ๐ด๐ต?๐‘€๐‘ƒ๏ฟฝ๏ฟฝ = ๐ต๐‘ƒ๐‘ โŸน ๐›ฅ๐‘€๐ด๐‘ƒ = ๐›ฅ๐‘๐ต๐‘ƒ โŸน |๐‘ƒ๐ด| โ‰ก |๐‘ƒ๐ต| โŸน ||๐ด๐‘ƒ||?โŸน

the geometrical locus is the parallel to ๐‘‘1 and ๐‘‘2 drawn on the mid-distance

between them. It can also be proved vice-versa.

Page 148: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

147

Solution to Problem 166.

Let ๐‘‘1 โˆฆ ๐‘‘2. In plane (๐‘‘,๐‘€) we draw ๐‘‘1โ€ฒ โˆฅ ๐‘‘1, ๐‘€ โˆˆ ๐‘‘1

โ€ฒ . In plane (๐‘‘2๐‘€) we draw

๐‘‘2โ€ฒ โˆฅ ๐‘‘2, ๐‘€ โˆˆ ๐‘‘2

โ€ฒ . We note ๐›ผ = ๐‘‘1โ€ฒ๐‘‘2โ€ฒ the plane determined by two concurrent lines.

๐‘€ โˆˆ ๐›ผ the only solution.

Let ๐‘‘1 โˆฅ ๐‘‘2, ๐‘ โˆ‰ ๐‘‘1,๐‘€ โˆ‰ ๐‘‘2.

๐‘‘1 = ๐‘‘1โ€ฒ = ๐‘‘2

โ€ฒ

In this case ๐‘‘1โ€ฒ = ๐‘‘2

โ€ฒ = ๐‘‘ and infinite planes pass through ๐‘‘;

๐‘‘2 โˆฅ ๐‘‘๐‘‘1 โˆฅ ๐‘‘

} โŸน ๐‘‘1, ๐‘‘2 are parallel lines with (โˆ€) of the planes passing through ๐‘‘.

The problem has infinite solutions. But ๐‘€ โˆˆ ๐‘‘1 or ๐‘€ โˆˆ ๐‘‘2, the problem has no

solution because the plane canโ€™t pass through a point of a line and be parallel to

that line.

Solution to Problem 167.

Let ๐ด be the given point, ๐›ผ the given plane and ๐‘‘ the given line.

a. We assume that ๐‘‘ โˆฆ ๐›ผ, ๐‘‘ โˆฉ ๐›ผ = {๐‘€}. Let plane (๐‘‘๐ด) which has a common point

๐‘€ with ๐›ผ โ‡’ (๐‘‘๐ด) โˆฉ ๐›ผ = ๐‘‘โ€ฒ.

We draw in plane (๐‘‘๐ด) through point ๐ด a parallel line to ๐‘‘โ€ฒ.

Page 149: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

148

โŸน ๐‘Ž is the required line.

b. ๐‘‘ โˆฅ ๐›ผ, (๐‘‘๐ด) โˆฉ ๐›ผ โ‰  โˆ….

Let (dA) โˆฉ ฮฑ = ฮฑโ€™

๐‘‘ โˆฅ ๐›ผ} โ‡’ ๐‘‘โ€ฒ โˆฅ ๐‘‘

All the lines passing through ๐ด and intersecting ๐‘‘ are contained in plane (๐‘‘๐ด). But

all these lines also cut ๐‘‘โ€ฒ โˆฅ ๐‘‘, so they canโ€™t be parallel to ๐›ผ. There is no solution.

c. ๐‘‘ โˆฅ ๐›ผ, (๐‘‘๐ด) โˆฉ ๐›ผ = โˆ….

Let ๐‘€ โˆˆ ๐‘‘ and line ๐ด๐‘€ โŠ‚ (๐‘‘๐ด); (๐‘‘๐ด) โˆฉ ๐›ผ = โˆ… โŸน ๐ด๐‘€ โˆฉ ๐›ผ = โˆ…โŸน ๐ด๐‘€ โˆฅ ๐›ผ, (โˆ€)๐‘€ โˆˆ ๐‘‘.

The problem has infinite solutions.

Solution to Problem 168.

(๐ด๐ต๐ถ) and (๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ) are distinct planes, thus the six points ๐ด, ๐ต, ๐ถ, ๐ดโ€ฒ, ๐ตโ€ฒ, ๐ถโ€ฒ canโ€™t be

coplanar.

๐ด๐ต โˆฅ ๐ดโ€ฒ๐ตโ€™ โŸน ๐ด,๐ต, ๐ดโ€ฒ, ๐ตโ€ฒ are coplanar.

Page 150: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

149

The points are coplanar four by four, that is (๐ด๐ต๐ตโ€ฒ๐ด), (๐ด๐ถ๐ถโ€ฒ๐ดโ€ฒ), (๐ต๐ถ๐ถโ€ฒ๐ตโ€ฒ), and

determine four distinct planes. If we assumed that the planes coincide two by two,

it would result other 6 coplanar points and this is false.

In plane ๐ด๐ต๐ตโ€ฒ๐ดโ€ฒ, lines ๐ด๐ดโ€ฒ, ๐ต๐ตโ€ฒ can be parallel or concurrent.

First we assume that:

is a common point to the 3 distinct planes, but the intersection of 3 distinct

planes can be only a point, a line or โˆ…. It canโ€™t be a line because lines

โŸน are distinct if we assumed that two of them coincide, the 6 points would be

coplanar, thus there is no common line to all the three planes. There is one

possibility left, that is they have a common point ๐‘† and from

We assume ๐‘‘ โˆฉ ๐›ฝ = โˆ…โŸน ๐‘‘ โˆฅ ๐›ฝ โŸน ๐‘‘ โˆˆ plane โˆฅ ๐›ฝ drawn through ๐ด โŸน ๐‘‘ โŠ‚ ๐›ผ, false.

So ๐‘‘ โˆฉ ๐›ฝ = {๐ต}.

Solution to Problem 169.

Hypothesis: ๐›ผ โˆฅ ๐›ฝ, ๐›พ โˆฉ ๐›ผ = ๐‘‘1.

Conclusion: ๐›พ โˆฉ ๐›ฝ = ๐‘‘2.

We assume that ๐›พ โˆฉ ๐›ฝ = โˆ…โŸน ๐›พ โˆฅ ๐›ฝ.

Let

Page 151: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

150

because from a point we can draw only one parallel plane with the given plane.

But this result is false, it contradicts the hypothesis ๐›พ โˆฉ ๐›ผ = ๐‘‘1 so ๐›พ โˆฉ ๐›ฝ = ๐‘‘2.

Solution to Problem 170.

Hypothesis: ๐‘‘ โˆฅ ๐‘‘โ€ฒ; ๐‘‘ โŠ‚ ๐›ผ; ๐‘‘โ€ฒ โŠ‚ ๐›ผโ€ฒ; ๐›ผ, ๐‘Žโ€ฒ โ‰  (๐‘‘๐‘‘โ€ฒ).

Conclusion: ๐›ผ โˆฅ ๐›ผโ€ฒ or ๐‘‘โ€ฒโ€ฒ โˆฅ ๐‘‘.

As ๐›ผ, ๐‘Žโ€ฒ โ‰  (๐‘‘๐‘‘โ€ฒ) โŸน ๐›ผ โ‰  ๐‘Žโ€ฒ.

If ๐‘Ž โˆฉ ๐‘Žโ€ฒ = โˆ… โŸน ๐‘Ž โˆฅ ๐‘Žโ€ฒ.

If ๐‘Ž โˆฉ ๐‘Žโ€ฒ = โˆ… โŸน ๐‘Ž โˆฉ ๐‘Žโ€ฒ = ๐‘‘โ€ฒโ€ฒ.

If ๐‘‘ โˆฅ ๐‘‘โ€ฒโ€ฒ

๐‘‘โ€ฒ โŠ‚ ๐‘Žโ€ฒโŸน๐‘‘ โˆฅ ๐‘Žโ€ฒ

๐‘‘ โŠ‚ ๐‘Ž} โŸน ๐‘‘โ€ฒโ€ฒโ€–๐‘‘.

Solution to Problem 171.

a. If ๐ด โˆˆ ๐‘‘, then ๐‘‘โ€ฒ = ๐‘‘. If ๐ด โˆ‰ ๐‘‘, we draw through ๐ด, ๐‘‘โ€ฒ โˆฅ ๐‘‘.

Page 152: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

151

b. We draw ๐‘‘1 โŠ‚ ๐›ผ, ๐ด โˆˆ ๐‘‘, such that ๐‘š(๐‘‘1๐‘‘โ€ฒ) = ๐‘Ž and ๐‘‘ โŠ‚ ๐›ผ, ๐ด โˆˆ ๐‘‘2, such that

๐‘š(๐‘‘2๐‘‘โ€ฒ) = ๐‘Ž, a line in each half-plane determined by ๐‘‘โ€ฒ. So (โˆƒ) 2 solutions

excepting the situation ๐‘Ž = 0 or ๐‘Ž = 90 when (โˆƒ) only one solution.

Solution to Problem 172.

๐›ผ โˆฅ ๐›ฝ or ๐›ผ = ๐›ฝ โŸบ ๐›ผ~๐›ฝ

1. ๐›ผ = ๐›ผ โŸน ๐›ผ~๐›ผ, the relation is reflexive;

2. ๐›ผ~๐›ฝ โŸน ๐›ฝ~ โˆ, the relation is symmetric.

๐›ผ โˆฅ ๐›ฝ or ๐›ผ = ๐›ฝ โŸน ๐›ฝ โˆฅ ๐›ผ or ๐›ฝ = ๐›ผ โŸน ๐›ฝ~ โˆ;

3. ๐›ผ~๐›ฝ โˆฉ ๐›ฝ~๐›พ โŸน ๐›ผ~๐›พ.

If ๐›ผ = ๐›ฝ โˆฉ ๐›ฝ~๐›พ โŸน ๐›ผ~๐›พ.

If ๐›ผ โ‰  ๐›ฝ and ๐›ผ~๐›ฝ โŸน ๐›ผ โˆฅ ๐›ฝ๐›ฝ~๐›พ โŸน ๐›ฝ = ๐›พ or ๐›ฝ โˆฅ ๐›พ

} โŸน ๐›ผ โˆฅ ๐›พ โŸน ๐›ผ~๐›พ.

The equivalence class determined by plane ๐›ผ is constructed of planes ๐›ผโ€ฒ with ๐›ผโ€ฒ~๐›ผ,

that is of ๐›ผ and all the parallel planes with ๐›ผ.

Solution to Problem 173.

No, it is an equivalence relation, because the transitive property is not true. For

example, ๐‘ฅ is a line, ๐‘ฆ a plane, ๐‘ง a line. From ๐‘ฅ || ๐‘ฆ and || ๐‘ง โ‡ ๐‘ฅ || ๐‘ง, lines ๐‘ฅ and ๐‘ง

could be coplanar and concurrent or non-coplanar.

Page 153: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

152

Solution to Problem 174.

โŸน ๐ด๐ต๐ถ๐ท parallelogram.

So ||๐ด๐ถ|| = ||๐ต๐ท||.

Solution to Problem 175.

We consider ๐ด โˆˆ ๐‘‘ and draw through it ๐‘‘1 โˆฅ ๐‘‘โ€ฒ. We consider ๐ต โˆˆ ๐‘‘โ€ฒ and draw

๐‘‘2 โˆฅ ๐‘‘. Plane (๐‘‘1๐‘‘2) โˆฅ (๐‘‘๐‘‘1), because two concurrent lines from the first plane are

parallel with two concurrent lines from the second plane.

When ๐‘‘ and ๐‘‘โ€ฒ are coplanar, the four lines ๐‘‘, ๐‘‘1, ๐‘‘2 and ๐‘‘โ€ฒ are coplanar and the

two planes coincide with the plane of the lines ๐‘‘ and ๐‘‘โ€ฒ.

Solution to Problem 176.

Let planes:

Page 154: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

153

From (1), (2), (3), (4) โŸน๐‘€๐‘๐‘ƒ๐‘„ parallelogram.

Solution to Problem 177.

Let [๐ด๐ต] and [๐ถ๐ท] be two segments, with ๐ด, ๐ถ โˆˆ ๐›ผ and ๐ต,๐ท โˆˆ ๐›ฝ such that |๐ด๐‘€| =

|๐‘€๐ต| and |๐ถ๐‘| = |๐‘๐ท|.

In plane (๐‘€๐ถ๐ท) we draw through ๐‘€,๐ธ๐น||๐ถ๐ท โŸน ๐ธ๐ถ||๐ท๐น โŸน ๐ธ๐น๐ท๐ถ parallelogram

โŸน |๐ธ๐น| โ‰ก |๐ถ๐ท|.

Concurrent lines ๐ด๐ต and ๐ธ๐น determine a plane which cuts planes ๐›ผ after 2 parallel

lines โŸน ๐ธ๐ด||๐ต๐น.

In this plane, |๐ด๐‘€| โ‰ก |๐ต๐‘€|.

๐ธ๐‘€๏ฟฝ๏ฟฝ โ‰ก ๐ต๐‘€๐น (angles opposed at peak)

๐ธ๐ด๏ฟฝ๏ฟฝ โ‰ก ๐น๐ต๐‘€(alternate interior angles)}

In parallelogram ๐ธ๐ถ๐ท๐น,

Page 155: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

154

So the segment connecting the midpoints of two of the segments with the

extremity in ๐›ผ and ๐›ฝ is parallel to these planes. We also consider [๐บ๐ป] with ๐บ โˆˆ

๐›ผ,๐ป โˆˆ ๐›ฝ and |๐บ๐‘„| โ‰ก |๐‘„๐ป| and we show in the same way that ๐‘‚๐‘€||๐›ผ and ๐‘‚๐‘€||๐›ฝ. (2)

From (1) and (2) โŸน๐‘€,๐‘, ๐‘„ are elements of a parallel plane to ๐›ผ and ๐›ฝ, marked by

๐›พ.

Vice-versa, letโ€™s show that any point from this plane is the midpoint of a segment,

with its extremities in ๐›ผ and ๐›ฝ.

Let segment [๐ด๐ต] with ๐ด โˆˆ ๐›ผ and ๐ต โˆˆ ๐›ฝ and |๐ด๐‘€| = |๐ต๐‘€|. Through ๐‘€, we draw the

parallel plane with ๐›ผ and ๐›ฝ and in this plane we consider an arbitrary point ๐‘‚ โˆˆ ๐›พ.

Through ๐‘‚ we draw a line such that ๐‘‘ โˆฉ ๐›ผ = {๐ผ} and ๐‘‘ โˆฉ ๐›ฝ = {๐ผ}.

In plane (๐‘‚๐ด๐ต) we draw ๐ดโ€ฒ๐ตโ€ฒ || ๐ด๐ต. Plane (๐ด๐ดโ€ฒ๐ตโ€ฒ๐ต) cuts the three parallel planes

after parallel lines โŸน

In plane (๐ดโ€ฒ๐ตโ€ฒ๐ผ) โŸน |๐ดโ€ฒ๐‘‚| โ‰ก |๐‘‚๐ตโ€ฒ| โŸน ๐ผ๐ดโ€ฒ || ๐ตโ€ฒ๐ผ and thus |๐ดโ€ฒ๐‘‚| โ‰ก |๐‘‚๐ตโ€ฒ|

๐ผ๐‘‚๐ดโ€ฒ โ‰ก ๐ผ๐‘‚๐ตโ€ฒ and ๐ผ๐ดโ€ฒ๏ฟฝ๏ฟฝ โ‰ก

๐ผ๐ตโ€ฒ๏ฟฝ๏ฟฝ โŸน

๐‘‚ is the midpoint of a segment with extremities in planes ๐›ผ and ๐›ฝ.

Thus the geometrical locus is plane ๐›พ, parallel to ๐›ผ and ๐›ฝ and passing through the

mid-distance between ๐›ผ and ๐›ฝ.

Page 156: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

155

Projections

178. Show that if lines ๐‘‘ and ๐‘‘โ€ฒ are parallel, then pr๐›ผ๐‘‘ โˆฅ pr๐›ผ๐‘‘โ€ฒ or pr๐›ผ๐‘‘ = pr๐›ผ๐‘‘

โ€ฒ.

What can we say about the projective planes of ๐‘‘ and ๐‘‘โ€ฒ?

Solution to Problem 178

179. Show that the projection of a parallelogram on a plane is a parallelogram

or a segment.

Solution to Problem 179

180. Knowing that side [๐‘‚๐ด of the right angle ๐ด๐‘‚๐ต is parallel to a plane ๐›ผ,

show that the projection of ๐ด๐‘‚๏ฟฝ๏ฟฝ onto the plane ๐›ผ is a right angle.

Solution to Problem 180

181. Let ๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ be the projection of โˆ†๐ด๐ต๐ถ onto a plane ๐›ผ. Show that the

centroid of โˆ†๐ด๐ต๐ถ is projected onto the centroid of โˆ†๐ดโ€™๐ตโ€™๐ถโ€™. Is an analogous

result true for the orthocenter?

Solution to Problem 181

182. Given the non-coplanar points ๐ด, ๐ต, ๐ถ, ๐ท, determine a plane on which the

points ๐ด, ๐ต, ๐ถ, ๐ท are projected onto the peaks of parallelogram.

Solution to Problem 182

183. Consider all triangles in space that are projected onto a plane ๐›ผ after the

same triangle. Find the locus of the centroid.

Solution to Problem 183

184. Let ๐ด be a point that is not on line ๐‘‘. Determine a plane ๐›ผ such that pr๐›ผ๐‘‘

passes through pr๐›ผ๐ด.

Solution to Problem 184

Page 157: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

156

185. Determine a plane onto which three given lines to be projected after

concurrent lines.

Solution to Problem 185

186. Let ๐›ผ, ๐›ฝ be planes that cut each other after a line ๐‘Ž and let ๐‘‘ be a

perpendicular line to ๐‘Ž. Show that the projections of line ๐‘‘ onto ๐›ผ, ๐›ฝ are

concurrent.

Solution to Problem 186

187. Consider lines ๐‘‚๐ด,๐‘‚๐ต, ๐‘‚๐ถ โŠฅ two by two. We know that ||๐‘‚๐ด|| = ๐‘Ž,

||๐‘‚๐ต|| = ๐‘, ||๐‘‚๐ถ|| = ๐‘. Find the measure of the angle of planes (๐ด๐ต๐ถ) and

(๐‘‚๐ด๐ต).

Solution to Problem 187

188. A line cuts two perpendicular planes ๐›ผ and ๐›ฝ at ๐ด and ๐ต. Let ๐ดโ€ฒ and ๐ตโ€ฒ be

the projections of points ๐ด and ๐ต onto line ๐›ผ โˆฉ ๐›ฝ.

a. Show that ||๐ด๐ต||ยฒ = ||๐ด๐ดโ€ฒ||ยฒ + ||๐ดโ€ฒ๐ตโ€ฒ||ยฒ + ||๐ตโ€ฒ๐ต||ยฒ;

b. If ๐‘Ž, ๐‘, ๐‘ are the measures of the angles of line ๐ด๐ต with planes ๐›ผ, ๐›ฝ and

with ๐›ผ โˆฉ ๐›ฝ, then cos ๐‘โ€–๐ดโ€ฒ๐ตโ€ฒโ€–

โ€–๐ด๐ตโ€– and sin2 ๐‘Ž + sin2 ๐‘ = sin2 ๐‘.

Solution to Problem 188

189. Let ๐ด๐ต๐ถ be a triangle located in a plane ๐›ผ, ๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ the projection of

โˆ†๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ onto plane ๐›ผ. We mark with ๐‘†, ๐‘†โ€ฒ, ๐‘†โ€ฒโ€ฒ the areas of โˆ†๐ด๐ต๐ถ,

โˆ†๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ, โˆ†๐ดสบ๐ตสบ๐ถสบ, show that ๐‘†โ€ฒ is proportional mean between ๐‘† and ๐‘†โ€ฒโ€ฒ.

Solution to Problem 189

190. A trihedral [๐ด๐ต๐ถ๐ท] has |๐ด๐ถ| โ‰ก |๐ด๐ท| โ‰ก |๐ต๐ถ| โ‰ก |๐ต๐ท|. ๐‘€,๐‘ are the midpoints

of edges [๐ด๐ต], [๐ถ๐ท], show that:

a. ๐‘€๐‘ โŠฅ ๐ด๐ต,๐‘€๐‘ โŠฅ ๐ถ๐ท, ๐ด๐ต โŠฅ ๐ถ๐ท

Page 158: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

157

b. If ๐ดโ€ฒ, ๐ตโ€ฒ, ๐ถโ€ฒ, ๐ทโ€ฒ are the feet of the perpendicular lines drawn to the peaks

๐ด, ๐ต, ๐ถ, ๐ท on the opposite faces of the tetrahedron, points ๐ต, ๐ดโ€ฒ, ๐‘ are

collinear and so are ๐ด, ๐ตโ€ฒ, ๐‘; ๐ท, ๐ถโ€ฒ,๐‘€; ๐ถ, ๐ทโ€ฒ, ๐‘€.

c. ๐ด๐ดโ€ฒ, ๐ต๐ตโ€ฒ,๐‘€๐‘ and ๐ถ๐ถโ€ฒ, ๐ท๐ทโ€ฒ,๐‘€๐‘ are groups of three concurrent lines.

Solution to Problem 190

191. If rays [๐‘‚๐ด and [๐‘‚๐ต with their origin in plane ๐›ผ, ๐‘‚๐ด โŠฅ ๐›ผ, then the two rays

form an acute or an obtuse angle, depending if they are or are not on the

same side of plane ๐›ผ.

Solution to Problem 191

192. Show that the 6 mediator planes of the edges of a tetrahedron have a

common point. Through this point pass the perpendicular lines to the faces

of the tetrahedron, drawn through the centers of the circles of these faces.

Solution to Problem 192

193. Let ๐‘‘ and ๐‘‘โ€ฒ be two non-coplanar lines. Show that (โˆƒ) unique points ๐ด โˆˆ

๐‘‘, ๐ดโ€ฒ โˆˆ ๐‘‘โ€ฒ such that ๐ด๐ดโ€ฒ โŠฅ ๐‘‘ and ๐ด๐ดโ€ฒ โŠฅ ๐‘‘โ€ฒ. The line ๐ด๐ดโ€ฒ is called the common

perpendicular of lines ๐‘‘ and ๐‘‘โ€ฒ.

Solution to Problem 193

194. Consider the notations from the previous problem. Let ๐‘€ โˆˆ ๐‘‘, ๐‘€โ€ฒ โˆˆ ๐‘‘โ€ฒ.

Show that โ€–๐ด๐ดโ€ฒโ€– โ‰ค โ€–๐‘€๐‘€โ€ฒโ€–. The equality is possible only if ๐‘€ = ๐ด, ๐‘€โ€ฒ = ๐ดโ€ฒ.

Solution to Problem 194

195. Let ๐ด๐ดโ€ฒ be the common โŠฅ of non-coplanar lines ๐‘‘, ๐‘‘โ€ฒโ€ฒ and ๐‘€ โˆˆ ๐‘‘, ๐‘€โ€ฒ โˆˆ ๐‘‘โ€ฒ

such that |๐ด๐‘€| โ‰ก |๐ดโ€ฒ๐‘€โ€ฒ|. Find the locus of the midpoint of segment [๐‘€๐‘€โ€ฒ].

Solution to Problem 195

196. Consider a tetrahedron ๐‘‰๐ด๐ต๐ถ with the following properties. ๐ด๐ต๐ถ is an

equilateral triangle of side ๐‘Ž, (๐ด๐ต๐ถ) โŠฅ (๐‘‰๐ต๐ถ), the planes (๐‘‰๐ด๐ถ) and (๐‘‰๐ด๐ต)

Page 159: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

158

form with plane (๐ด๐ต๐ถ) angles of 60ยฐ. Find the distance from point ๐‘‰ to

plane (๐ด๐ต๐ถ).

Solution to Problem 196

197. All the edges of a trihedral are of length a. Show that a peak is projected

onto the opposite face in its centroid. Find the measure of the dihedral

angles determined by two faces.

Solution to Problem 197

198. Let ๐ท๐ธ be a perpendicular line to the plane of the square ๐ด๐ต๐ถ๐ท. Knowing

that โ€–๐ต๐ธโ€– = ๐‘™ and that the measure of the angle formed by [๐ต๐ธ and (๐ด๐ต๐ถ)

is ๐›ฝ, determine the length of segment ๐ด๐ธ and the angle of [๐ด๐ธ with plane

(๐ด๐ต๐ถ).

Solution to Problem 198

199. Line ๐ถ๐ท โŠฅ plane of the equilateral โˆ†๐ด๐ต๐ถ of side ๐‘Ž, and [๐ด๐ท and [๐ต๐ท form

with plane (๐ด๐ต๐ถ) angles of measure ๐›ฝ. Find the angle of planes (๐ด๐ต๐ถ) and

๐ด๐ต๐ท.

Solution to Problem 199

200. Given plane ๐›ผ and โˆ†๐ด๐ต๐ถ, โˆ†๐ดโ€™๐ตโ€™๐ถโ€™ that are not on this plane. Determine a

โˆ†๐ท๐ธ๐น, located on ๐›ผ such that on one side lines ๐ด๐ท, ๐ต๐ธ, ๐ถ๐น and on the

other side lines ๐ดโ€ฒ๐ท, ๐ตโ€ฒ๐ธ, ๐ถโ€ฒ๐น are concurrent.

Solution to Problem 200

Page 160: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

159

Solutions

Solution to Problem 178.

Let ๐‘‘ โˆฅ ๐‘‘โ€ฒ, ๐›ฝ the projective plane of ๐‘‘.

We assume that ๐‘‘โ€ฒ โŠ„ ๐›ฝ, which means that is plane ๐‘‘, ๐‘‘โ€ฒ โŠฅ ๐›ผ, โŸน the projective

plane of ๐‘‘โ€ฒ is ๐›ฝโ€ฒ. We want to show that pr๐‘Ž๐‘‘ โˆฅ pr๐‘Ž๐‘‘โ€ฒ. We assume that pr๐‘Ž๐‘‘ โˆฉ

pr๐‘Ž๐‘‘โ€ฒ = {๐‘ƒ} โ‡’ (โˆƒ) ๐‘€ โˆˆ ๐‘‘ such that pr๐‘Ž๐‘€ = ๐‘ƒ and (โˆƒ)๐‘€โ€ฒ โˆˆ ๐‘‘โ€ฒ such that pr๐‘Ž๐‘€

โ€ฒ = ๐‘ƒ.

โŸน๐‘ƒ๐‘€ โŠฅ ๐›ผ๐‘ƒ๐‘€โ€ฒ โŠฅ ๐›ผ

} โŸน in the point ๐‘ƒ on plane ๐›ผ we can draw two distinct perpendicular

lines. False.

If ๐›ฝ is the projective plane of ๐‘‘ and ๐›ฝ of ๐‘‘โ€ฒ, then ๐›ฝ โˆฅ ๐›ฝโ€ฒ, because if they had a

common point their projections should be elements of pr๐‘Ž๐‘‘ and pr๐‘Ž๐‘‘โ€ฒ, and thus

they wouldnโ€™t be anymore parallel lines.

If ๐‘‘โ€ฒ โŠ‚ ๐›ฝ or ๐‘‘ โŠ‚ ๐›ฝโ€ฒ, that is (๐‘‘, ๐‘‘โ€ฒ) โŠฅ ๐›ผ โŸน ๐‘‘ and ๐‘‘โ€ฒ have the same projective plane

โŸน pr๐‘Ž๐‘‘ = pr๐‘Ž๐‘‘โ€ฒ.

Solution to Problem 179.

Page 161: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

160

We assume that ๐ด๐ต๐ถ๐ท โŠฅ ๐›ผ. Let ๐ดโ€ฒ, ๐ตโ€ฒ, ๐ถโ€ฒ, ๐ทโ€ฒ be the projections of points ๐ด, ๐ต, ๐ถ, ๐ท.

๐ด๐ต โˆฅ ๐ท๐ถ๐‘๐‘Ÿ1โ‡’ ๐ดโ€ฒ๐ตโ€ฒ โˆฅ ๐ทโ€ฒ๐ถโ€ฒ

๐ด๐ท โˆฅ ๐ต๐ถ โŸน ๐ดโ€ฒ๐ทโ€ฒ โˆฅ ๐ตโ€ฒ๐ทโ€ฒ} โŸน ๐ดโ€ฒ, ๐ตโ€ฒ, ๐ถโ€ฒ, ๐ทโ€ฒ parallelogram.

If (๐ด๐ต๐ถ๐ท) โŠฅ ๐›ผ โ‡’ the projection ๐ดโ€ฒ, ๐ตโ€ฒ, ๐ถโ€ฒ, ๐ทโ€ฒ โˆˆ the line (๐ด๐ต๐ถ๐ท) โˆฉ ๐›ผ โŸน the

projection of the parallelogram is a segment.

Solution to Problem 180.

If ๐‘‚๐ด||๐›ผ โŸน proj๐›ผ๐‘‚๐ด||๐‘‚๐ด โŸน ๐‘‚โ€ฒ๐ดโ€ฒ||๐‘‚๐ด because (โˆ€) a plane which passes through

๐‘‚๐ด cuts the plane ๐›ผ after a parallel to ๐‘‚๐ด.

โŸน๐‘‚โ€ฒ๐ดโ€ฒ โŠฅ ๐‘‚โ€ฒ๐ตโ€ฒ โŸน ๐ดโ€ฒ๐‘‚โ€ฒ๐ตโ€ฒ is a right angle.

Solution to Problem 181.

In the trapezoid ๐ต๐ถ๐ถโ€ฒ๐ตโ€ฒ (๐ต๐ตโ€ฒ||๐ถ๐ถโ€ฒ),

Page 162: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

161

โŸน ๐ดโ€ฒ๐‘€โ€ฒ is a median.

๐‘€๐‘€โ€ฒ โˆฅ ๐ด๐ดโ€ฒโŸน๐‘€๐‘€โ€ฒ๐ดโ€ฒ๐ด trapezoid

โ€–๐ด๐บโ€–

โ€–๐บ๐‘€โ€–= 2, ๐บ๐บโ€ฒ โˆฅ ๐ด๐ดโ€ฒ

}โ€–๐ดโ€ฒ๐บโ€–

โ€–๐บโ€ฒ๐‘€โ€ฒโ€–=โ€–๐ด๐บโ€–

โ€–๐บ๐‘€โ€–= 2

โŸน๐บโ€ฒ is on median A'M' at 2/3 from the peak and 1/3 from the base.

Generally no, because the right angle ๐ด๐‘€๐ถ should be projected after a

right angle. The same thing is true for another height. This is achieved if the

sides of the โˆ† are parallel to the plane.

Solution to Problem 182.

Let ๐ด, ๐ต, ๐ถ, ๐ท be the 4 non-coplanar points and ๐‘€,๐‘ midpoints of

segments |๐ด๐ต| and |๐ถ๐ท|.

๐‘€ and ๐‘ determine a line and let a plane ๐›ผ โŠฅ ๐‘€๐‘, ๐‘€ and ๐‘ are projected

in the same point ๐‘‚ onto ๐›ผ.

โŸน ๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ๐ทโ€ฒ a parallelogram.

Page 163: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

162

Solution to Problem 183.

Let ๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ, ๐ดโ€ฒโ€ฒ๐ตโ€ฒโ€ฒ๐ถโ€ฒโ€ฒ two triangles of this type, with the following property:

โŸน ๐บโ€ฒ๐บ = ๐บ๐บโ€ฒโ€ฒโŸน ๐บโ€ฒโ€ฒ, ๐บโ€ฒ, ๐บ are collinear.

Due to the fact that by projection the ratio is maintained, we show that ๐บโ€ฒโ€ฒ is the

centroid of ๐ด, ๐ต, ๐ถ.

Solution to Problem 184.

Let ๐‘€ โˆˆ ๐‘‘ and ๐ด โˆ‰ ๐‘‘. The two points determine a line and let ๐›ผ be a

perpendicular plane to this line, ๐ด๐‘€ โŠฅ ๐›ผ โŸน ๐ด and ๐‘€ are projected onto ๐›ผ in the

same point ๐ดโ€ฒ through which also passes projฮฑ๐‘‘ = projฮฑ๐ด โˆˆ projฮฑ๐‘‘.

Page 164: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

163

Solution to Problem 185.

We determine a line which meets the three lines in the following way.

Let

Let now a plane

Solution to Problem 186.

Let ๐›ผ โˆฉ ๐›ฝ = ๐‘Ž and ๐‘€ โˆˆ ๐‘‘. We project this point onto ๐›ผ and ๐›ฝ:

โŸน ๐‘Ž โŠฅ onto the projective plane of ๐‘‘ onto ๐›ฝ.

Page 165: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

164

Let

โŸน๐‘‚๐‘€โ€ฒ โˆฉ ๐‘‚๐‘€โ€ฒโ€ฒ = {๐‘‚}, so the two projections are concurrent.

Solution to Problem 187.

the angle of planes (๐ด๐ต๐ถ) and (๐‘‚๐ด๐ต) is ๐‘‚๐‘€๏ฟฝ๏ฟฝ = ๐›ผ.

Solution to Problem 188.

Let ๐›ผ โˆฉ ๐›ฝ = a and ๐ด๐ดโ€ฒ โŠฅ ๐‘Ž, ๐ต๐ตโ€ฒ โŠฅ ๐‘Ž.

Page 166: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

165

As

โŸนโˆข of line ๐ด๐ต with ๐›ผ, ๐ต๐ด๐ตโ€ฒ = ๐‘Ž

โŸนโˆข of line ๐ด๐ต with ๐›ฝ, ๐ด๐ต๐ดโ€ฒ = ๐‘

In the plane ๐›ฝ we draw through ๐ต a parallel line to ๐‘Ž and through ๐ดโ€ฒ a parallel line

to ๐ต๐ตโ€ฒ. Their intersection is ๐ถ, and ||๐ดโ€ฒ๐ตโ€ฒ|| = ||๐ต๐ถ||, ||๐ต๐ตโ€ฒ|| = ||๐ดโ€ฒ๐ถ||. The angle of line

๐ด๐ต with ๐›ผ is ๐ด๐ต๏ฟฝ๏ฟฝ = ๐‘.

As ๐ด๐ดโ€™ โŠฅ ๐›ฝ โŸน ๐ด๐ดโ€ฒ โŠฅ ๐ดโ€ฒ๐ถ โŸน โ€–๐ด๐ถโ€–2 = โ€–๐ด๐ดโ€ฒโ€–2 + โ€–๐ดโ€ฒ๐ถโ€–2 = โ€–๐ด๐ดโ€ฒโ€–2 + โ€–๐ตโ€ฒ๐ตโ€–2(1)

๐ตโ€ฒ๐ต๐ถ๐ด rectangle

โŸน โˆ†๐ด๐ถ๐ต is right in ๐ถ.

We divide the relation (1) with ||๐ด๐ต||ยฒ:

Solution to Problem 189.

Page 167: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

166

Solution to Problem 190.

a. |๐ด๐ถ| โ‰ก |๐ต๐ถ| โŸน โˆ†๐ด๐ถ๐ต isosceles

๐ถ๐‘€ median } โŸน ๐ถ๐‘€ โŠฅ ๐ด๐ต (1)

|๐ด๐ท| โ‰ก |๐ต๐ถ| โŸน โˆ†๐ด๐ต๐ท isosceles๐ท๐‘€ median

} โŸน ๐ท๐‘€ โŠฅ ๐ด๐ต (2)

From (1) and (2) โŸน ๐ด๐ต โŠฅ (๐ท๐‘€๐ถ) =๐ด๐ต โŠฅ ๐‘€๐‘ ๐ด๐ต โŠฅ ๐ท๐ถ

}

|๐ต๐ถ| โ‰ก |๐ต๐ท|๐ต๐‘ median

} โŸน ๐ต๐‘ โŠฅ ๐ท๐ถ

|๐ด๐ท| โ‰ก |๐ด๐ถ|๐ด๐‘ median

} โŸน ๐ด๐‘ โŠฅ ๐ท๐ถ}โŸน ๐ท๐ถ โŠฅ (๐ด๐ต๐‘) โŸน ๐ท๐ถ โŠฅ ๐‘€๐‘

b.

โŸน ๐ดโ€ฒ โˆˆ ๐ต๐‘ โŸน ๐ต,๐ดโ€ฒ, ๐‘ are collinear.

In the same way:

From (๐ด๐ท๐ถ) โŠฅ (๐ด๐ต๐‘) โŸน ๐ด,๐ตโ€ฒ, ๐‘ collinear

(๐ด๐ต๐ถ) โŠฅ (๐ท๐‘€๐ถ) โŸน ๐‘€,๐ทโ€ฒ, ๐ถ collinear

(๐ด๐ต๐ท) โŠฅ (๐ท๐‘€๐ถ) โŸน ๐ท, ๐ถโ€ฒ,๐‘€ collinear

C. At point a. weโ€™ve shown that ๐‘€๐‘ โŠฅ ๐ด๐ต

๐ด๐ดโ€ฒ, ๐ต๐ตโ€ฒ and ๐‘€๐‘ are heights in โˆ†๐ด๐ต๐‘, so they are concurrent lines.

In the same way, ๐ท๐ทโ€ฒ, ๐ถ๐ถโ€ฒ,๐‘€๐‘ will be heights in โˆ†๐ท๐‘€๐ถ.

Page 168: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

167

Solution to Problem 191.

We assume that [๐‘‚๐ด, [๐‘‚๐ต are on the same side of plane ๐›ผ.

We draw

(โˆƒ) plane (๐ด๐ท, ๐ต๐ตโ€ฒ) = ๐›ฝ โŸน |๐‘‚๐ด, |๐‘‚๐ต are in the same half-plane.

In plane ๐›ฝ we have ๐‘š(๐ด๐‘‚๏ฟฝ๏ฟฝ) = 900 = ๐‘š(๐ต๐‘‚๏ฟฝ๏ฟฝโ€ฒ) < 900โŸน ๐ด๐‘‚๏ฟฝ๏ฟฝ acute.

We assume that [๐‘‚๐ด and [๐‘‚๐ต are in different half-planes in relation to ๐›ผ โŸน ๐ด and ๐ต are

in different half-planes in relation to ๐‘‚๐ตโ€ฒ in plane ๐›ฝ โŸน |๐‘‚๐ตโ€™ โŠ‚ int. ๐ต๐‘‚๏ฟฝ๏ฟฝ โŸน ๐‘š(๐ด๐‘‚๏ฟฝ๏ฟฝ) =

900 +๐‘š(๐ต๐‘‚๐ตโ€™) > 900โŸน ๐ด๐‘‚๐ต obtuse.

Solution to Problem 192.

We know the locus of the points in space equally distant from the peaks of โˆ†๐ต๐ถ๐ท

is the perpendicular line ๐‘‘ to the pl. โˆ† in the center of the circumscribed circle of

this โˆ†, marked with ๐‘‚. We draw the mediator plane of side |๐ด๐ถ|, which intersects

this โŠฅ ๐‘‘ at point ๐‘‚. Then, point ๐‘‚ is equally distant from all the peaks of the

tetrahedron ||๐‘‚๐ด|| = ||๐‘‚๐ต|| = ||๐‘‚๐ถ|| = ||๐‘‚๐ท||. We connect ๐‘‚ with midpoint ๐ธ of side

|๐ด๐ต|. From |๐‘‚๐ด| โ‰ก |๐‘‚๐ต| โŸน โˆ†๐‘‚๐ด๐ต isosceles โŸน๐‘‚๐ถ โŠฅ ๐ด๐ต (1).

Page 169: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

168

We project ๐‘‚ onto plane (๐ด๐ต๐ท) in point ๐‘‚2.

As |๐‘‚๐ด| โ‰ก |๐‘‚๐ต| โ‰ก |๐‘‚๐ท||๐‘‚)๐‘‚2 common side

} โŸน โˆ†๐‘‚๐ด๐‘‚2 = โˆ†๐‘‚๐ต๐‘‚2 = โˆ†๐‘‚๐ท๐‘‚2

โŸน |๐‘‚2๐ด| โ‰ก |๐ต๐‘‚2| โ‰ก |๐ท๐‘‚2| โŸน

โŸน๐‘‚2 is the center of the circumscribed circle of โˆ†๐ด๐ต๐ท. We show in the same

way that ๐‘‚ is also projected on the other faces onto the centers of the

circumscribed circles, thus through ๐‘‚ pass all the perpendicular lines to the faces of

the tetrahedron. These lines are drawn through the centers of the circumscribed

circles. So b. is proved.

From |๐‘‚2๐ด| โ‰ก |๐‘‚๐ต2| โŸน โˆ†๐‘‚2๐ด๐ต isosceles ๐‘‚2๐ธ โŠฅ ๐ด๐ต (2)

From (1) and (2) โŸน ๐ด๐ต โŠฅ (๐ธ๐‘‚2๐‘‚)|๐ด๐ธ| โ‰ก |๐ธ๐ต|

} โŸน

โŸน (๐ธ๐‘‚2๐‘‚) is a mediator plane of side |๐ด๐ต| and passes through ๐‘‚ and the

intersection of the 3 mediator planes of sides |๐ต๐ถ|, |๐ถ๐ท|, |๐ต๐ท| belongs to line ๐‘‘, thus

O is the common point for the 6 mediator planes of the edges of a tetrahedron.

Solution to Problem 193.

Let ๐‘€ โˆˆ ๐‘‘ and ๐›ฟ||๐‘‘โ€ฒ, ๐‘€ โˆˆ ๐›ฟ. Let = (๐‘‘, ๐›ฟ) โŸน ๐‘‘โ€ฒ||๐›ผ.

Let

= {๐ด} otherwise ๐‘‘ and ๐‘‘โ€ฒ would be parallel, thus coplanar. Let ๐›ฝ be the projective

plane of line

In plane ๐›ฝ we construct a perpendicular to ๐‘‘โ€ฒโ€ฒ in point ๐ด and

Page 170: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

169

Solution to Problem 194.

We draw

We can obtain the equality only when ๐‘€ = ๐ด and ๐‘€โ€ฒ = ๐ดโ€ฒ.

Solution to Problem 195.

Let ๐‘€ โˆˆ ๐‘‘, ๐‘€โ€ฒ โˆˆ ๐‘‘โ€ฒ such that |๐ด๐‘€| โ‰ก |๐ดโ€ฒ๐‘€โ€ฒ|. Let ๐‘‘โ€ฒโ€ฒ = pr๐›ผ๐‘‘โ€ฒ and ๐‘€โ€ฒ๐‘€โ€ฒโ€ฒ โŠฅ ๐‘‘โ€ฒโ€ฒ โŸน

๐‘€โ€ฒ๐‘€โ€ฒโ€ฒ โŠฅ ๐›ผ โŸน ๐‘€โ€ฒ๐‘€โ€ฒโ€ฒ โŠฅ ๐‘€โ€ฒโ€ฒ๐‘€.

โŸน โˆ†๐ด๐‘€๐‘€โ€ฒ isosceles.

Let ๐‘ƒ be the midpoint of |๐‘€๐‘€โ€ฒ| and ๐‘ƒโ€ฒ = pr๐›ผ๐‘ƒ โŸน ๐‘ƒ๐‘ƒโ€ฒ โˆฅ ๐‘€โ€ฒ๐‘€โ€ฒโ€ฒ โŸน ๐‘ƒโ€ฒ is the midpoint

of ๐‘€๐‘€โ€ฒโ€ฒ, โˆ†๐ด๐‘€๐‘€โ€ฒโ€ฒ isosceles โŸน [๐ด๐‘ƒโ€ฒ the bisector of ๐‘€โ€ฒ๐ด๏ฟฝ๏ฟฝ. (๐‘ƒ๐‘ƒโ€ฒ) is midline in

โˆ†๐‘€โ€ฒ๐‘€สบ๐‘€ โŸน โ€–๐‘ƒ๐‘ƒโ€ฒโ€– =1

2โ€–๐‘€โ€ฒ๐‘€โ€ฒโ€ฒ =

1

2โ€–๐ดโ€ฒ๐ดโ€– = constant.

Thus, the point is at a constant distance from line ๐ด๐‘ƒโ€ฒ, thus on a parallel line to

this line, located in the โŠฅ plane ๐›ผ, which passes through ๐ด๐‘ƒโ€ฒ.

When ๐‘€ = ๐ด and ๐‘€โ€ฒ = ๐ดโ€ฒ โŸน ||๐ด๐‘€|| = ||๐‘โ€ฒ๐ดโ€ฒ = 0 โŸน ๐‘ƒ = ๐‘…, where ๐‘… is the midpoint

of segment |๐ด๐ดโ€ฒ|. So the locus passes through ๐‘… and because

โŸน ๐‘…๐‘ƒ is contained in the mediator plane of segment |๐ด๐ดโ€ฒ|.

So ๐‘…๐‘ƒ is the intersection of the mediator plane of segment |๐ด๐ดโ€ฒ| with the โŠฅ plane

to ๐›ผ, passing through one of the bisectors of the angles determined by ๐‘‘ and ๐‘‘โ€ฒ,

we obtain one more line contained by the mediator plane of [๐ด๐ดโ€ฒ], the parallel line

with the other bisector of the angles determined by ๐‘‘ and ๐‘‘โ€ฒโ€ฒ.

So the locus will be formed by two perpendicular lines.

Page 171: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

170

Vice-versa, let ๐‘„ โˆˆ ๐‘…๐‘ƒ a (โˆ€) point on this line and ๐‘„โ€™ = pr๐›ผ๐‘„ โŸน ๐‘„โ€ฒ โˆˆ |๐ด๐‘ƒโ€ฒ bisector.

We draw ๐‘๐‘โ€ฒโ€ฒ โŠฅ ๐ด๐‘„โ€ฒ and because ๐ด๐‘„โ€ฒ is both bisector and height โŸน โˆ†๐ด๐‘๐‘โ€ฒโ€ฒ

isosceles โŸน |๐ด๐‘„โ€ฒ| median โŸน |๐‘๐‘„โ€ฒ| โ‰ก |๐‘„โ€ฒ๐‘โ€ฒโ€ฒ|.

We draw

As

โŸน |๐‘„โ€ฒ๐‘„| midline in โˆ†๐‘๐‘โ€ฒ๐‘โ€ฒโ€ฒโŸน๐‘„,๐‘โ€ฒ, ๐‘ collinear and |๐‘„๐‘โ€ฒ| โ‰ก |๐‘„๐‘|.

Solution to Problem 196.

where ฮฑ = (ABC).

VD common side

coplanar

Page 172: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

171

Solution to Problem 197.

Let

โŸน๐‘‚ is the center of the circumscribed circle and as โˆ†๐ด๐ต๐ถ is equilateral โŸน๐‘‚ is the

centroid โŸน

Solution to Problem 198.

In โˆ†๐ด๐ธ๐ต, right in ๐ด:

||VO|| common

Page 173: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

172

Solution to Problem 199.

๐ถ๐ธ โŠฅ ๐ต๐ด๐ท๐ธ โŠฅ ๐ด๐ต

} โŸน โˆขpl. (๐ด๐ต๐ถ) and ๐ด๐ต๐ท are ๐‘š(๐ท๐ธ๏ฟฝ๏ฟฝ).

๐ด๐ต๐ถ equilateral โŸน โ€–๐ถ๐ธโ€– =๐‘Žโˆš3

2 .

Solution to Problem 200.

We consider the problem solved and we take on plane ๐›ผ, โˆ†๐ท๐ธ๐น, then points ๐‘‚

and ๐‘‚โ€ฒ which are not located on ๐›ผ.

We also construct lines |๐ท๐‘‚, |๐น๐‘‚, |๐ธ๐‘‚ respectively |๐ท๐‘‚โ€ฒ, |๐น๐‘‚โ€ฒ, |๐ธ๐‘‚โ€ฒ. On these rays we

take โˆ†๐ด๐ต๐ถ and โˆ†๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ. Obviously, the way we have constructed the lines ๐ด๐ท, ๐ต๐ธ, ๐ถ๐น

shows that they intersect at ๐‘‚. We extend lines ๐ต๐ด, ๐ต๐ถ, ๐ถ๐ด until they intersect plane

Page 174: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

173

๐›ผ at points ๐ต, ๐ถ respectively ๐ด. Then, we extend lines ๐ถโ€ฒ๐ดโ€ฒ, ๐ถโ€ฒ๐ตโ€ฒ, ๐ดโ€ฒ๐ตโ€ฒ until they

intersect plane ๐›ผ at points ๐ด2, ๐ถ2 respectively ๐ต2.

Obviously, points ๐ด1, ๐ต1, ๐ถ1 are collinear (because โˆˆ ๐›ผ โˆฉ (๐ด๐ต๐ถ)) and ๐ด2, ๐ต2, ๐ถ2 are as

well collinear (because โˆˆ ๐›ผ โˆฉ (๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ)).

On the other side, points ๐ท, ๐น, ๐ด1, ๐ด2 are collinear because:

thus collinear (1)

โŸน๐ท,๐น, ๐ด2 collinear (2)

From (1) and (2) โŸน๐ท,๐น, ๐ด1, ๐ด2 collinear. Similarly ๐ถ, ๐ธ, ๐น, ๐ถ2 collinear and

๐ต1, ๐ธ, ๐ท, ๐ท2 collinear.

Consequently, ๐ท๐ธ๐น is at the intersection of lines ๐ด1๐ด2, ๐ถ1๐ถ2 , ๐ต1๐ต2 on plane ๐›ผ,

thus uniquely determined.

Page 175: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

174

Review Problems

201. Find the position of the third peak of the equilateral triangle, the affixes

of two peaks being ๐‘ง1 = 1, ๐‘ง2 = 2 + ๐‘–.

Solution to Problem 201

202. Let ๐‘ง1, ๐‘ง2, ๐‘ง3 be three complex numbers, not equal to 0, + two by 2, and

of equal moduli. Prove that if ๐‘ง1 + ๐‘ง2๐‘ง3, ๐‘ง2 + ๐‘ง3๐‘ง1, ๐‘ง2 + ๐‘ง 1๐‘ง3 โˆˆ ๐‘… โ‡’ ๐‘ง1๐‘ง2๐‘ง3 = 1.

Solution to Problem 202

203. We mark by ๐บ the set of ๐‘› roots of the unit, ๐บ = {ํœ€0, ํœ€1, โ€ฆ , ํœ€๐‘›โˆ’1}. Prove

that:

a. ํœ€๐‘– โˆ™ ํœ€๐‘— โˆˆ ๐บ, (โˆ€) ๐‘–, ๐‘— โˆˆ {0, 1, โ€ฆ , ๐‘› โˆ’ 1};

b. ํœ€๐‘–โˆ’1 โˆˆ ๐บ, (โˆ€ ) ๐‘– โˆˆ {0, 1, โ€ฆ , ๐‘› โˆ’ 1}.

Solution to Problem 203

204. Let the equation ๐‘Ž๐‘งยฒ + ๐‘๐‘งยฒ + ๐‘ = 0, ๐‘Ž, ๐‘, ๐‘ โˆˆ ๐ถ and arg๐‘Ž + arg๐‘ = 2arg๐‘, and

|๐‘Ž| + |๐‘| = |๐‘|. Show that the given equation has at list one root of unity.

Solution to Problem 204

205. Let ๐‘ง1, ๐‘ง2, ๐‘ง3 be three complex numbers, not equal to 0, such that |๐‘ง1| =

|๐‘ง2| = |๐‘ง3|.

a. Prove that (โˆƒ) complex numbers ๐›ผ and ๐›ฝ such that ๐‘ง2 = ๐›ผ๐‘ง1, ๐‘ง3 = ๐›ฝ๐‘ง2

and |๐›ผ| = |๐›ฝ| = 1;

b. Solve the equation ๐›ผยฒ + ๐›ฝยฒโ€“๐›ผ โˆ™ ๐›ฝโ€“ ๐›ผโ€“ ๐›ฝ + 1 = 0 in relation to one of the

unknowns.

c. Possibly using the results from ๐‘Ž. and ๐‘., prove that if ๐‘ง12 + ๐‘ง2

2 + ๐‘ง32 =

๐‘ง1๐‘ง2 + ๐‘ง2๐‘ง3 + ๐‘ง1๐‘ง3 , then we have ๐‘ง1 = ๐‘ง2 = ๐‘ง3 or the numbers ๐‘ง1, ๐‘ง2, ๐‘ง3

are affixes of the peaks of an equilateral โˆ†.

Solution to Problem 205

Page 176: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

175

206. Draw a plane through two given lines, such that their line of intersection

to be contained in a given plane.

Solution to Problem 206

207. Let ๐‘Ž, ๐‘, ๐‘ be three lines with a common point and ๐‘ƒ a point not located

on any of them. Show that planes (๐‘ƒ๐‘Ž), (๐‘ƒ๐‘), (๐‘ƒ๐‘) contain a common line.

Solution to Problem 207

208. Let ๐ด, ๐ต, ๐ถ, ๐ท be points and ๐›ผ a plane separating points ๐ด and ๐ต, ๐ด and ๐ถ,

๐ถ and ๐ท. Show that ๐›ผ โˆฉ |๐ต๐ท| โ‰  โˆ… and ๐›ผ โˆฉ |๐ด๐ท| = โˆ….

Solution to Problem 208

209. On edges ๐‘Ž, ๐‘, ๐‘ of a trihedral angle with its peak ๐‘‚, take points ๐ด, ๐ต, ๐ถ; let

then ๐ท โˆˆ |๐ต๐ถ| and ๐ธ โˆˆ |๐ด๐ท|. Show that |๐‘‚๐ธ โŠ‚ ๐‘–๐‘›๐‘ก. โˆ ๐‘Ž๐‘๐‘.

Solution to Problem 209

210. Show that the following sets are convex: the interior of a trihedral angle,

a tetrahedron without an edge (without a face).

Solution to Problem 210

211. Let ๐ด, ๐ต, ๐ถ, ๐ท be four non-coplanar points and ๐ธ, ๐น, ๐บ, ๐ป the midpoints of

segments [๐ด๐ต], [๐ต๐ถ], [๐ถ๐ท], [๐ท๐ด]. Show that ๐ธ๐น || (๐ด๐ถ๐ท) and points ๐ธ, ๐น, ๐บ, ๐ป

are coplanar.

Solution to Problem 211

212. On lines ๐‘‘, ๐‘‘โ€ฒ consider distinct points ๐ด, ๐ต, ๐ถ; ๐ดโ€ฒ, ๐ตโ€ฒ, ๐ถโ€ฒ respectively. Show

that we can draw through lines ๐ด๐ดโ€ฒ, ๐ต๐ตโ€ฒ, ๐ถ๐ถโ€ฒ three parallel planes if and only

if โ€–๐ด๐ตโ€–

โ€–๐ดโ€ฒ๐ตโ€ฒโ€–=

โ€–๐ต๐ถโ€–

โ€–๐ตโ€ฒ๐ถโ€ฒโ€– .

Solution to Problem 212

Page 177: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

176

213. Let ๐‘€,๐‘€โ€ฒ be each mobile points on the non-coplanar lines ๐‘‘, ๐‘‘โ€ฒ. Find the

locus of points ๐‘ƒ that divide segment |๐‘€๐‘€โ€ฒ| in a given ratio.

Solution to Problem 213

214. Construct a line that meets three given lines, respectively in ๐‘€,๐‘, ๐‘ƒ and

for which โ€–๐‘€๐‘โ€–

โ€–๐‘๐‘ƒโ€– to be given ratio.

Solution to Problem 214

215. Find the locus of the peak ๐‘ƒ of the triangle ๐‘€,๐‘, ๐‘ƒ if its sides remain

parallel to three fixed lines, the peak ๐‘€ describes a given line ๐‘‘, and the

peak ๐‘ โˆˆ a given plane ๐›ผ.

Solution to Problem 215

216. On the edges [๐‘‚๐ด, [๐‘‚๐ต, [๐‘‚๐ถ of a trihedral angle we consider points ๐‘€,๐‘, ๐‘ƒ

such that โ€–๐‘‚๐‘€โ€– = ๐œ†โ€–๐‘‚๐ดโ€–, โ€–๐‘‚๐‘โ€– = ๐œ†โ€–๐‘‚๐ตโ€–, โ€–๐‘‚๐‘ƒโ€– = ๐œ†โ€–๐‘‚๐ถโ€–, where ๐œ† is a

positive variable number. Show the locus of the centroid of triangle ๐‘€๐‘๐‘ƒ.

Solution to Problem 216

217. ๐ด๐ต๐ถ๐ท and ๐ด1๐ต1๐ถ1๐ท1 are two parallelograms in space. We take the points

๐ด2, ๐ต2, ๐ถ2, ๐ท2 which divide segments [๐ด๐ด1], [๐ต๐ต1], [๐ถ๐ถ1], [๐ท๐ท1] in the same

ratio. Show that ๐ด2๐ต2๐ถ2๐ท2 is a parallelogram.

Solution to Problem 217

218. The lines ๐‘‘, ๐‘‘โ€ฒ are given, which cut a given plane ๐›ผ in ๐ด and ๐ดโ€ฒ. Construct

the points ๐‘€,๐‘€โ€ฒ on ๐‘‘, ๐‘‘โ€ฒ such that ๐‘€๐‘€โ€ฒ โˆฅ ๐›ผ and segment [๐‘€๐‘€โ€ฒ] to have a

given length ๐‘™. Discuss.

Solution to Problem 218

219. Construct a line which passes through a given point ๐ด and that is

perpendicular to two given lines ๐‘‘ and ๐‘‘โ€ฒ.

Solution to Problem 219

Page 178: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

177

220. Show that there exist three lines with a common point, perpendicular two

by two.

Solution to Problem 220

221. Let ๐‘Ž ๐‘, ๐‘, ๐‘‘ four lines with a common point, ๐‘‘ is perpendicular to ๐‘Ž ๐‘, ๐‘.

Show that lines ๐‘Ž, ๐‘, ๐‘ are coplanar.

Solution to Problem 221

222. Show that there do not exist four lines with a common point that are

perpendicular two by two.

Solution to Problem 222

223. Let ๐‘‘ โŠฅ ๐›ผ and ๐‘‘โ€ฒ โˆฅ ๐‘‘. Show that ๐‘‘โ€ฒ โŠฅ ๐›ผ.

Solution to Problem 223

224. Show that two distinct perpendicular lines on a plane are parallel.

Solution to Problem 224

225. Let ๐‘‘ โŠฅ ๐›ผ and ๐‘‘โ€ฒ[โˆฅ ๐›ผ. Show that ๐‘‘โ€ฒ โŠฅ ๐‘‘.

Solution to Problem 225

226. Show that two perpendicular planes on the same line are parallel with

each other.

Solution to Problem 226

227. Show that the locus of the points equally distant from two distinct points

๐ด and ๐ต is a perpendicular plane to ๐ด๐ต, passing through midpoint ๐‘‚ of the

segment [๐ด๐ต] (called mediator plane of [๐ด๐ต]).

Solution to Problem 227

Page 179: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

178

228. Find the locus of the points in space equally distant from the peaks of a

triangle ๐ด๐ต๐ถ.

Solution to Problem 228

229. The plane ๐›ผ and the points ๐ด โˆˆ ๐›ผ, ๐ต โˆ‰ ๐›ผ are given. A variable line ๐‘‘ passes

through ๐ด and it is contained in plane ๐›ผ. Find the locus of the โŠฅ feet from

๐ต to ๐‘‘.

Solution to Problem 229

230. A line ๐›ผ, and a point ๐ด โˆ‰ ๐›ผ are given. Find the locus of the feet of the

perpendicular lines from ๐ด to planes passing through ๐›ผ.

Solution to Problem 230

231. Consider a plane ๐›ผ that passes through the midpoint of segment [๐ด๐ต].

Show that points ๐ด and ๐ต are equally distant from plane ๐›ผ.

Solution to Problem 231

232. Through a given point, draw a line that intersects a given line and is โŠฅ to

another given line.

Solution to Problem 232

233. Let ๐›ผ and ๐›ฝ be two distinct planes and the line ๐‘‘ their intersection. Let ๐‘€

be a point that is not located on ๐›ผ โˆช ๐›ฝ. We draw the lines ๐‘€๐‘€1 and ๐‘€๐‘€2 โŠฅ

on ๐›ผ and ๐›ฝ. Show that the line ๐‘‘ is โŠฅ to (๐‘€๐‘€1๐‘€๐‘€2).

Solution to Problem 233

234. A plane ๐›ผ and a point ๐ด, ๐ด โˆ‰ ๐›ผ are given. Find the locus of points ๐‘€ โˆˆ ๐›ผ

such that segment |๐ด๐‘€| has a given length.

Solution to Problem 234

Page 180: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

179

235. Let ๐‘‚, ๐ด, ๐ต, ๐ถ be four points such that ๐‘‚๐ด โŠฅ ๐‘‚๐ต โŠฅ ๐‘‚๐ถ โŠฅ ๐ท๐ด and we write

๐‘Ž = โ€–๐‘‚๐ดโ€–, ๐‘ = โ€–๐‘‚๐ตโ€–, ๐‘ = โ€–๐‘‚๐ถโ€–.

a. Find the length of the sides of โˆ†๐ด๐ต๐ถ in relation to ๐‘Ž, ๐‘, ๐‘;

b. Find ๐œŽ[๐ด๐ต๐ถ] and demonstrate the relation ๐œŽ[๐ด๐ต๐ถ]2 = ๐œŽ[๐ท๐ด๐ต]2 +

๐œŽ[๐‘‚๐ต๐ถ]2 + ๐œŽ[๐‘‚๐ถ๐ด]2;

c. Show that the orthogonal projection of point ๐‘‚ on plane (๐ด๐ต๐ถ) is the

orthocenter ๐ป of โˆ†๐ด๐ต๐ถ;

d. Find the distance โ€–๐‘‚๐ปโ€–.

Solution to Problem 235

236. Consider non-coplanar points ๐ด, ๐ต, ๐ถ, ๐ท and lines ๐ด๐ดโ€ฒ, ๐ต๐ตโ€ฒ, ๐ถ๐ถโ€ฒ, ๐ท๐ทโ€ฒ

perpendicular to (๐ต๐ถ๐ท), (๐ด๐ถ๐ท), (๐ด๐ต๐ท). Show that if lines ๐ด๐ดโ€ฒ and ๐ต๐ตโ€ฒ are

concurrent, then lines ๐ถ๐ถโ€ฒ, ๐ท๐ทโ€ฒ are coplanar.

Solution to Problem 236

237. Let ๐ด, ๐ต, ๐ถ, ๐ท four non-coplanar points. Show that ๐ด๐ต โŠฅ ๐ถ๐ท and ๐ด๐ถ โŠฅ ๐ต๐ท

โŸน ๐ด๐ท โŠฅ ๐ต๐ถ.

Solution to Problem 237

238. On the edges of a triangle with its peak ๐‘‚, take the points ๐ด, ๐ต, ๐ถ such

that |๐‘‚๐ด| โ‰ก |๐‘‚๐ต| โ‰ก |๐‘‚๐ถ|. Show that the โŠฅ foot in ๐‘‚ to the plane (๐ด๐ต๐ถ)

coincides with the point of intersection of the bisectors โˆ†๐ด๐ต๐ถ.

Solution to Problem 238

239. Let a peak ๐ด of the isosceles triangle ๐ด๐ต๐ถ (|๐ด๐ต| โ‰ก |๐ด๐ถ|) be the

orthogonal projection onto ๐ดโ€ฒ on a plane ๐›ผ which passes through ๐ต๐ถ. Show

that ๐ต๐ดโ€ฒ๏ฟฝ๏ฟฝ > ๐ต๐ด๏ฟฝ๏ฟฝ.

Solution to Problem 239

240. With the notes of Theorem 1, let [๐ด๐ตโ€ฒ be the opposite ray to [๐ด๐ตโ€ฒโ€ฒ. Show

that for any point ๐‘€ โˆˆ ๐›ผโ€“ [๐ด๐ตโ€ฒโ€ฒ we have ๐ตโ€ฒโ€ฒ๐ด๏ฟฝ๏ฟฝ > ๐‘€๐ด๏ฟฝ๏ฟฝ.

Solution to Problem 240

Page 181: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

180

241. Let ๐›ผ be a plane, ๐ด โˆˆ ๐›ผ and ๐ต and ๐ถ two points on the same side of ๐›ผ

such that ๐ด๐ถ โŠฅ ๐›ผ. Show that ๐ถ๐ด๏ฟฝ๏ฟฝ is the complement of the angle formed

by [๐ด๐ต with ๐›ผ.

Solution to Problem 241

242. Let ๐›ผโ€ฒ๐›ฝโ€ฒ be a trihedral angle with edge ๐‘š and ๐ด โˆˆ ๐‘š. Show that of all the

rays with origin at ๐ด and contained in half-plane ๐›ฝโ€ฒ, the one that forms

with plane ๐›ผ the biggest possible angle is that โŠฅ ๐‘ โˆˆ ๐‘š (its support is

called the line with the largest slope of ๐›ฝ in relation to ๐›ผ).

Solution to Problem 242

243. Let ๐›ผ be a plane, ๐œŽ a closed half-plane, bordered by ๐›ผ, ๐›ผโ€ฒ a half-plane

contained in ๐›ผ and ๐‘Ž a real number between 00 and 1800. Show that there

is only one half-space ๐›ฝโ€ฒ that has common border with ๐›ผโ€ฒ such that ๐›ฝโ€ฒ โŠ‚ ๐œŽ

and ๐‘š(๐›ผโ€ฒ๐›ฝโ€ฒ) = ๐‘Ž.

Solution to Problem 243

244. Let (๐›ผโ€ฒ๐›ฝโ€ฒ) be a proper dihedral angle. Construct a half-plane ๐›พโ€ฒ such that

๐‘š(๐›ผโ€ฒ๐›ฝโ€ฒ) = ๐‘š(๐›พโ€ฒ๐›ฝโ€ฒ). Show that the problem has two solutions, one of which

is located in the int. ๐›ผโ€ฒ๐›ฝโ€ฒ (called bisector half-plane of ๐›ผโ€ฒ๐›ฝโ€ฒ).

Solution to Problem 244

245. Show that the locus of the points equally distant from two secant planes

๐›ผ, ๐›ฝ is formed by two โŠฅ planes, namely by the union of the bisector planes

of the dihedral angles ๐›ผ and ๐›ฝ.

Solution to Problem 245

246. If ๐›ผ and ๐›ฝ are two planes, ๐‘„ โˆˆ ๐›ฝ and ๐‘‘ โŠฅ through ๐‘„ on ๐›ผ. Show that ๐‘‘ โŠ‚

๐›ฝ.

Solution to Problem 246

Page 182: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

181

247. Consider a line ๐‘‘ โŠ‚ ๐›ผ. Show that the union of the โŠฅ lines to ๐›ผ, which

intersect line ๐‘‘, is a plane โŠฅ ๐›ผ.

Solution to Problem 247

248. Find the locus of the points equally distant from two concurrent lines.

Solution to Problem 248

249. Show that a plane ๐›ผ โŠฅ to two secant planes is โŠฅ to their intersection.

Solution to Problem 249

250. Let ๐ด be a point that is not on plane ๐›ผ. Find the intersection of all the

planes that contain point ๐ด and are โŠฅ to plane ๐›ผ.

Solution to Problem 250

251. From a given point draw a โŠฅ plane to two given planes.

Solution to Problem 251

252. Intersect a dihedral angle with a plane as the angle of sections is right.

Solution to Problem 252

253. Show that a line ๐‘‘ and a plane ๐›ผ, which are perpendicular to another

plane, are parallel or line ๐‘‘ is contained in ๐›ผ.

Solution to Problem 253

254. If three planes are โŠฅ to a plane, they intersect two by two after lines

๐‘Ž, ๐‘, ๐‘. Show that ๐‘Ž โˆฅ ๐‘ โˆฅ ๐‘.

Solution to Problem 254

255. From a point ๐ด we draw perpendicular lines ๐ด๐ต and ๐ด๐ถ to the planes of

the faces of a dihedral angle ๐›ผโ€ฒ๐›ฝโ€ฒ. Show that ๐‘š(๐ต๐ด๏ฟฝ๏ฟฝ) = ๐‘š(๐›ผโ€ฒ๐›ฝโ€ฒ) or

๐‘š(๐ต๐ด๏ฟฝ๏ฟฝ) = 1800 โˆ’๐‘š(๐›ผโ€ฒ๐›ฝโ€ฒ).

Solution to Problem 255

Page 183: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

182

Solutions

Solution to Problem 201.

๐‘€1 โˆ’ ๐‘ง1 = 1

๐‘€2 โˆ’ ๐‘ง1 = 2 + ๐‘–

๐‘€1 โˆ’ ๐‘ง1 = ๐‘ฅ + ๐‘ฆ๐‘–

โˆ†๐‘€1๐‘€2๐‘€3 equilateral โŸน โ€–๐‘€1๐‘€2โ€– = โ€–๐‘€1๐‘€3โ€– = โ€–๐‘€2๐‘€3โ€– โ‡’ |๐‘ง2 โˆ’ ๐‘ง1| = |๐‘ง3 โˆ’ ๐‘ง2| =

|๐‘ง1 โˆ’ ๐‘ง3|

โ‡’ โˆš2 = โˆš(๐‘ฅ โˆ’ 2)2 + (๐‘ฆ โˆ’ 1)2 โ‡’ {(๐‘ฅ โˆ’ 2)2 + (๐‘ฆ โˆ’ 1)2 = 2

(1 โˆ’ ๐‘ฅ)2 + ๐‘ฆ2 = 2โ‡’ {

๐‘ฅ + ๐‘ฆ = 2

๐‘ฅ2 + ๐‘ฆ2 โˆ’ 2๐‘ฅ = 1

โ‡’ ๐‘ฆ = 2 โˆ’ ๐‘ฅ

๐‘ฅ2 + 4 + ๐‘ฅ2 โˆ’ 4๐‘ฅ โˆ’ 2๐‘ฅ = 1 โ‡’ ๐‘ฅ1,2 =3 ยฑ โˆš3

2โ‡’

[ ๐‘ฆ1 =

1 โˆ’ โˆš3

2

๐‘ฆ21 + โˆš3

2

Thus: ๐‘€3 (3+โˆš3

2,1โˆ’โˆš3

2) or ๐‘€3 (

3โˆ’โˆš3

2,1+โˆš3

2).

There are two solutions!

Solution to Problem 202.

๐‘ง1 = ๐‘Ÿ(cos ๐‘ก1 + ๐‘– sin ๐‘ก1)

๐‘ง2 = ๐‘Ÿ(cos ๐‘ก2 + ๐‘– sin ๐‘ก2)

๐‘ง3 = ๐‘Ÿ(cos ๐‘ก3 + ๐‘– sin ๐‘ก3)

๐‘ง1 โ‰  ๐‘ง2 โ‰  ๐‘ง3 โ‡’ ๐‘ก1 โ‰  ๐‘ก2 โ‰  ๐‘ก3

{

๐‘ง1 + ๐‘ง2๐‘ง3 โˆˆ โ„ โ‡’ sin ๐‘ก1 + ๐‘Ÿ sin(๐‘ก2 + ๐‘ก3) = 0

๐‘ง2 + ๐‘ง3๐‘ง1 โˆˆ โ„ โ‡’ sin ๐‘ก2 + ๐‘Ÿ sin(๐‘ก1 + ๐‘ก3) = 0

๐‘ง3 + ๐‘ง1๐‘ง2 โˆˆ โ„ โ‡’ sin ๐‘ก3 + ๐‘Ÿ sin(๐‘ก1 + ๐‘ก2) = 0

โŸน

{

sin ๐‘ก1(1 โˆ’ ๐‘Ÿ cos ๐‘ก) + ๐‘Ÿ sin ๐‘ก โˆ™ cos ๐‘ก1 = 0

sin ๐‘ก2(1 โˆ’ ๐‘Ÿ cos ๐‘ก) + ๐‘Ÿ sin ๐‘ก โˆ™ cos ๐‘ก2 = 0

sin ๐‘ก3(1 โˆ’ ๐‘Ÿ cos ๐‘ก) + ๐‘Ÿ sin ๐‘ก โˆ™ cos ๐‘ก3 = 0

๐‘ก1 โ‰  ๐‘ก2 โ‰  ๐‘ก3

These equalities are simultaneously true only if 1 โˆ’ ๐‘Ÿ โˆ™ cos ๐‘ก = 0 and ๐‘Ÿ โˆ™

sin ๐‘ก = 0, as ๐‘Ÿ โ‰  0 โ‡’ sin ๐‘ก = 0 โ‡’ ๐‘ก = 0 โ‡’ cos ๐‘ก = 1 โ‡’ 1 โˆ’ ๐‘Ÿ = 0 โ‡’ ๐‘Ÿ = 1, so

๐‘ง1๐‘ง2๐‘ง3 = 1 โˆ™ (cos 0 + sin 0) = 1.

Page 184: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

183

Solution to Problem 203.

a. ํœ€๐‘˜ =2๐‘˜๐œ‹

๐‘›+ ๐‘– sin

2๐‘˜๐œ‹

๐‘› , ๐‘˜ โˆˆ {0, 1, โ€ฆ , ๐‘› โˆ’ 1}.

So ํœ€๐‘– = cos

2๐‘–๐œ‹

๐‘›+ ๐‘– sin

2๐‘–๐œ‹

๐‘›

ํœ€๐‘— = cos2๐‘—๐œ‹

๐‘›+ ๐‘– sin

2๐‘—๐œ‹

๐‘›

} โŸน ํœ€๐‘–ํœ€๐‘— = cos2๐œ‹(๐‘–+๐‘—)

๐‘›+ ๐‘– sin

2๐œ‹(๐‘–+๐‘—)

๐‘›, ๐‘–, ๐‘— โˆˆ {0, 1, โ€ฆ , ๐‘› โˆ’ 1}.

1) ๐‘– + ๐‘— < ๐‘› โˆ’ 1 โŸน ๐‘– + ๐‘— = ๐‘˜ โˆˆ {0, 1, โ€ฆ , ๐‘› โˆ’ 1} โŸน ํœ€๐‘–ํœ€๐‘— = ํœ€๐‘˜ โˆˆ ๐บ;

2) ๐‘– + ๐‘— = ๐‘› โŸน ํœ€๐‘–ํœ€๐‘— = cos 2๐œ‹ + ๐‘– sin 2๐œ‹ = 1 = ํœ€๐‘œ โˆˆ ๐บ;

3) ๐‘– + ๐‘— > ๐‘› โŸน ๐‘– + ๐‘— = ๐‘› โˆ™ ๐‘š + ๐‘Ÿ, 0 โ‰ค ๐‘Ÿ < ๐‘›, ํœ€๐‘–ํœ€๐‘— = cos2๐œ‹(๐‘›โˆ™๐‘š+๐‘Ÿ)

๐‘›+ ๐‘– sin

2๐œ‹(๐‘›โˆ™๐‘š+๐‘Ÿ)

๐‘›=

cos (2๐œ‹๐‘š +2๐œ‹๐‘Ÿ

๐‘›) + ๐‘– sin (2๐œ‹๐‘š+

2๐œ‹๐‘Ÿ

๐‘›) = cos

2๐œ‹๐‘Ÿ

๐‘›+ ๐‘– sin

2๐œ‹๐‘Ÿ

๐‘›= ํœ€๐‘Ÿ โˆˆ ๐บ.

b. ํœ€๐‘– = cos2๐œ‹๐‘–

๐‘›+ ๐‘– sin

2๐œ‹๐‘–

๐‘›

ํœ€๐‘–โˆ’1 =

1

๐œ€๐‘–=

cos0+๐‘– sin0

cos2๐œ‹๐‘–

๐‘›+๐‘– sin

2๐œ‹๐‘–

๐‘›

= cos (โˆ’2๐œ‹๐‘–

๐‘›) + ๐‘– sin (โˆ’

2๐œ‹๐‘–

๐‘›) = cos (2๐œ‹ โˆ’

2๐œ‹๐‘–

๐‘›) +

๐‘– sin (2๐œ‹ โˆ’2๐œ‹๐‘–

๐‘›) = cos

2๐œ‹๐‘›โˆ’2๐œ‹๐‘–

๐‘›+ ๐‘– sin

2๐œ‹๐‘›โˆ’2๐œ‹๐‘–

๐‘›= cos

2๐œ‹(๐‘›โˆ’1)

๐‘›+ ๐‘– sin

2๐œ‹(๐‘›โˆ’1)

๐‘› ,

๐‘– โˆˆ {0, 1,โ€ฆ , ๐‘› โˆ’ 1}.

If ๐‘– = 0 โŸน ๐‘› โˆ’ ๐‘– = ๐‘› โŸน ํœ€0โˆ’1 = ํœ€0 โˆˆ ๐‘”.

If ๐‘– โ‰  0 โŸน ๐‘› โˆ’ ๐‘– โ‰ค ๐‘› โˆ’ 1 โŸน โ„Ž = ๐‘› โˆ’ ๐‘– โˆˆ {0, 1, โ€ฆ , ๐‘› โˆ’ 1}โŸน ๐œ–โˆ’1 = cos2๐œ‹โ„Ž

๐‘›+

๐‘– sin2๐œ‹โ„Ž

๐‘›โˆˆ ๐บ.

Solution to Problem 204.

{

๐‘Ž = ๐‘Ÿ1(cos ๐‘ก1 + ๐‘– sin ๐‘ก1)

๐‘ = ๐‘Ÿ2(cos ๐‘ก2 + ๐‘– sin ๐‘ก2)

๐‘ = ๐‘Ÿ3(cos ๐‘ก3 + ๐‘– sin ๐‘ก3)

arg๐‘Ž + arg๐‘ = 2arg๐‘ โŸน ๐‘ก1 + ๐‘ก3 = 2๐‘ก2

and |๐‘Ž| + |๐‘| = |๐‘| โŸน ๐‘Ÿ1 + ๐‘Ÿ3 = ๐‘Ÿ2

๐‘Ž๐‘ง2 + ๐‘๐‘ง + ๐‘ = 0 โŸน ๐‘ง1,2 =โˆ’๐‘ ยฑ โˆš๐‘2 โˆ’ 4๐‘Ž๐‘

2๐‘Ž

=โˆ’๐‘Ÿ2(cos ๐‘ก2 + ๐‘– sin ๐‘ก2) ยฑ โˆš๐‘Ÿ2

2(cos2๐‘ก2 + ๐‘– sin2๐‘ก2) โˆ’ 4๐‘Ÿ1๐‘Ÿ3(cos(๐‘ก1 + ๐‘ก3) + ๐‘– sin(๐‘ก1 + ๐‘ก3))

2๐‘Ÿ1(cos ๐‘ก1 + ๐‘– sin ๐‘ก1)

=โˆ’๐‘Ÿ2(cos ๐‘ก2 + ๐‘– sin ๐‘ก2) ยฑ โˆš(cos 2๐‘ก2 + ๐‘– sin 2๐‘ก2)(๐‘Ÿ2

2 โˆ’ 4๐‘Ÿ1๐‘Ÿ3)

2๐‘Ÿ1(cos ๐‘ก1 + ๐‘– sin ๐‘ก1)

But ๐‘Ÿ1 + ๐‘Ÿ3 = ๐‘Ÿ2โŸน ๐‘Ÿ22 = ๐‘Ÿ1

2 + ๐‘Ÿ12 + ๐‘Ÿ3

2 + 2๐‘Ÿ1๐‘Ÿ3โŸน ๐‘Ÿ22 โˆ’ 4๐‘Ÿ1๐‘Ÿ3 = ๐‘Ÿ1

2 + ๐‘Ÿ12 + ๐‘Ÿ3

2 + 2๐‘Ÿ1๐‘Ÿ3 โˆ’

4๐‘Ÿ1๐‘Ÿ3 = (๐‘Ÿ1 โˆ’ ๐‘Ÿ3)2.

Page 185: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

184

Therefore:

๐‘ง1,2 =โˆ’๐‘Ÿ2(cos ๐‘ก2 + ๐‘– sin ๐‘ก2) ยฑ (cos ๐‘ก2 + ๐‘– sin ๐‘ก2)(๐‘Ÿ1 โˆ’ ๐‘Ÿ3)

2๐‘Ÿ1(cos ๐‘ก1 + ๐‘– sin ๐‘ก1)

We observe that:

๐‘ง2 =(cos ๐‘ก2+๐‘– sin ๐‘ก2)(โˆ’2๐‘Ÿ1)

2๐‘Ÿ1(cos ๐‘ก1+๐‘– sin ๐‘ก1)= โˆ’[cos(๐‘ก2 โˆ’ ๐‘ก1) + ๐‘– sin(๐‘ก2 โˆ’ ๐‘ก1)] = cos[๐œ‹ + (๐‘ก2 โˆ’ ๐‘ก1)] +

๐‘– sin[๐œ‹ + ๐‘ก2 โˆ’ ๐‘ก1] and ๐‘ก2 = 1.

Solution to Problem 205.

Let

Let

So ๐›ผ is determined.

So ๐›ฝ is determined.

If we work with reduced arguments, then ๐‘ก4 = ๐‘ก2 โˆ’ ๐‘ก1 or ๐‘ก4 = ๐‘ก2 โˆ’ ๐‘ก1 + 2๐œ‹, in the

same way ๐‘ก5.

Page 186: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

185

According to a. (โˆƒ) the complex numbers of modulus 1, ๐›ผ and ๐›ฝ such that ๐‘ง2 = ๐›ผ๐‘ง1

and ๐‘ง3 = ๐›ฝ๐‘ง1.

In the given relation, by substitution we obtain:

๐›ผ = 1 and ๐›ฝ = 1 verify this equality, so in this case ๐‘ง2 = ๐‘ง3 = ๐‘ง1.

According to point b.,

where ๐›ฝ = ๐‘ฅ + ๐‘–๐‘ฆ, when

We construct the system:

The initial solution leads us to ๐‘ง1 = ๐‘ง2 = ๐‘ง3.

and gives

By substituting,

Page 187: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

186

|๐›ผ| = 2 does not comply with the condition |๐›ผ| = 1.

But

so

If

then

and then

If

are on the circle with radius ๐‘Ÿ and the arguments are

they are the peaks of an equilateral triangle.

Solution to Problem 206.

a. We assume that ๐‘‘ โˆฉ ๐›ผ โ‰  โˆ… and ๐‘‘โ€ฒ โˆฉ ๐›ผ = {๐ต}.

Page 188: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

187

Let ๐‘‘ โˆฉ ๐›ผ = {๐ด} and ๐‘‘โ€ฒ โˆฉ ๐›ผ = {๐ต} and the planes determined by pairs of concurrent

lines (๐‘‘, ๐ด๐ต); (๐‘‘โ€ฒ, ๐ด๐ต).

We remark that these are the required planes, because

b. We assume ๐‘‘ โˆฉ ๐›ผ = {๐ด} and ๐‘‘โ€ฒ||๐›ผ.

We draw through ๐ด, in plane ๐›ผ, line ๐‘‘โ€ฒ||๐‘‘ and we consider planes (๐‘‘, ๐‘‘โ€ฒโ€ฒ) and

(๐‘‘โ€ฒ, ๐‘‘โ€ฒโ€ฒ) and we remark that

c. We assume ๐‘‘ โˆฉ ๐›ผ = โˆ… and ๐‘‘โ€ฒ โˆฉ ๐›ผ = โˆ… and ๐‘‘โ€ฒ โˆˆ direction ๐‘‘.

Let ๐ด โˆˆ ๐›ผ and ๐‘‘โ€ฒโ€ฒ||๐‘‘ โŸน ๐‘‘โ€ฒโ€ฒ||๐‘‘โ€ฒ and the planes are (๐‘‘, ๐‘‘โ€ฒโ€ฒ) and (๐‘‘โ€ฒ, ๐‘‘โ€ฒโ€ฒ). The reasoning

is the same as above.

Solution to Problem 207.

Page 189: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

188

Solution to Problem 208.

If ๐›ผ separates points ๐ด and ๐ต, it means they are in different half-spaces and let

๐œŽ = |๐›ผ๐ด and ๐œŽโ€ฒ = |๐›ผ๐ต.

Because ๐›ผ separates ๐ด and ๐ถ โŸน ๐ถ โˆˆ ๐œŽโ€ฒ.

Because ๐›ผ separates ๐ถ and ๐ท โŸน ๐ท โˆˆ ๐œŽ.

From ๐ต โˆˆ ๐œŽโ€ฒ and ๐ท โˆˆ ๐œŽ โŸน ๐›ผ separates points ๐ต and ๐ท

From ๐ด โˆˆ ๐œŽ and ๐ท โˆˆ ๐œŽ โŸน |๐ต๐ท| โˆฉ ๐›ผ = โˆ….

Solution to Problem 209.

Page 190: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

189

From (1), (2), (3)

Solution to Problem 210.

a. int. (|๐‘‰๐ด, |๐‘‰๏ฟฝ๏ฟฝ, |๐‘‰๐ถ) = |(๐‘‰๐ด๐ต), ๐ถ โˆฉ |(๐‘‰๐ต๐ถ), ๐ด โˆฉ |(๐‘‰๐ด๐ถ), ๐ต is thus an intersection of

convex set and thus the interior of a trihedron is a convex set.

b. Tetrahedron [๐‘‰๐ด๐ต๐ถ] without edge [๐ด๐ถ]. We mark with โ„ณ1 = [๐ด๐ต๐ถ]โ€“ [๐ด๐ถ] = [๐ด๐ต, ๐ถ โˆฉ

[๐ต๐ถ, ๐ด โˆฉ |๐ด๐ถ, ๐ต is thus a convex set, being intersection of convex sets.

is a convex set.

In the same way

is a convex set, where

But [๐‘‰๐ด๐ต๐ถ] โ€“ [๐ด๐ถ] =

and thus it is a convex set as intersection of convex sets.

c. Tetrahedron [๐‘‰๐ด๐ต๐ถ] without face [๐ด๐ต๐ถ]

๐‘‰ is thus intersection of convex sets โŸน is a convex set.

Page 191: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

190

Solution to Problem 211.

In plane (๐ต๐ด๐ถ) we have ๐ธ๐น||๐ด๐ถ. In plane (๐ท๐ด๐ถ) we have ๐ด๐ถ โŠ‚ (๐ท๐ด๐ถ) โŸน ๐ธ๐น||(๐ท๐ด๐ถ).

In this plane we also have ๐ป๐บ||๐ด๐ถ. So ๐ธ๐น||๐ป๐บ โŸน ๐ธ, ๐น, ๐บ, ๐ป are coplanar and because

โ€–๐ธ๐นโ€– =โ€–๐ด๐ถโ€–

2= โ€–๐ป๐บโ€– โŸน๐ธ๐น๐บ๐ป is a parallelogram.

Solution to Problem 212.

We assume we have ๐›ผ||๐›ฝ||๐›พ such that ๐ด๐ดโ€™ โŠ‚ ๐›ผ, ๐ต๐ตโ€™ โŠ‚ , ๐ถ๐ถโ€™ โŠ‚ ๐›พ.

We draw through ๐ดโ€ฒ a parallel line with ๐‘‘: ๐‘‘โ€ฒโ€ฒ||๐‘‘. As ๐‘‘ intersects all the 3 planes

๐ดโ€ฒ โŠ‚ ๐‘‘โ€ฒโ€ฒ at ๐ด, ๐ต, ๐ถ โŸน and its || ๐‘‘โ€™โ€™ cuts them at ๐ดโ€ฒ, ๐ตโ€ฒโ€ฒ, ๐ถโ€ฒโ€ฒ.

Because

Let plane (๐‘‘โ€ฒ, ๐‘‘โ€ฒโ€ฒ ). Because this plane has in common with planes ๐›ผ, ๐›ฝ, ๐›พ the points

๐ดโ€ฒ, ๐ตโ€ฒโ€ฒ, ๐ถโ€ฒโ€ฒ and because ๐›ผ || ๐›ฝ || ๐›พ โŸน it intersects them after the parallel lines

Taking into consideration (1) and (2)

The vice-versa can be similarly proved.

Page 192: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

191

Solution to Problem 213.

Let

such that

and

such that

So

according to problem 7, three planes can be drawn || ๐›ฝ || ๐›ผ || ๐›พ such that

and ๐‘ƒ๐‘ƒโ€ฒ โŠ‚ ๐›ผ.

So by marking ๐‘ƒ and letting ๐‘ƒโ€ฒ variable, ๐‘ƒโ€ฒ โˆˆ a parallel plane with the two lines,

which passes through ๐‘ƒ. It is known that this plane is unique, because by drawing

through ๐‘ƒ parallel lines to ๐‘‘ and ๐‘‘โ€™ in order to obtain this plane, it is well

determined by 2 concurrent lines.

Vice-versa: Let ๐‘ƒ โˆˆ ๐›ผ, that is the plane passing through ๐‘ƒ and it is parallel to ๐‘‘

and ๐‘‘โ€™.

Page 193: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

192

(๐‘ƒโ€ฒโ€ฒ, ๐‘‘) determines a plane, and (๐‘ƒโ€ฒโ€ฒ, ๐‘‘โ€ฒ) determines a plane โŸน the two planes,

which have a common point, intersect after a line(๐‘ƒโ€ฒโ€ฒ, ๐‘‘)โˆฉ (๐‘ƒโ€ฒโ€ฒ, ๐‘‘โ€ฒ) = ๐‘„๐‘„โ€ฒ where ๐‘„ โˆˆ

๐‘‘ and ๐‘„โ€ฒ โˆˆ ๐‘‘โ€ฒ.

Because

such that ๐‘€๐‘„ โŠ‚ ๐›ฝ, ๐›ฝ||๐›ผ.

Because

such that ๐‘€โ€ฒ๐‘„โ€ฒ โŠ‚ ๐›พ, ๐›พ||๐›ผ.

So the required locus is a parallel plane with ๐‘‘ and ๐‘‘โ€™.

Solution to Problem 214.

We consider the plane, which according to a previous problem, represents the

locus of the points dividing the segments with extremities on lines ๐‘‘1 and ๐‘‘3 in a

given ratio ๐‘˜. To obtain this plane, we take a point ๐ด โˆˆ ๐‘‘1, ๐ต โˆˆ ๐‘‘3 and point ๐ถ โˆˆ ๐ด๐ต

such that โ€–๐ด๐ถโ€–

โ€–๐ถ๐ตโ€–= ๐‘˜. Through this point ๐ถ we draw two parallel lines ๐‘‘1 and ๐‘‘3 which

determine the above mentioned plane ๐›ผ.

Let ๐‘‘2 โˆฉ ๐›ผ = {๐‘}. We must determine a segment that passes through ๐‘ and with

its extremities on ๐‘‘1 and ๐‘‘3, respectively at ๐‘€ and ๐‘ƒ. As the required line passes

through ๐‘ and ๐‘€

The same line must pass through ๐‘ and ๐‘ƒ and because

๐‘€,๐‘, ๐‘ƒ collinear.

Page 194: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

193

From (1) and (2)

Then, according to previous problem 8:

and the required line is ๐‘€๐‘ƒ.

Solution to Problem 215.

Let โˆ†๐‘€๐‘๐‘ƒ such that

Let โˆ†๐‘€โ€ฒ๐‘โ€ฒ๐‘ƒโ€ฒ such that

Line ๐‘€๐‘ƒ generates a plane ๐›ฝ, being parallel to a fixed direction ๐‘‘1 and it is based

on a given line ๐‘‘. In the same way, the line ๐‘€๐‘ generates a plane ๐›พ, parallel to a

fixed direction ๐‘‘2, and based on a given line ๐‘‘. As ๐‘‘ is contained by ๐›พ โŸน ๐‘‚ is a

common point for ๐›ผ and ๐›พ โŸน ๐›ผ โˆฉ ๐›พ โ‰  โˆ… โŸน ๐›ผ โˆฉ ๐›พ = ๐‘‘โ€ฒ, ๐‘‚ โˆˆ ๐‘‘โ€ฒ.

(โˆ€) the considered โˆ†, so ๐‘ also describes a line ๐‘‘โ€ฒ โŠ‚ ๐›ผ.

Because plane ๐›พ is well determined by line ๐‘‘ and direction ๐‘‘2, is fixed, so ๐‘‘โ€ฒ = ๐›ผ โˆฉ

๐›พ is fixed.

In the same way, ๐‘ƒ๐‘ will generate a plane ๐›ฟ, moving parallel to the fixed direction

๐‘‘3 and being based on the given line ๐‘‘โ€™.

As

Page 195: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

194

(โˆ€)๐‘ƒ variable peak, ๐‘ƒ โˆˆ ๐‘‘โ€ฒโ€ฒ.

Thus, in the given conditions, for any โˆ†๐‘€๐‘๐‘ƒ, peak ๐‘ƒ โˆˆ ๐‘‘โ€ฒโ€ฒ.

Vice-versa, let ๐‘ƒโ€ฒ โˆˆ ๐‘‘โ€ฒโ€ฒ. On plane (๐‘‘โ€ฒ, ๐‘‘โ€ฒโ€ฒ) we draw ๐‘ƒโ€ฒ,๐‘€โ€ฒ||๐‘ƒ๐‘€ โŸน (๐‘€โ€ฒ๐‘ƒโ€ฒ๐‘โ€ฒ)||(๐‘ƒ๐‘€๐‘) โŸน

(๐‘‘๐‘‘โ€ฒ) the intersection of two parallel planes after parallel lines ๐‘€โ€ฒ๐‘โ€ฒ||๐‘€๐‘ and the so

constructed โˆ†๐‘€โ€ฒ๐‘ƒโ€ฒ๐‘โ€ฒ has its sides parallel to the three fixed lines, has ๐‘€โ€ฒ โˆˆ ๐‘‘ and

๐‘โ€ฒ โˆˆ ๐›ผ, so it is one of the triangles given in the text.

So the locus is line ๐‘‘โ€ฒโ€ฒ. Weโ€™ve seen how it can be constructed and it passes

through ๐‘‚.

In the situation when ๐ท||๐›ผ we obtain

In this case the locus is a parallel line with ๐‘‘.

Let ๐‘€๐‘๐‘ƒ and ๐‘€โ€ฒ๐‘โ€ฒ๐‘ƒโ€ฒ such that

Page 196: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

195

We assume ๐›ผ โˆฉ ๐›ฝ = ๐‘‘ and let ๐‘‘ โˆฉ (๐‘€๐‘๐‘ƒ) = {๐‘‚} and ๐‘‘ โˆฉ (๐‘€โ€ฒ๐‘โ€ฒ๐‘ƒโ€ฒ) = {๐‘‚โ€ฒ} โŸน

a plane cuts the parallel planes after parallel lines.

In the same way, ๐‘‚๐‘||๐‘‚โ€ฒ๐‘โ€ฒ and because

We use the property: Let ๐œ‹1 and ๐œ‹2 2 parallel planes and ๐ด, ๐ต, ๐ถ โŠ‚ ๐œ‹1 and ๐ดโ€ฒ๐ตโ€ฒ๐ถโ€ฒ โŠ‚

๐œ‹2, ๐ด๐ต โˆฅ ๐ดโ€ฒ๐ตโ€ฒ,

Letโ€™s show that ๐ต๐ถ||๐ตโ€ฒ๐ถโ€ฒ. Indeed (๐ต๐ตโ€ฒ๐ถโ€ฒ) is a plane which intersects the 2 planes

after parallel lines.

Applying in (1) this property โŸน๐‘‚๐‘ƒ||๐‘‚โ€ฒ๐‘ƒโ€ฒ. Maintaining ๐‘‚๐‘ƒ fixed and letting ๐‘ƒโ€™

variable, always ๐‘‚๐‘ƒ||๐‘‚โ€ฒ๐‘ƒโ€ฒ.=, so ๐‘‚โ€ฒ๐‘ƒโ€ฒ generates a plane which passes through ๐‘‘. We

assume ๐›ฝ||๐›ผ.

๐‘€๐‘๐‘โ€ฒ๐‘€โ€ฒ parallelogram

Page 197: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

196

Considering ๐‘ƒโ€ฒ fix and ๐‘ƒ variable โŸน ๐‘ƒ๐‘ƒโ€ฒ||๐›ผ and the set of parallel lines drawn

๐‘ƒ๐‘ƒโ€ฒ||๐›ฝ to a plane through an exterior point is a parallel plane with the given plane.

So the locus is a parallel plane with ๐›ผ and ๐›ฝ.

Solution to Problem 216.

In plane ๐ท๐ด๐ถ we have:

In plane ๐ท๐ด๐ต we have:

In plane ๐‘‚๐ต๐ถ we have:

From ๐‘ƒ๐‘€||๐ด๐ถ and ๐‘ƒ๐‘||๐ต๐ถ โŸน (๐‘€๐‘๐‘…)||(๐ด๐ต๐ถ).

Let ๐‘„ and ๐ท be midpoints of sides |๐‘€๐‘| and |๐ด๐ต|.

are collinear.

Page 198: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

197

Concurrent lines ๐‘‚๐ท and ๐‘‚๐ถ determine a plane which cuts the parallel planes

are collinear.

So ๐บโ€™ โˆˆ |๐‘‚๐บ โŸน the required locus is ray |๐‘‚๐บ.

Vice-versa: we take a point on |๐‘‚๐บ, ๐บโ€ฒโ€ฒ, and draw through it a parallel plane

to (๐ด๐ต๐ถ), plane (๐‘€โ€ฒโ€ฒ, ๐‘โ€ฒโ€ฒ, ๐‘ƒโ€ฒโ€ฒ), similar triangles are formed and the ratios from

the hypothesis appear.

Solution to Problem 217.

Let ๐ด2, ๐ต2, ๐ถ2, ๐ท2 such that

Mark on lines ๐ด๐ท1 and ๐ต๐ถ1 points ๐‘€ and ๐‘ such that

From

Next is

The same,

As

Page 199: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

198

we obtain

From

is a parallelogram.

is parallelogram.

So

is a parallelogram.

Solution to Problem 218.

Page 200: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

199

We draw through ๐ดโ€ฒ a line ๐‘‘โ€ฒโ€ฒ||๐‘‘. We draw two parallel planes with ๐›ผ, which will

intersect the three lines in ๐ตโ€ฒ, ๐ตโˆ—, ๐ต and ๐ถโ€ฒ, ๐ถโˆ—, ๐ถ. Plane (๐‘‘, ๐‘‘โˆ—) intersects planes ๐›ผ,

(๐ตโ€ฒ๐ตโˆ—๐ต), (๐ถโ€ฒ๐ถโˆ—๐ถ) after parallel lines

= โ€–๐ต๐ตโˆ—โ€– = โ€–๐ถโ€ฒ๐ถโˆ—โ€–.

Plane (๐‘‘โ€ฒ, ๐‘‘โˆ—) intersects parallel planes (๐ตโ€ฒ๐ตโˆ—๐ต), (๐ถโ€ฒ๐ถโˆ—๐ถ) after parallel lines

So (โˆ€) parallel plane with ๐›ผ we construct, the newly obtained triangle has a side of

๐›ผ length and the corresponding angle to ๐ตโ€ฒ๐ตโˆ—๏ฟฝ๏ฟฝ is constant. We mark with a line

that position of the plane, for which the opposite length of the required angle is ๐‘™.

With the compass spike at ๐ถ and with a radius equal with ๐‘™, we trace a circle arc

that cuts segment | ๐ถโ€ฒ๐ถโˆ—| at ๐‘ or line ๐ถโ€ฒ๐ถโˆ—. Through ๐‘ we draw at (๐‘‘โ€ฒ, ๐‘‘โˆ—) a parallel

line to ๐‘‘โˆ— which precisely meets ๐‘‘โ€ฒ in a point ๐‘€โ€ฒ. Through ๐‘€โ€ฒ, we draw the || plane

to ๐›ผ, which will intersect the three lines in ๐‘€,๐‘€โ€ฒ,๐‘€โˆ—.

is a parallelogram.

โŸน ๐ถ๐‘๐‘€โ€ฒ๐‘€ is a parallelogram.

and line ๐‘€๐‘€โ€ฒ, located in a parallel plane to ๐›ผ, is parallel to ๐›ผ.

Discussion:

Assuming the plane (๐ถโ€ฒ๐ถโˆ—๐ถ) is variable, as | ๐ถ๐ถโˆ—| and ๐ถ๐ถโ€ฒ๐ถโˆ— are constant, then

๐‘‘(๐ถโ€ฒ๐ถโˆ—๐ถ) = ๐‘ = also constant

If ๐‘™ < ๐‘‘ we donโ€™t have any solution.

If ๐‘™ = ๐‘‘ (โˆƒ) a solution, the circle of radius ๐‘™, is tangent to ๐ถโ€ฒ๐ถโˆ—.

If ๐‘™ > ๐‘‘ (โˆƒ ) two solutions: circle of radius ๐‘™, cuts ๐ถโ€ฒ๐ถโˆ— at two points ๐‘ and ๐‘ƒ.

Page 201: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

200

Solution to Problem 219.

We draw through ๐ด planes ๐›ผ โŠฅ ๐‘‘ and ๐›ผโ€ฒ โŠฅ ๐‘‘โ€ฒ.

As ๐ด is a common point

โŸน ๐›ผ โˆฉ ๐›ผโ€ฒ = โˆ†โŸน ๐ด โˆˆ โˆ†.

โŸน โˆ† the required line

If ๐›ผ โ‰  ๐›ผโ€ฒ - we have only one solution.

If ๐›ผ = ๐›ผโ€ฒ (โˆ€) line from ๐›ผ which passes through ๐ด corresponds to the problem, so

(โˆƒ) infinite solutions.

Solution to Problem 220.

Let ๐‘‘1 โŠฅ ๐‘‘2 two concurrent perpendicular lines, ๐‘‘1 โˆฉ ๐‘‘2 = {๐‘‚}. They determine a

plane ๐›ผ = (๐‘‘1, ๐‘‘2) and ๐‘‚ โˆˆ ๐›ผ. We construct on ๐›ผ in ๐‘‚.

Page 202: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

201

Solution to Problem 221.

We use the reductio ad absurdum method.

Let ๐‘‘ โŠฅ ๐‘Ž, ๐‘‘ โŠฅ ๐‘Ž, ๐‘‘ โŠฅ ๐‘. We assume that these lines are not coplanar. Let ๐›ผ =

(๐‘, ๐‘), ๐›ผโ€ฒ = (๐‘Ž, ๐‘), ๐›ผ โ‰  ๐›ผโ€ฒ. Then ๐‘‘ โŠฅ ๐›ผ, ๐‘‘ โŠฅ ๐›ผโ€™.

Thus through point ๐‘‚, 2 perpendicular planes to ๐‘‘ can be drawn. False โŸน ๐‘Ž, ๐‘, ๐‘ are

coplanar.

Solution to Problem 222.

By reductio ad absurdum:

Let ๐‘Ž โˆฉ ๐‘ โˆฉ ๐‘ โˆฉ ๐‘‘ = {๐‘‚} and they are perpendicular two by two. From ๐‘‘ โŠฅ ๐‘Ž, ๐‘‘ โŠฅ

๐‘Ž, ๐‘‘ โŠฅ ๐‘ โŸน ๐‘Ž, ๐‘, ๐‘ are coplanar and ๐‘ โŠฅ ๐‘Ž, ๐‘ โŠฅ ๐‘Ž, so we can draw to point ๐‘‚ two

distinct perpendicular lines. False. So the 4 lines cannot be perpendicular two by

two.

Solution to Problem 223.

We assume that ๐‘‘ โŠฅ ๐›ผ.

In ๐‘‘โ€ฒ โˆฉ ๐›ผ = {๐‘‚} we draw line ๐‘‘โ€ฒโ€ฒ โŠฅ ๐›ผ. Lines ๐‘‘โ€ฒ and ๐‘‘โ€ฒโ€ฒ are concurrent and determine a

plane ๐›ฝ = (๐‘‘โ€ฒ, ๐‘‘โ€ฒโ€ฒ) and as ๐‘‚โ€ฒ โˆˆ ๐›ฝ, ๐‘‚โ€ฒ โˆˆ ๐›ผ โŸน

From (1) and (2) โŸน in plane ๐›ฝ, on line ๐‘Ž, at point ๐‘‚โ€ฒ two distinct perpendicular lines

had been drawn. False. So ๐‘‘โ€ฒ||๐›ผ.

Page 203: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

202

Solution to Problem 224.

Reductio ad absurdum. Let ๐‘‘ โˆฆ ๐‘‘โ€ฒ. We draw ๐‘‘โ€ฒโ€ฒ||๐‘‘ through ๐‘‚โ€™.

โŸน at point ๐‘‚โ€ฒ we can draw two perpendicular lines to plane ๐›ผ. False.

So ๐‘‘||๐‘‘โ€ฒ.

Solution to Problem 225.

Let ๐‘‘ โŠฅ ๐›ผ and ๐‘‘ โˆฉ ๐›ผ = {๐‘‚}. We draw through ๐‘‚ a parallel to ๐‘‘โ€ฒ, which will be

contained in ๐›ผ, then ๐‘‘||๐›ผ.

Solution to Problem 226.

We assume ๐›ฝ โŸน ๐›ผ โˆฉ ๐›ฝ โ‰  โˆ… and let ๐ด โˆˆ ๐›ผ โˆฉ ๐›ฝ โŸน through a point ๐ด there can be

drawn two distinct perpendicular planes on this line. False.

โŸน ๐›ผ || ๐›ฝ.

Page 204: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

203

Solution to Problem 227.

Let ๐‘€ be a point in space with the property ||๐‘€๐ด|| = ||๐‘€๐ต||.

We connect ๐‘€ with the midpoint of segment [๐ด๐ต], point ๐‘‚.

So ๐‘€ is on a line drawn through ๐‘‚, perpendicular to ๐ด๐ต.

But the union of all perpendicular lines drawn through ๐‘‚ to ๐ด๐ต is the perpendicular

plane to ๐ด๐ต at point ๐‘‚, marked with ๐›ผ, so ๐‘€ โˆˆ ๐›ผ.

Vice-versa: let ๐‘€ โˆˆ ๐›ผ,

Solution to Problem 228.

Let ๐‘€ be a point in space with this property:

Let ๐‘‚ be the center of the circumscribed circle โˆ†๐ด๐ต๐ถ โŸน ||๐‘‚๐ด|| = ๐‘‚๐ต|| = ||๐‘‚๐ถ||, so

๐‘‚ is also a point of the desired locus.

common side

Page 205: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

204

According to the previous problem the locus of the points in space equally distant

from ๐ด and ๐ต is in the mediator plane of segment [๐ด๐ต], which also contains ๐‘€. We

mark with ๐›ผ this plane. The locus of the points in space equally distant from ๐ต and

๐ถ is in the mediator plane of segment [๐ต๐ถ], marked ๐›ฝ, which contains both ๐‘‚ and

๐‘€. So ๐›ผ โˆฉ ๐›ฝ = ๐‘‚๐‘€.

so ๐‘€ โˆˆ the perpendicular line to plane (๐ด๐ต๐ถ) in the center of the circumscribed

circle โˆ†๐ด๐ต๐ถ.

Vice-versa, let ๐‘€ โˆˆ this perpendicular line

= ||๐ถ๐‘€||, so ๐‘€ has the property from the statement.

Solution to Problem 229.

We draw โŠฅ from ๐ต to the plane. Let ๐‘‚ be the foot of this perpendicular line.

Let

the circle of radius ๐‘‚๐ด. Vice-versa, let ๐‘€ โˆˆ this circle

so ๐‘€ represents the foot from ๐ต to ๐ด๐‘€.

Page 206: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

205

Solution to Problem 230.

Let ๐›ผ be a plane that passes through ๐‘Ž and let ๐‘€ be the โŠฅ foot from ๐ด to ๐›ผ โŸน

๐ด๐‘€ โŠฅ ๐›ผ.

From

so ๐‘€ โˆˆ a perpendicular line to ๐‘Ž in ๐ดโ€ฒ, thus it is an element of the perpendicular

plane to ๐‘Ž in ๐ดโ€ฒ, which we mark as ๐œ‹ and which also contains ๐ด.

๐‘€ โˆˆ the circle of radius ๐ด๐ดโ€ฒ from plane ฯ€.

*Vice-versa, let ๐‘€ be a point on this circle of radius ๐ด๐ดโ€ฒ from plane ๐œ‹.

โŸน๐‘€ is the foot of a โŠฅ drawn from ๐ด to a plane that passes through ๐‘Ž.

Solution to Problem 231.

Let ๐ดโ€ฒ and ๐ตโ€ฒ be the feet of the perpendicular lines from ๐ด and ๐ต to ๐›ผ

(โˆƒ) a plane ๐›ฝ = (๐ด๐ดโ€ฒ, ๐ต๐ตโ€ฒ) and ๐ด๐ต โŠ‚ ๐›ฝ

Page 207: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

206

are collinear.

In plane ๐›ฝ we have

Solution to Problem 232.

Let ๐‘‘, ๐‘‘โ€ฒ be given lines, ๐ด given point. We draw through ๐ด plane ๐›ผ โŠฅ to ๐‘‘โ€ฒ.

If ๐‘Ž โˆฉ ๐›ผ = {๐ต}, then line ๐ด๐ต is the desired one, because it passes through ๐ด, meets ๐‘‘

and from ๐‘‘โ€ฒ๐›ผ ๐‘‘โ€ฒ๐ด๐ต. If ๐‘‘ โˆฉ ๐›ผ = โˆ… there is no solution.

If ๐‘‘ โŠ‚ ๐›ผ, then any line determined by ๐ด and a point of ๐‘‘ represents solution to the

problem, so there are infinite solutions.

Solution to Problem 233.

right

Page 208: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

207

Solution to Problem 234.

Let ๐‘€ be a point such that ||๐ด๐‘€|| = ๐‘˜.

We draw ๐ด๐ดโ€ฒ โŠฅ ๐›ผ โ‡’ ๐ดโ€ฒ fixed point and ๐ด๐ดโ€ฒ โŠฅ ๐ดโ€ฒ๐‘€.

We write ||๐ด๐ดโ€ฒ|| = ๐‘Ž.

Then

๐‘€ โˆˆ a circle centered at ๐ดโ€ฒ and of radius โˆš๐‘˜2 โˆ’ ๐‘Ž2, for ๐‘˜ > ๐‘Ž.

For ๐‘˜ = ๐‘Ž we obtain 1 point.

For ๐‘˜ < ๐‘Ž empty set.

Vice-versa, let ๐‘€ be a point on this circle โŸน

so ๐‘€ has the property from the statement.

Solution to Problem 235.

Page 209: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

208

In โˆ†๐‘‚๐ถ๐‘€:

But

3. Let ๐ป be the projection of ๐‘‚ lcp. plane ๐ด๐ต๐ถ, so

๐ป โˆˆ corresponding heights of side ๐ด๐ต. We show in the same way that ๐ด๐ถ โŠฅ

๐ต๐ป and thus ๐ป is the point of intersection of the heights, thus orthocenter.

Page 210: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

209

Solution to Problem 236.

First we prove that if a line is โŠฅ to two concurrent planes โŸน the planes coincide.

Let

โˆ†๐ด๐ต๐‘€ has two right angles. False. We return to the given problem.

being concurrent, they determine a plane โŸน ๐ถ๐ท โŠฅ ๐ด๐ต.

๐ถ, ๐ท, ๐ถโ€ฒ, ๐ทโ€ฒ are coplanar โŸน ๐ถ๐ถโ€ฒ and ๐ท๐ทโ€ฒ are coplanar.

Page 211: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

210

Solution to Problem 237.

We draw

โŸน ๐ต๐ดโ€ฒ height in โˆ†๐ต๐ถ๐ท (1)

โŸน ๐ดโ€ฒ๐ถ height in โˆ†๐ด๐ต๐ถ (2)

From (1) and (2) โŸน ๐ดโ€ฒ is the orthocenter โˆ†๐ด๐ต๐ถ โŸน ๐‘‚๐ดโ€ฒ โŠฅ ๐ต๐ถ.

Solution to Problem 238.

Let

โˆ†๐ต๐‘‚๐‘‚โ€ฒ and โˆ†๐ถ๐‘‚๐‘‚โ€ฒ are right at ๐‘‚โ€ฒ.

Page 212: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

211

As |๐‘‚๐ด| โ‰ก |๐‘‚๐ต| โ‰ก |๐‘‚๐ถ||๐‘‚๐‘‚โ€ฒ| common side

}

is the center of the circumscribed circle โˆ†๐ด๐ต๐ถ.

Solution to Problem 239.

Let ๐ท be the midpoint of [๐ต๐ถ] and ๐ธ โˆˆ |๐ท๐ดโ€ฒ such that ||๐ท๐ธ|| = ||๐ท๐ด||.

๐ด๐ท is median in the โˆ† isosceles

being external for

Solution to Problem 240.

Let ๐‘€ be a point in the plane and |๐ด๐‘€โ€ฒ the opposite ray to ๐ด๐‘€.

According to theorem 1

common

Page 213: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

212

Solution to Problem 241.

We construct ๐ต on the plane

โŸน ๐ด๐ถ and ๐ต๐ตโ€ฒ determine a plane ๐›ฝ = (๐ด๐ถ, ๐ต๐ตโ€ฒ) โŸน ๐ด๐ต โŠ‚ ๐›ฝ and on this plane

๐‘€(๐ถ๐ด๏ฟฝ๏ฟฝ) = 900 โˆ’๐‘š(๐ต๐ด๐ตโ€ฒ) .

Solution to Problem 242.

Let ray |๐ด๐ต โŠ‚ ๐›ฝโ€ฒ such that ๐ด๐ต โŠฅ ๐‘š. Let |๐ด๐ถ another ray such that |๐ด๐ถ โŠ‚ ๐›ฝโ€™. We draw

๐ต๐ตโ€ฒ โŠฅ ๐›ผ and ๐ถ๐ถโ€ฒ โŠฅ ๐›ผ to obtain the angle of the 2 rays with ๐›ผ, namely ๐ต๐ด๐ตโ€ฒ > ๐ถ๐ด๐ถโ€ฒ.

We draw line |๐ด๐ดโ€™ such that ๐ด๐ดโ€ฒ โŠฅ ๐›ผ and is on the same side of plane ๐›ผ as well as

half-plane ๐›ฝโ€™.

[๐ด๐ต is the projection of ray [๐ด๐ดโ€ฒ on plane ๐›ฝ

Solution to Problem 243.

Let ๐‘‘ be the border of ๐›ผโ€ฒ and ๐ด โˆˆ ๐‘‘. We draw a plane โŠฅ on ๐‘‘ in ๐ด, which we mark

as ๐›พ.

Page 214: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

213

In this plane, there is only one ray ๐‘, with its origin in ๐ด, such that ๐‘š(๐‘, ๏ฟฝ๏ฟฝ) = ๐‘Ž.

The desired half-plane is determined by ๐‘‘ and ray ๐‘, because from

Solution to Problem 244.

Let ๐‘‘ be the edge of the dihedral angle and ๐ด โˆˆ ๐‘‘. We draw ๐‘Ž โŠฅ ๐‘‘, ๐‘Ž โŠ‚ ๐›ผโ€ฒ and ๐‘ โŠฅ

๐‘‘, ๐‘ โŠ‚ ๐›ฝโ€™ two rays with origin in ๐ด. It results ๐‘‘ โŠฅ (๐‘Ž๐‘). We draw on plane (๐‘Ž, ๐‘) ray ๐‘

such that ๐‘š(๐‘Ž๏ฟฝ๏ฟฝ) = ๐‘š(๐‘๏ฟฝ๏ฟฝ) (1).

As ๐‘‘ โŠฅ (๐‘Ž๐‘) โŸน ๐‘‘ โŠฅ ๐‘.

Half-plane ๐›พโ€ฒ = (๐‘‘, ๐‘) is the desired one, because

If we consider the opposite ray to ๐‘, ๐‘โ€ฒ, half-plane ๐›พโ€ฒโ€ฒ = (๐‘‘, ๐‘โ€ฒ) also forms

concurrent angles with the two half-planes, being supplementary to the others.

Page 215: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

214

Solution to Problem 245.

Let ๐‘€ be a point in space equally distant from the half-planes ๐›ผโ€ฒ, ๐›ฝโ€ฒ โŸน ||๐‘€๐ด|| =

||๐‘€๐ต||.

where ๐‘‘ = ๐›ผ โˆฉ ๐›ฝ.

Let

|๐‘€๐ด| = |๐‘€๐ต||๐‘‚๐‘€| common side right triangle

} โŸน

โŸน๐‘€ โˆˆ bisector of the angle.

๐ด๐ท๏ฟฝ๏ฟฝ โŸน ๐‘€ โˆˆ bisector half-plane of the angle of half-planes ๐›ผโ€ฒ, ๐›ฝโ€ฒ.

If ๐‘€โ€ฒ is equally distant from half-planes ๐›ฝโ€ฒ and ๐›ผโ€ฒโ€ฒ we will show in the same way

that ๐‘€โ€ฒ โˆˆ bisector half-plane of these half-planes. We assume that ๐‘€ and ๐‘€โ€ฒ are on

this plane โŠฅ to ๐‘‘, we remark that ๐‘š(๐‘€๐‘‚๐‘€โ€ฒ ) = 900, so the two half-planes are โŠฅ.

Considering the two other dihedral angles, we obtain 2 perpendicular planes, the 2

bisector planes.

Vice-versa: we can easily show that a point on these planes is equally distant form

planes ๐›ผ and ๐›ฝ.

Page 216: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

215

Solution to Problem 246.

Let ๐›ผ โˆฉ ๐›ฝ = ๐›ผ. In plane ๐›ฝ we draw

As

but

so from a point it can be drawn only one perpendicular line to a plane,

Solution to Problem 247.

Let

Page 217: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

216

the line with the same direction. We know that the union of the lines with the same

direction and are based on a given line is a plane. As this plane contains a

perpendicular line to ๐›ผ, it is perpendicular to ๐›ผ.

Solution to Problem 248.

Let ๐›ผ = (๐‘‘1, ๐‘‘2) the plane of the two concurrent lines and ๐‘€ is a point with the

property ๐‘‘(๐‘€, ๐‘‘1) = ๐‘‘(๐‘€, ๐‘‘2). We draw

Let

a bisector of the angle formed by the two lines, and ๐‘€ is on a line ๐›ผ which

meets a bisector โ‡’ ๐‘€ โˆˆ a plane โŠฅ ๐›ผ and which intersects ๐›ผ after a bisector. Thus

the locus will be formed by two planes โŠฅ ฮฑ and which intersects ๐›ผ after the two

bisectors of the angle formed by ๐‘‘1, ๐‘‘2. The two planes are โŠฅ.

โŸนโ€–๐‘€โ€ฒ๐ดโ€– = โ€–๐‘€โ€ฒ๐ตโ€–

||MMโ€ฒ|| common side} โŸน ๐‘€๐ด โŠฅ ๐‘‘1

And in the same way ๐‘€๐ต โŠฅ ๐‘‘2 โ‡’ ๐‘€ has the property from the statement.

Solution to Problem 249.

Page 218: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

217

Let ๐›ฝ โˆฉ ๐›พ = ๐‘‘ and ๐‘€ โˆˆ ๐‘‘ โŸน ๐‘€ โˆˆ ๐›ฝ,๐‘€ โˆˆ ๐›พ. We draw โŠฅ from ๐‘€ to ๐›ผ, line ๐‘‘โ€™.

According to a previous problem

Solution to Problem 250.

Let ๐›ฝ and ๐›พ be such planes, that is

From

are secant planes and โŠฅ to ๐›ผ.

So their intersection is โŠฅ through ๐ด to plane ๐›ผ.

Solution to Problem 251.

We construct the point on the two planes and the desired plane is determined by

the two perpendicular lines.

Solution to Problem 252.

Let ๐›ผ โˆฉ ๐›ฝ = ๐‘‘ and ๐‘€ โˆˆ ๐‘‘. We consider a ray originating in ๐‘€, ๐‘Ž โˆˆ ๐›ผ and we

construct a โŠฅ plane to ๐‘Ž in ๐‘€, plane ๐›พ.

Because

Page 219: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

218

and let a ray originating in ๐‘€, ๐‘ โŠ‚ ๐›ฝ โˆฉ ๐›พ โ‡’ ๐‘ โŠ‚ ๐›ฝ , ๐‘ โŠ‚.๐›พ As ๐‘Ž โŠฅ ๐›พ โŸน ๐‘Ž โŠฅ ๐‘ and the

desired plane is that determined by rays (๐‘Ž, ๐‘).

Solution to Problem 253.

Let ๐›ผ โˆฉ ๐›ฝ = ๐‘Ž and ๐‘‘ โˆฉ ๐›ฝ = {๐ด}.

We suppose that ๐ด โˆ‰ ๐‘Ž. Let ๐‘€ โˆˆ ๐‘Ž, we build ๐‘ โŠฅ ๐›ฝ, ๐‘€ โˆˆ ๐‘ โŸน ๐‘ โŠ‚ ๐›ผ.

If

Solution to Problem 254.

Page 220: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

255 Compiled and Solved Problems in Geometry and Trigonometry

219

From (1), (2), (3) โŸน ๐‘Ž โˆฅ ๐‘ โˆฅ ๐‘.

Solution to Problem 255.

Let ๐ด โˆˆ int. (๐›ผโ€ฒ๐›ฝโ€ฒ), ๐›ผ โˆฉ ๐›ฝ = ๐‘‘.

Let ๐ด โˆˆ int. (๐›ผโ€ฒโ€ฒ๐›ฝโ€ฒ). We show the same way that

๐‘š(๐ต๐ด๏ฟฝ๏ฟฝ) = 1800 โˆ’๐‘š(๐›ผโ€ฒโ€ฒ๐›ฝโ€ฒ)

๐‘š(๐›ผโ€ฒโ€ฒ๐›ฝโ€ฒ) = 1800 โˆ’๐‘š(๐›ผโ€ฒ๐›ฝโ€ฒ)} โŸน ๐‘š(๐ต๐ด๏ฟฝ๏ฟฝ) = 1800 โˆ’ 1800 +๐‘š(๐›ผโ€ฒ๐›ฝโ€ฒ) = ๐‘š(๐›ผโ€ฒ๐›ฝโ€ฒ).

If ๐ด โˆˆ int. (๐›ผโ€ฒโ€ฒ๐›ฝโ€ฒโ€ฒ)โŸน๐‘š(๐ต๐ด๏ฟฝ๏ฟฝ) = 1800 โˆ’๐‘š(๐›ผโ€ฒโ€ฒ๐›ฝโ€ฒ).

If ๐ด โˆˆ int. (๐›ผโ€ฒ๐›ฝโ€ฒโ€ฒ) โŸน ๐‘š(๐ต๐ด๏ฟฝ๏ฟฝ) = 1800 โˆ’๐‘š(๐›ผโ€ฒ๐›ฝโ€ฒ).

Page 221: Compiled and solved problems in geometry and trigonometry,F.Smaradanhe

Florentin Smarandache

220

This book is a translation from Romanian of "Probleme Compilate ลŸi Rezolvate de Geometrie ลŸi

Trigonometrie" (University of Kishinev Press, Kishinev, 169 p., 1998), and includes problems of 2D

and 3D Euclidean geometry plus trigonometry, compiled and solved from the Romanian Textbooks

for 9th and 10th grade students, in the period 1981-1988, when I was a professor of mathematics

at the "Petrache Poenaru" National College in Balcesti, Valcea (Romania), Lycรฉe Sidi El Hassan

Lyoussi in Sefrou (Morocco), then at the "Nicolae Balcescu" National College in Craiova and

Dragotesti General School (Romania), but also I did intensive private tutoring for students

preparing their university entrance examination. After that, I have escaped in Turkey in September

1988 and lived in a political refugee camp in Istanbul and Ankara, and in March 1990 I immigrated

to United States. The degree of difficulties of the problems is from easy and medium to hard. The

solutions of the problems are at the end of each chapter. One can navigate back and forth from

the text of the problem to its solution using bookmarks. The book is especially a didactical

material for the mathematical students and instructors.

The Author


Top Related