Transcript
Page 1: JAXA GLI Calibration Group - Earth Onlineearth.esa.int/workshops/ivos05/pres/p6_tanak.pdfGLI vicarious calibration coefficients (Kvc) ... Using global datasets, we derived dependencies

Vicarious coefficients

!"#!

!"#$

!"%!

!"%$

&"!!

&"!$

&"&!

&"&$

&"'!

! & ' ( ) $ * + # % &! && &' &( &) &$ &* &+ &# &% '! '& '' '( ') '$ '* '+ '# '% (!

,-./0123345

6748/967::;<:=>?6748@

A2=5:72B'!!(!#&% ACD'!!(D!#D&%/9E7F1=B2@

G2::7HD'!!(!)&) G2::7HD'!!(!)'*

,57I25/C4:"!/9JKF=B4/I2F4@ ,57I25/C4:"&/:4L=F4B/9JMKI2F4@

,57I25/C4:"'/9GKI2F4@ N6J

O<GE&(K&%P=Q JRA<SRTDL&"$34HDF=U4

GLI vicarious calibrationcoefficients (Kvc) by several ways

JAXA GLI Calibration Group:K. Tanakaa, H. Murakamia, S. Kuriharaa , J. Inouea, Y. Okamuraa, K. Isonoa, J. Niekea, T. Hashimotoa, H. Yamamotoa, I. Asanumaa, K. Iwafuneb, Y.Aokib,H. Yatagaib, H. Kuriharab, M. Yoshidac, N. Sekioc, Y. Mitomic, and Y. Sengad, aJapan Aerospace Exploration Agency (JAXA), bFujitsu Ltd, cRESTEC, dTokai Univ.

Temporal change of Kpre/Ksun after correction of diffuserincident angle and sun-earth distance (scan-mirror side B,EL=15deg, normalized by 06 Apr. 2003).

0.80

0.85

0.90

0.95

1.00

1.05

1.10

09-Jan

-03

08-F

eb-0

3

10-M

ar-03

09-A

pr-0

3

09-M

ay-0

3

08-Ju

n-0

3

08-Ju

l-03

07-A

ug-0

3

06-S

ep-0

3

06-O

ct-03

05-N

ov-0

3

rati

o t

o 06-A

pr-

03

ch1(380) ch2(400) ch3(412) ch4(443) ch5(460)

ch6(490) ch7(520) ch8(545) ch9(565) ch10(625)

ch11(666) ch12(680) ch13(678) ch15(710) ch17(763)

ch19(865) ch24(1050) ch25(1135) ch26(1240) ch27(1380)

ch1∼9

ch10∼27

Solar calibration outputs dropped in channels under700nm. We consider this is caused by degradation ofdiffuser.

Other channels are stable within 2%.

Raw data of mirror side A increased, and ones of mirror side B decreased. Data corrected by monitor diode is increased in both mirror sides, so decrease of raw data

level in mirror side B is considered to be caused by lowering of lamp radiance. Corrected data of mirror side-B increased only 1%. The ratio of side B to A increased after launch, so the reflectance of side A is thought to be

decreased (about 4%) due to the influence of launch, but recovered since then. Noise level of the lamp data is equivalent to the pre-launch test.

Linear part of the black bodycalibration (C1) at the samesun elevation point (20deg).GLI thermal data is calibratedby the C1 (for each scan) andfixed calibration factors (C0,C2, and other environmentalfactors) derived in the pre-launch tests.

!"#

!$#

!!#

%&&#

%&%#

%&'#

%&(#

'&&()&%)&!

'&&()&')&$

'&&()&()%&

'&&()&*)&!

'&&()&+)&!

'&&()&,)&$

'&&()&")&$

'&&()&$)&"

'&&()&!)&,

'&&()%&)&,

'&&()%%)&+

-%./0123.13.'&&()&%)',

',&

',%

','

',(

',*

',+

',,

',"

',$

',!

'"&

45067.4389.:;<=;/01>/;.?8;@-A

6B(&

6B(%

6B('

6B((

6B(*

6B(+

6B(,

CC1;<=

C1 was stable over all operation period within ±3% at ch30, and other channels within ±1%. C1 changed corresponding Blackbody temperature, so it is considered that the change is

caused by the seasonal variation of environmental temperature. C1 was smaller (= higher sensitivity) in cold environment in orbit. This agrees the pre-

launch test results. Calculated NEΔT and dynamic range is within specification.

Version up & processinginformation

Cooperation withGLI Validation Group

Lamp calibration raw data from 1st lamp calibration in Jan. 2003.

Lamp-A, Scan mirror-A

!"#$

!"#%

!"#&

!"##

'"!!

'"!'

'"!(

'"!)

!#*+,-*!)

!&*./0*!)

'!*1,2*!)

!#*342*!)

!#*1,5*!)

!&*+6-*!)

!&*+67*!)

!%*368*!)

!$*9/4*!)

!$*:;<*!)

!=*>?@*!)

2,<A?B<?B(=*+,-*!)

;C'

;C(

;C)

;CD

;C=

;C$

;C%

;C&

;C#

;C'!

;C')

;C'=

;C'%

;C'#

;C(D

;C(=

;C($

;C(%

E?-A<?2

!"#$

!"#%

!"#&

!"##

'"!!

'"!'

'"!(

'"!)

!#*+,-*!)

!&*./0*!)

'!*1,2*!)

!#*342*!)

!#*1,5*!)

!&*+6-*!)

!&*+67*!)

!%*368*!)

!$*9/4*!)

!$*:;<*!)

!=*>?@*!)

2,<A?B<?B(=*+,-*!)

;C'

;C(

;C)

;CD

;C=

;C$

;C%

;C&

;C#

;C'!

;C')

;C'=

;C'%

;C'#

;C(D

;C(=

;C($

;C(%

E?-A<?2

10000.06358102012001.3361000386 (5)211*310865.71910000.0535495510768.03510001309 (5)820866.11810000.053505198626.3341000293 (6)246*38762.01710000.023245267511.4331000991 (7)1111749.01610000.033225027332.6321000300 (10)233*311710.11510000.03 (at 285K)3075316737.53110001404 (10)1611710.51410000.073453363721.1301000235 (12)342*310678.613

10001293 (12)2210679.912IFOV[m]

NEΔT [K]at 300K

Dynamic range[Kelvin]

width[nm]

WL*4

[nm]Ch

10001342 (13)2110666.711250*2160 (1.3)322202193.82910001370 (17)32 (28*3)10624.710250*2298 (5)762031644.92810001301 (23)3910564.891000192 (1.5)153361380.6271000611 (28)96*1 /59610544.081000303 (5.4)208181241.0261000627 (31)92*1 /56910519.271000412 (8)184691136.62510001212 (43)6411489.561000381 (8)227201048.6241000880 (54)124*1 /7699459.35250218 (21)235 (210*3)103824.1231000893 (54)110*1 /6809442.54250255 (14)10759661.32210001402 (65)13010412.33250141 (25)58548542.12110001286 (70)1629399.62250241 (36)69162462.4201000467 (59)68310380.71

IFOV[m]

SNR*5

(input level)Dynamic range[W/m2/str/µm]

Width*4

[nm]WL*4

[nm]ChIFOV[m]

SNR*5

(input level)Dynamic range[W/m2/str/µm]

Width*4

[nm]WL*4

[nm]Ch

Earth Observation Research and ApplicationCenter (EORC)

Research &Level-2 information and sample data

Earth Observation Center (EOC)Data distribution to public

Table 1 Characteristics of GLI channels

*1 Knee points of the piece-wise linear gain channels 4,5, 7, and 8.

*2 Channels 28 and 29 are re-sampled for each 2-km (1/8)on board and stored in the 1-km level-1B product.

*3 Maximum radiance for linearresponse.

*4 Channel center and widthare derived from GLI spectralresponse.

*5 SNR at the standard inputlevel (W/m2/sr/µm) wasmeasured in pre-launchevaluation tests.

Using global datasets, we derived dependencies onscan-mirror A/B sides, incident angle (ϕ), andobservation date (T).

Correction of stripe-pattern noiseThe de-striping coefficients ak,l,j are applied to Level-1B radiance after the all otherradiometric calibrations, Lk,l,j . Lk,l,j

corrected= ak,l,j Lk,l,j , (k: pixels, l: lines, j: bands) (1)We assume ak,l,j are related to input radiance Lk,l,j and scan-mirror incident angle φk,l. ak,l,j=b0i,j+b1i,j⋅ Lk,l,j+b2i,j / Lk,l,j+b3i,j⋅ Lk,l,j

2+b4i,j⋅ φk,l +b5i,j⋅ φk,l2, (2)

i: detectors (1-12 or 48 × scan-mirror sides), i=mod(l-1, 24 or 96)+1.

beforebefore

afterafter

Band-to-band registration of L1A GCP extraction from L1A images Correction of Sat/GLI Alignment Correction of detector address Correction of mirror-side A/B alignments

!"#$%&'()*+,-.

/$

/0

1

0

$

/$ /0 1 0 $

!23((&425!6

57389&425!6

1380/27

1240/26

1135/25

1050/24

865/19

763/17

710/15

678/13

680/12

666/11

625/10

565/9

545/8

520/7 + UV/Blue

channels: Degradation!

0.9

0.95

1

1.05

1.1

1.15

1.2

500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400

Wavelength [nm]

Pre

-lau

nch

/Su

n c

alib

rati

on

Solar CalibrationSolar Calibration

Lamp Lamp CalibrationCalibration

Blackbody CalibrationBlackbody Calibration

Image Characterization and CorrectionImage Characterization and Correction

Non-linearlity, over saturation and tailing Non-linearity table for ch14, 16, 18 is updated using solar calibration data. Over saturation and tailing are flagged using neighboring low-gain channels.

Vicarious Vicarious CalibrationCalibration

Cooperation with GLI Land group

Geometric calibrationGeometric calibration

JAXA GLI calibrationJAXA GLI calibrationsub-groupssub-groups

Geometric accuracy by system correction (without GCPs):about 1.5 pixels (250m) [about 1 pixel (1km) ]

Precise geometric correction (with GCPs, for land product):less than 1 pixel (250m, 1km)

Group 1Solar & internal lamp

calibrations

Group 4 General L1

characterization

Group 5Vicarious calibration& Cross calibration

Group 3 Geometric correctionGroup 6

Level-1 software

development

Group 2Blackbody calibration

Pre-launch/ SunCal gain (Kpre/Ksun) derived using solardiffuser BRDF data (Nieke et al., SPIE, 2003)

The ratio of mirror side B to Aincrease after launch, and decreasedgradually in orbit. It is considered thatreflectance of side A decreased afterlaunch by some reason, andrecovered gradually.

Lamp-A, Scan mirror-B

Global Imager (GLI) system overviewGlobal Imager (GLI) system overview

Ch18 (High gain) Ref. Ch19 (Low gain)

Tailing

Reverse pattern: Over saturation

Same wavelength (865nm)

Kvc at CHs 1-3 for each ϕ and T by the global scheme. Colors indicate Tfrom 6 Feb. to 24 Oct.; circles, average Kvc for each 5-deg ϕ bin.

Along and cross trackdeviations from GCP(250m CH23).

http://suzaku.eorc.jaxa.jp/GLI/cal/index.html

http://www.eoc.jaxa.jp/homepage.html

Scan directionOver saturation

Recover: Tailing

GLI

DN

Input RadianceLinear Max

Non-linear region

Railroad Valley

Alaska BarrowMOBY and AERONET

Global schemeGlobal scheme

Sun Cal

monitor data monitor data

Top Related