Transcript

EE313LinearSignals&Systems(Fall2018)

SolutionSetforHomework#7onInfiniteImpulseResponse(IIR)FiltersCORRECTED

By:Mr.HoushangSalimianandProf.BrianL.Evans

PrologfortheSolutionSet.Bothdiscrete-timefiniteimpulseresponse(FIR)filtersanddiscrete-timeinfiniteimpulseresponse(IIR)filtersarewidelyusedinpractice.Theyarebothusedinspeechandaudio processing. Speech compression/decompression algorithms on smart phones use IIR filters.Splitting theaudible range intosub-woolfer (20-200Hz),wolfer (200-2000Hz)and tweeter (2000-20000Hz)bandsinaudiospeakersisimplementedusingIIRfilters.FIRfiltersaremorecommonthanIIRfiltersinimageandvideoprocessing;however,IIRfiltersareusedinimagedisplayandprinting.Analog-to-digital converters use IIR filters, and digital-to-analog converters use both FIR and IIRfilters.BothFIRandIIRfiltersareusedincommunicationsystems.

As the passband becomesmore andmore narrow, the number of FIR coefficients increases at amuchfasterpacevs.thenumberofIIRcoefficients. Forexample, forabandpassfilterthatpasseswolferfrequenciesof200Hzto2000Hzinadiscrete-timeaudiosignalsampledat48000Hzwouldrequire an FIR filter with 4352 coefficients or an IIR filter with 33 coefficients (obtained from 16poles,16zeros,and1gain).Eachcoefficientrepresentsamultiplicationwhencomputinganoutputsample;hence,thewolferFIRfilterrequires100timesmoremultiplicationsthanthewolferIIRfilter.

Whenwehadanalyzedthefrequencyresponseoftheaveragingfilteronhomework#6,tuneup#6,andtuneup#7,wehadseenthatphaseresponseislinearvs.frequency.Lectureslide9-9derivesthemagnitude and phase response for the two-point averaging filter. A linear phase responsecorresponds to a fixed delay (called the group delay) through the filter. See lecture slide 9-8.Althoughwedidn’thavethechancetogooverlectureslides9-8and9-9,wedidseealinearphaseresponsefora3-pointlowpassfilteronlectureslide9-6.Also,thebandpassFIRfilterbasedontheHammingwindowinmini-project#2hadlinearphase(constantgroupdelay).

FIRfilterscanbedesignedtohavelinearphaseoverallfrequencies.AlthoughthisisnotpossibleforIIR filters, IIR filters can be designed to have approximate linear phase over the passband.Audio,imaging,andcertaincommunicationsystemsareverysensitivetophasedistortion.

IIR filters have one significant drawback— when implemented, they can become bounded-inputbounded-output(BIBO)unstableeventhoughtheirdesignisBIBOstable.FIRfiltersarealwaysBIBOstable.Pleaseseelectureslides11-12and11-13andHandoutHonBIBOStability.

Problem1

Prolog: Thisproblemasks you toanalyze seven linear time-invariant (LTI) filters in the frequencyandzdomains,andmatchtheirmagnituderesponsetooneofsixexampleresponses.Thisproblemisintendedtohelpyoumakeconnectionsbetweenthetime,frequencyandzdomains.Inparticular,theproblemisintendedtobuildexperienceontheimpactofpolesandzerosinthetransferfunctioninthez-domainonthemagnituderesponseofafilter.EachLTIfilterisobservedforn≥0.AlloftheinitialconditionsarezeroasanecessaryconditionforLTItohold.

MATLABcodeisgivenattheendoftheproblemsolution.

Fall2018EE313Homework7solution|TheUniversityofTexasatAustin

Concerningtheconnectionsbetweenthetime, frequencyandzdomains fordiscrete-timefilters, Irecorded a YouTube video in spring 2014 for the EE 445S Real-TimeDigital Signal Processing Labcourse.Pleasewatchfromthe1:29marktothe22:25markandfrom43:01totheend(50:51)at

https://www.youtube.com/watch?v=WWEKNvvJBvs&list=PLaJppqXMef2ZHIKM4vpwHIAWyRmw3TtSf

Polesorzerosattheorigininthez-domainhavenoimpactonthemagnituderesponsebetweenthedistancefromanypointontheunitcircle𝑧 = 𝑒!!totheoriginis1forallvaluesofthediscrete-timefrequency𝜔.Whenagroupofpolesisseparateinanglefromagroupofzeros,theanglesofpolesneartheunitcircleindicateapassbandofthefilterandtheanglesofzerosonorneartheunitcircleindicateastopbandofthefilter.ThisisthecaseforallofthefiltersbelowexceptfilterS2.FilterS2hasonepoleandonezeroatthesameangle.Theirradiiareinverselyrelated,andthisgivesanall-passfilter.PleaseseeHandoutIonAll-PassFiltersat

http://users.ece.utexas.edu/~bevans/courses/signals/handouts/Appendix%20I%20All%20Pass%20Filters.pdf

Solutions

FilterS1isgivenasadifferenceequation.ThisproblemwasthesubjectofTune-UpTuesday#9.

1 1 1 1[ ] 0.9 [ 1] [ ] [ 1] [ ] 0.9 [ 1] [ ] [ 1]2 2 2 2

y n y n x n x n y n y n x n x n= − + + − ⇒ − − = + −

( )1 1 1 11 1 1 1( ) 0.9 ( ) ( ) ( ) ( ) 1 0.9 ( )2 2 2 2

Y z z Y z X z z X z Y z z X z z− − − −⎛ ⎞− = + → − = +⎜ ⎟⎝ ⎠

H (z) = Y (z)X (z)

=

121+ z−1( )

1−0.9z1=

12z +1( )

z −0.9=12

z +1z −0.9⎛

⎝⎜

⎠⎟

Tocalculatezerosandpoles,wecalculaterootsofnumeratoranddenominator,respectively.

Zeros: 1 0 1z z+ = ⇒ = − .Zeroontheunitcircleatangleπ indicatesthatfrequenciesat–πandπ rad/samplearezeroedoutandareinthestopband.

Poles: 0.9 0 0.9z z− = ⇒ = Apoleneartheunitcircleindicatesthatapeakinthemagnituderesponseoccursatthepoleangle,whichis0rad/sample.Thepassbandiscenteredat0rad/sample.

Fall2018EE313Homework7solution|TheUniversityofTexasatAustin

FrequencyresponsematchesfigureA.Frequencyresponseshowsthatthefrequenciesaroundzeroarepassedandthemagnitudedecreasesforhigherfrequencies,hence,S1isalow-passfilter.

FilterS2isalsogivenasadifferenceequation.

[ ] 0.9 [ 1] 9 [ ] 10 [ 1] [ ] 0.9 [ 1] 9 [ ] 10 [ 1]y n y n x n x n y n y n x n x n= − − + + − ⇒ + − = + −

( ) ( )1 1 1 1( ) 0.9 ( ) 9 ( ) 10 ( ) ( ) 1 0.9 ( ) 9 10Y z z Y z X z z X z Y z z X z z− − − −+ = + → + = +

1

1

( ) 9 10 9 10( )( ) 1 0.9 0.9

Y z z zH zX z z z

−+ += = =

+ +

Zero:9 10 0 10 / 9 1.111z z+ = ⇒ = − = − .Radiusistheinverseoftheradiousofthepole.

Pole: 0.9 0 0.9z z+ = ⇒ = − .Poleandzeroareatthesameanglewillinteract.Seetheprolog.

ThefrequencyresponsematchesfigureD.Thisfilterpassesallfrequencieswiththesamemagnitude,i.e.magnitude=10,soS2isanall-passfilter.

FilterS3isgivenbyitstransferfunctioninthezdomain:

( ) ( )1

1

1 11 12 2( )1 0.9 0.9

z zH z

z z

− −= =

+ +

Fall2018EE313Homework7solution|TheUniversityofTexasatAustin

Zero: 1 0 1z z− = ⇒ = .Zeroontheunitcircleatangle0 indicatesthatfrequencyat0rad/sampleiszeroedoutandisinthestopband.Infact,thestopbandiscenteredat0rad/sample.

Pole: 0.9 0 0.9z z+ = ⇒ = − .Apoleneartheunitcircleindicatesthatapeakinthemagnitude

responseoccursatthepoleangle,whichisπrad/sample.Thepassbandiscenteredatπrad/sample

ThisplotmatchesfigureB,whichisahighpassfilter.

FilterS4isgivenasadifferenceequation:

1 3 1[ ] [ ] [ 1] [ 2] [ 3] [ 4]4 2 4

y n x n x n x n x n x n= + − + − + − + −

1 2 3 41 3 1( ) ( ) ( ) ( ) ( ) ( )4 2 4

Y z X z z X z z X z z X z z X z− − − −= + + + +

4 3 2

1 2 3 44

1 3 1( ) 1 3 1 4 2 4( )( ) 4 2 4

z z z zY zH z z z z zX z z

− − − −+ + + +

= = + + + + =

Wecancalculatetherootsofthenumeratorbyusingroots()inMATLAB.

p=[1/413/211/4];roots(p)

MATLABfindfouruniquerootscloseto-1:

Zeros: 4 3 21 2,3 4

1 3 1 0 1.0002, 1 0.0002, 0.99984 2 4z z z z z z j z+ + + + = ⇒ = − = − ± = −

Thecorrectanswerisarepeatedrootatz=-1,whichiscorrectlyindicatedinthepole-zeroplot.

Havingfourrepeatedzerosatangleofπmeansthatthereductioninmagnitudeatfrequenciesnearπ rad/sampleareraisedtothefourthpower.Thesmallmagnitudevaluesbecomemuchsmaller.

Poles: 4 0 0z z= ⇒ = Fourpolesatz=0.Polesattheorigininthezdomainhavenoeffectonthemagnituderesponse.

FrequencyresponseissimilartoFigureF,whichisalowpassfilter.

Fall2018EE313Homework7solution|TheUniversityofTexasatAustin

FilterS5isgivenasatransferfunctioninthezdomain:

4 3 2 11 2 3 4

4

1( ) 1 z z z zH z z z z zz

− − − − − + − += − + − + =

Zeros: 4 3 2 11,2 3,41 0 0.3090 0.9511, 0.8090 0.5878z z z z z j z j− + − + = ⇒ = − ± = ±

Poles:Fourpolesatz=0.

ThisplotisshowninFigureE.Accordingtothefrequencyresponse,wehaveahighpassfilter,becauseithashighgainathigherfrequenciesandlowgainatlowerfrequencies.ForS3,wehadanotherhighpassfilter,therethemagnitudeinstopbandwasverylowwhileforS5wecanseethatevenat0,considerablemagnitudecanbedetected.

FilterS6isgivenasadifferenceequation:

3 3 3

0 0 0[ ] [ ] ( ) ( ) ( )k k

k k ky n x n k Y z X z z X z z− −

= = =

= − ⇒ = =∑ ∑ ∑

3 231 2 3

30

( ) 1( ) 1( )

k

k

Y z z z zH z z z z zX z z

− − − −

=

+ + += = = + + + =∑

Zeros: 3 21 2,31 0 1,z z z z z j+ + + = ⇒ = − = ±

Poles: 3 0 0z z= ⇒ = Threepolesatz=0.

Fall2018EE313Homework7solution|TheUniversityofTexasatAustin

ThefrequencyresponseislikefigureC,anditrepresentsalowpassfilter.

FilterS7isgivenasadifferenceequation:

[ ] [ ] [ 1] [ 2] [ 3] [ 4] [ 5]y n x n x n x n x n x n x n= + − + − + − + − + −

1 2 3 4 5( ) ( ) ( ) ( ) ( ) ( ) ( )Y z X z z X z z X z z X z z X z z X z− − − − −= + + + + +

5 4 3 21 2 3 4 5

5

( ) 1( ) 1( )

Y z z z z z zH z z z z z zX z z

− − − − − + + + + += = + + + + + =

Zeros: 5 4 3 21 2,3 4,51 0 1, 0.5 0.866, 0.5 0.866z z z z z z z j z j+ + + + + = ⇒ = − = ± = − ±

Poles: 5 0 0z z= ⇒ = Fivepolesatzero

Thefrequencyresponseshowsalowpassfilter,butitdoesnotmatchanyofthesixcandidatemagnituderesponses.

MATLABcode:

%S1 %feedforwardCoeffs = [ 1/2 1/2 ]; %feedbackCoeffs = [ 1 -0.9 ]; %------------------------------------------ %S2 %feedforwardCoeffs = [ 9 10 ]; %feedbackCoeffs = [ 1 0.9 ]; %------------------------------------------- %S3 %feedforwardCoeffs = [ 1/2 -1/2 ]; %feedbackCoeffs = [ 1 0.9 ]; %------------------------------------------- %S4 %feedforwardCoeffs = [ 1/4 1 3/2 1 1/4 ]; %feedbackCoeffs = 1; %------------------------------------------- %S5 %feedforwardCoeffs = [ 1 -1 1 -1 1 ]; %feedbackCoeffs = 1; %-------------------------------------------

Fall2018EE313Homework7solution|TheUniversityofTexasatAustin

%S6 %feedforwardCoeffs = [ 1 1 1 1 ]; %feedbackCoeffs = 1; %------------------------------------------- %S7 feedforwardCoeffs = [ 1 1 1 1 1 1 ]; feedbackCoeffs = 1; %------------------------------------------- figure; zplane(feedforwardCoeffs, feedbackCoeffs); W = -pi : 0.001 : pi; [H, W] = freqz( feedforwardCoeffs, feedbackCoeffs, W ); figure; plot(W, abs(H)); xlim([-pi pi]) xlabel('Radian Frequency') ylabel('Magnitude')

Problem2:a)ThissystemisformedbycascadingtwoLTIsystems.Inthez-domain:

12 1

2

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )W z H z X z

Y z H z H z X z H z X zY z H z W z

=⎧⇒ = =⎨

=⎩

2 1( ) ( ) ( )H z H z H z=

b) 15[ ] [ ] [ 1]6

y n x n x n= + −

11

5( ) ( ) ( )6

Y z X z z X z−= +

111

( ) 5( ) 1( ) 6

Y zH z zX z

−= = +

( )1 2 1 1 2 32 1

5 7 2 5( ) ( ) ( ) 1 2 1 16 6 3 6

H z H z H z z z z z z z− − − − − −⎛ ⎞= = − + + = − − +⎜ ⎟⎝ ⎠

c) ( ) ( ) ( )Y z H z X z=

7 2 5[ ] [ ] [ 1] [ 2] [ 3]6 3 6

y n x n x n x n x n= − − − − + −

d)MATLABcode

h1=[15/6];h2=[1-21];h=conv(h2,h1);zplane(h)

Fall2018EE313Homework7solution|TheUniversityofTexasatAustin

e) [ ] [ ]y n x n= so ( ) ( ) ( ) 1Y z X z H z= ⇒ =

f)Accordingtoparte,H(z)=1toguaranteeinputandoutputareequal.Also,frompart(b)

2 1( ) ( ) ( )H z H z H z=

12

51 ( ) 16

H z z−⎛ ⎞= +⎜ ⎟⎝ ⎠

21

1( ) 516

H zz−

=+

g)H2willbestableifitspolesareinsidetheunitcircle.H2(z)isinverseofH1(z),sozerosofH1(z)arepolesofH2(z).Therefore,zerosofH1(z)shouldbeinsidetheunitcircle.

Epilog:Parts(f)and(g)concernthedesignoffilterH2compensateforthefrequencydistortionintroducedbyfilterH1.Equalizingfrequencydistortioninanunknownsystemhasmanyapplications,includingdisplay/printingofimages,calibratingbiomedicalinstrumentation,compensatingphasedistortioninananalog-to-digitalconverter,andcommunicationreceivers.Inacommunicationreceiver,thechannelequalizercompensatesforfrequencydistoritoninthecommunicationchannelaswellasintheanalog/RFcircuitsinthetransmitterandreceiver.


Top Related