Download - LBNL Pigment Survey

Transcript
Page 1: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

Solar Spectral Optical Properties of Pigments

Part II: Survey of Common Colorants

Ronnen Levinson (contact author)Lawrence Berkeley National Laboratory

1 Cyclotron Road, MS 90R2000Berkeley, CA 94720

[email protected]. 510.486.7494

Paul BerdahlLawrence Berkeley National Laboratory

1 Cyclotron Road, MS 70R0108BBerkeley, CA 94720

[email protected]. 510.486.5278

Hashem AkbariLawrence Berkeley National Laboratory

1 Cyclotron Road, MS 90R2000Berkeley, CA 94720H [email protected]. 510.486.4287

December 21, 2004

Abstract

Various pigments are characterized by determination of parameters S (backscattering) and K

(absorption) as functions of wavelength in the solar spectral range of 300 to 2500 nm. Measured

values of S for generic titanium dioxide (rutile) white pigment are in rough agreement with

values computed from the Mie theory, supplemented by a simple multiple scattering model.

Pigments in widespread use are examined, with particular emphasis on those that may be useful

for formulating non-white materials that can reflect the near-infrared (NIR) portion of sunlight,

such as the complex inorganic color pigments (mixed metal oxides). These materials remain

cooler in sunlight than comparable NIR-absorbing colors. NIR-absorptive pigments are to be

avoided. High NIR reflectance can be produced by a reflective metal substrate, a NIR-reflective

underlayer, and/or by the use of a pigment that scatters strongly in the NIR.

draft—do not quote, copy, or circulate 1/44 December 21, 2004

Page 2: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

1 Introduction

A companion article [1] presented a theoretical framework and experimental procedure that can

be used to determine the Kubelka-Munk backscattering and absorption coefficients of a pigmented

film. The current article applies this model to each of 87 predominantly single-pigment films, with

special attention paid to characterizing the near-infrared (NIR) properties that determine whether

a pigment is “hot” or “cool.” These pigments include (but are not limited to) inorganic colorants

conventionally used for architectural purposes, such as titanium dioxide white and iron oxide black;

spectrally selective organics, such as dioxazine purple; and spectrally selective inorganics developed

for cool applications, such as selective blacks that are mixed oxides of chromium and iron.

Several pigment handbooks [2, 3, 4, 5, 6] provide valuable supplemental information on the

properties, synthesis methods, and applications of many of the pigments characterized in this

study. Naturally, as far as optical properties are concerned, these references provide data mainly

in the visible spectral range (an exception is [5]).

2 Pigment Classification

For convenience in presentation, the pigments were grouped by color “family” (e.g., green) and

then categorized by chemistry (e.g., chromium oxide green). Some families span two colors (e.g.,

black/brown) because it is difficult to consistently identify color based on pigment name and color

index (convention for identifying colorants [7]). For example, a dark pigment may be marketed as

“black,” but carry a “pigment brown” color index designation and exhibit red tones more charac-

teristic of brown than of black. The following list shows in parentheses a mnemonic single-letter

abbreviation assigned to each color family, and in braces the population of each color family and pig-

ment category. Pigment categories are presented in the order of simpler inorganics, more complex

inorganics, and then finally organics. Each member of a color family is assigned an identification

code Xnn, where X is the color family abbreviation and nn is a serial number. For example, the

11 members of the green color family (“G”) have identification codes G01 through G11. The same

pigment may be present in more than one pigmented film. For example, our survey includes four

titanium dioxide white films (W01-W04). However, the concentration of pigment, pigment particle

size, and/or source of the pigment (manufacturer) may vary from film to film.

1. White (“W”) {4}

draft—do not quote, copy, or circulate 2/44 December 21, 2004

Page 3: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

(a) titanium dioxide white {4}

2. Black/Brown (“B”) {21}

(a) carbon black {2}

(b) other non-selective black {2}

(c) chromium iron oxide selective black {7}

(d) other selective black {1}

(e) iron oxide brown {3}

(f) other brown {6}

3. Blue/Purple (“U”) {14}

(a) cobalt aluminate blue {4}

(b) cobalt chromite blue {5}

(c) iron blue {1}

(d) ultramarine blue {1}

(e) phthalocyanine blue {2}

(f) dioxazine purple {1}

4. Green (“G”) {11}

(a) chromium oxide green {2}

(b) modified chromium oxide green {1}

(c) cobalt chromite green {3}

(d) cobalt titanate green {3}

(e) phthalocyanine green {2}

5. Red/Orange (“R”) {9}

(a) iron oxide red {4}

(b) cadmium orange {1}

(c) organic red {4}

draft—do not quote, copy, or circulate 3/44 December 21, 2004

Page 4: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

6. Yellow (“Y”) {14}

(a) iron oxide yellow {1}

(b) cadmium yellow {1}

(c) chrome yellow {1}

(d) chrome titanate yellow {4}

(e) nickel titanate yellow {4}

(f) strontium chromate yellow + titanium dioxide {1}

(g) Hansa yellow {1}

(h) diarylide yellow {1}

7. Pearlescent (“P”) {14}

(a) mica + titanium dioxide {9}

(b) mica + titanium dioxide + iron oxide {5}

3 Pigment Properties by Color and Category

Table 1 summarizes some relevant bulk properties of the pigmented films in each category, such

as NIR reflectances over black and white backgrounds. The measured and computed spectral

properties of each pigmented film are shown in Fig. 1. Each film has a column of charts of the

type presented in the companion article [1] with the omission of the chart of ancillary parameters

(diffuse fractions and interface reflectances). Color images of the films are shown in Fig. 2.

When examining spectral optical properties, it is worth noting that most of the NIR radiation

in sunlight arrives at the shorter NIR wavelengths. Of the 52% of solar energy delivered in the NIR

spectrum (700 - 2500 nm), 50% lies within 700 - 1000 nm; 30% lies within 1000 - 1500 nm; and

20% lies within 1500 - 2500 nm [1]. We refer to the 700 - 1000 nm region containing half the NIR

solar energy (and a quarter of the total solar energy) as the “short” NIR.

In the discussions below, black and white backgrounds are assumed to be opaque, with observed

NIR reflectances of 0.04 and 0.87, respectively. Note that in the absence of the air-film interface,

the continuous refractive index (CRI) NIR reflectances of the black and white backgrounds are 0.00

and 0.94, respectively.

draft—do not quote, copy, or circulate 4/44 December 21, 2004

Page 5: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

3.1 White

All four whites were titanium dioxide (TiO2) rutile. Other white pigments (not characterized in

this study) include zinc oxide, zinc sulfide, antimony oxide, zirconium oxide, zirconium silicate

(zircon), and the anatase phase of TiO2.

TiO2 rutile is a strongly scattering, weakly absorbing, stable, inert, nontoxic, inexpensive, and

hence extremely popular white pigment [2]. TiO2 whites W01 - W04 exhibit similar curves of

strong backscattering and weak absorption in the visible and NIR, except for drops in backscattering

around 1500 nm seen for W03 and W04. These last two samples are undiluted and 12:1 diluted

versions of the same artist color. These four films demonstrate how strongly the NIR reflectance

of a white film depends on film thickness—the over-black NIR reflectance of the 26 µm, 15% PVC

W01 is 0.64, while that of 13-µm, 23% PVC W03 is only 0.43. The backscattering curves indicate

that increased pigment loading will not necessarily improve the NIR reflectance of a thin (TiO2)

white film.

Of the available white pigments, the rutile phase of TiO2 has the highest refractive index in the

visible (about 2.7) and therefore has the strongest visible light scattering power at the optimum

particle size of about 0.2 µm. Its angle-weighted scattering coefficient s is estimated from the Mie

scattering theory to be about 12 µm−1 for the center of the visible spectrum at 550 nm, assuming

0.22 µm diameter particles suspended in a clear binder with refractive index 1.5 [8, 9]. Based on

the same method as [8], one of us [10, Fig. 1 and Eq. (1)] has obtained angle-weighted scattering

coefficient s ≈ 10.4 µm−1 at 550 nm, using slightly different values for the refractive index of TiO2.

Thus there is good general agreement among different authors on this basic result from the Mie

theory.

The question arises, what is the relation between the Mie theory result for s and the Kubelka-

Munk backscattering coefficient S? Palmer et al. [8] give an equation for the film reflectance of

a non-absorbing layer as R = (sfδ)/(2 + sfδ), where f is the pigment volume concentration and

δ is the film thickness. The corresponding Kubelka-Munk equation is R = Sδ/(1 + Sδ), which

suggests that S should be identified with 12fs. For clarification, we consider the special case of

isotropic scattering, and examine the limit of weak scattering. Then s is just the total scattering

cross section. In this limit the result of Palmer et al. is exact if the incident radiation is a normally

incident collimated beam; half the scattering is into the forward hemisphere, and half into the

backward hemisphere. However, we are more interested in the reflectance for completely diffuse

draft—do not quote, copy, or circulate 5/44 December 21, 2004

Page 6: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

radiation, which is twice as large in this limit. Thus we identify S with fs. Superimposed on the

backscattering curves for samples W01 - W04 are additional Mie-theory estimates for backscattering

coefficient S as a function of wavelength, based on Ref. [10, Fig. 1 and Eq. (1)]. The measurements

and theoretical estimates are in reasonable, but not precise, agreement.

At the longer infrared wavelengths, the measured backscattering declines more slowly than

the theoretical values. (The theoretical values are approaching a Rayleigh regime in which S is

proportional to the inverse fourth power of wavelength.) A plausible reason is the clumping of

pigment particles. It is known that such clumping can raise the near-infrared reflectance [11].

Physically, the light scattering is due to the difference between the refractive index of the rutile

particles (2.7) and that of the surrounding transparent medium (1.5). At high pigment volume

concentrations, the presence of numerous nearby rutile particles raises the effective refractive index

of the surrounding medium, and thereby reduces the efficiency of scattering. This fall in scattering

efficiency is termed pigment crowding [12].

Rutile is a direct bandgap semiconductor and therefore has a very abrupt transition from

low absorption to high absorption that occurs at 400 nm, the boundary between the visible and

ultraviolet regions. For wavelengths below 400 nm (photon energies above 3.1 eV), the absorption is

so strong that our data saturate, except in the case of the highly dilute (2% PVC) sample W04. At

wavelengths above 400 nm, absorption is weak; most of the spectral features may be attributed to

the binders used. One of the three white pigments (W01) does have a slightly less abrupt transition

at 400 nm—there is an absorption “tail” near the band edge. This type of behavior is likely due

to impurities in the TiO2.

The sharp rise in absorptance near 300 nm shown for some films such as W04 is an artifact due

to the use of a polyester substrate.

3.2 Black/Brown

3.2.1 Carbon Black, Other Non-Selective Black

Carbon black, bone black (10% carbon black + 84% calcium phosphate), copper chromite black

(Cu Cr2 O4), and synthetic iron oxide black (Fe3O4 magnetite) (B01 - B04) are weakly scattering

pigments with strong absorption across the entire solar spectrum. Carbon black B01 is the most

strongly absorbing, but all four are “hot” pigments.

Most non-selective blacks are metallic in nature, with free electrons permitting many different

draft—do not quote, copy, or circulate 6/44 December 21, 2004

Page 7: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

allowed electronic transitions and therefore broad absorption spectra. Carbon black is a semi-metal

that has many free electrons, but not as many as present in highly conductive metals. Both the

iron oxide (magnetite) and copper chromite blacks are (electrically conducting) metals.

3.2.2 Chromium Iron Oxide Selective Black

Chromium iron oxide selective blacks (B05 - B11) are mixed metal oxides (chromium green-black

hematite, chromium green-black hematite modified, chromium iron oxide, or chromium iron nickel

black spinel) formulated to have NIR reflectance significantly higher than carbon and other non-

selective blacks. Some, such as chromium green-black hematite B06, appear more brown than

black. While these pigments have good scattering in the NIR, with a backscattering coefficient

at 1000 nm about half that of TiO2 white, they are also quite absorbing (K ≈ 50 mm−1) in the

short NIR. These pigments are visibly hiding (opaque to visible radiation) and NIR transmitting,

so use of a white background improves their NIR reflectances without significantly changing their

appearances.

Pure chromium oxide green (Cr2O3), pigment green 17, has the hematite crystal structure and

will be discussed further together with other green pigments. When some of the chromium atoms

are replaced by iron, a dark brownish black with the same crystal structure is obtained—i.e., a

traditional cool black pigment (e.g., B06-B11; B05 differs because it contains nickel and has a spinel

structure). It is sometimes designated as Cr-Fe hematite [13] or chromium green-black hematite

[14], and has been used to formulate infrared-reflective vinyl siding since about 1984 [15]. A number

of modern recipes for modified versions of this basic cool black incorporate minor amounts of a

variety of other metal oxides. One example is the use of a mixture of 93.5 g of chromium oxide,

0.94 g of iron oxide, 2.38 g of aluminum oxide, and 1.88 g of titanium oxide [16]. The mixture

is calcined at about 1100◦C to form hematite-structure crystallites of the resulting mixed metal

oxide.

3.2.3 Organic Selective Black

Perylene black (B12) is a weakly scattering, dyelike organic pigment that absorbs strongly in the

visible and very weakly in the NIR. Its sharp absorption decrease at 700 nm gives this pigment

a jet black appearance and an exceptionally high NIR reflectance (0.85) when applied over white.

Perylene pigments exhibit excellent lightfastness and weatherfastness, but their basic compound

draft—do not quote, copy, or circulate 7/44 December 21, 2004

Page 8: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

(dianhydride of tetracarboxylic acid) may or may not be fast to alkali; references [4] and [2] disagree

on the latter point.

3.2.4 Iron Oxide Brown

Iron oxide browns (B13 - B15) such as burnt sienna, raw sienna, and raw umber exhibit strong

absorption in part of the visible spectrum and low absorption in the NIR. These can provide

effective cool brown coatings if given a white background, though this will make some (e.g., burnt

sienna B13) appear reddish. These browns are “natural” and can be expected to contain various

impurities.

3.2.5 Other Brown

Other browns characterized (B16 - B21) include iron titanium (Fe-Ti) brown spinel, manganese

antimony titanium buff rutile, and zinc iron chromite brown spinel. These mixed-metal oxides

have strong absorption in most or all of the visible spectrum, plus weak absorption and modest

scattering in the NIR. A white undercoating improves the NIR reflectance of all browns, but brings

out red tones in iron titanium brown spinels B16 and B17.

The cool Fe-Ti browns (B16 - B18) have spinel crystal structure and basic formula Fe2TiO4

[14, 17]. Despite the presence of Fe2+ ions, the infrared absorption of this material is weak. (In

many materials, the Fe2+ ion is associated with infrared absorption [18, 19]; see also our data for

Fe3O4. The current data demonstrate that the absorption spectra also depend on the environment

of the Fe2+ ion.) We also note that while B17 and B18 are nominally the same material, the details

of the absorption are different.

We have not yet characterized a synthetic iron oxide hydrate brown (e.g., FeOOH).

3.3 Blue/Purple

3.3.1 Cobalt Aluminate Blue, Cobalt Chromite Blue

Cobalt aluminate blue (nominally CoAl2O4, but usually deficient in Co [3]; U01 - U05) and cobalt

chromite blue (Co[Al,Cr]2O4; U06 - U09) derive their appearances from modest scattering (S ≈

30 mm−1) in the blue (400 - 500 nm) and strong absorption (K ≈ 150 mm−1) in rest of the visible

spectrum. They have very low absorption in the short NIR, but exhibit an undesirable absorption

band in 1200 - 1600 nm range, which contains 17% of the NIR energy. A white background

draft—do not quote, copy, or circulate 8/44 December 21, 2004

Page 9: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

dramatically increases NIR reflectance but makes some (e.g., cobalt aluminum blue spinel U02)

much lighter in color.

3.3.2 Iron Blue

Iron (a.k.a. Prussian or Milori) blue (U10) is a weakly scattering pigment with strong absorption

in the visible and short NIR, and weak absorption at longer wavelengths. It appears black and

has little NIR reflectance over a black background, but looks blue and has achieves a modest NIR

reflectance (0.25) over a white background. It is not ideal for cool coating formulation.

3.3.3 Ultramarine Blue

Ultramarine blue (U11), a complex silicate of sodium and aluminum with sulfur, is a weakly scat-

tering pigment with some absorption in the short NIR. If sparingly used, it can impart absorption

in the yellow spectral region without introducing a great deal of NIR absorption. This is a durable

inorganic pigment with some sensitivity to acid [2].

While most colored inorganic pigments contain a transition metal such as Fe, Cr, Ni, Mn, and

Co, ultramarine blue is unusual. It is a mixed oxide of Na, Si, and Al, with a small amount of

sulfur (Na7.5Si6Al6O24S4.5). The metal oxide skeleton forms an open clathrate sodalite structure

that stabilizes S−3 ions in cages to form the chromophores [3, section 3.5] [20]. Thus isolated S3

molecules with an attached unpaired electron cause the light absorption in the 500-700 nm range,

producing the blue color. The refractive index of ultramarine blue is not very different from the

typical matrix value of 1.5 [3, section 3.5], so the pigment causes little scattering.

3.3.4 Phthalocyanine Blue

Copper phthalocyanine blue (U12 - U13) is a weakly scattering, dyelike pigment with strong

absorption in the 500 - 800 nm range and weak absorption in the rest of the visible and NIR.

Phthalo blue appears black and has minimal NIR reflectance over a black background, but looks

blue and achieves a high NIR reflectance (0.63) over a white background (U12). It is durable and

lightfast, but as an organic pigment it is less chemically stable than (high temperature) calcined

mixed metal oxides such as the cobalt aluminates and chromites. General information on the

structure and properties of phthalocyanines is available in [21]. The refractive index varies with

wavelength, and exceeds 2 in the short wavelength part of the infrared spectrum [22]. Therefore

draft—do not quote, copy, or circulate 9/44 December 21, 2004

Page 10: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

the weak scattering we observe in our samples indicates that the particle size is quite small. The

pigment handbook indicates a typical particle diameter of 120 nm [2], which is consistent with our

data.

3.3.5 Dioxazine Purple

Dioxazine purple (U14) is an organic optically similar to phthalo blue, but even more absorbing in

the visible and less absorbing in the NIR. It is nearly ideal for formulation of dark NIR-transparent

layers, but is subject to the chemical stability considerations noted above for phthalo blue.

3.4 Green

3.4.1 Chromium Oxide Green, Modified Chromium Oxide Green

Chromium oxide green Cr2O3 (G01 - G02) exhibits strong scattering alternating with strong

absorption across the visible spectrum, and strong scattering and mild absorption in the NIR.

Since the pigment is almost opaque in the visible, a thin layer of chromium oxide green over a white

background yields a medium-green coating with good NIR reflectance (0.57 for 12-µm thick film

G02). The modified chromium oxide green (G03) is mostly chromium oxide, with small amounts

of iron oxide, titanium dioxide, and aluminum oxide [16]. A layer of the modified chromium oxide

green over a white background produces a medium green with excellent NIR reflectance (0.71).

Cr2O3 green is often mentioned as an infrared-reflective pigment that is useful for simulating

the high infrared reflectance of chlorophyll in plant leaves. Indeed, a high IR reflectance is observed.

However, our data for sample films G01 and G02 do show that there is a broadband absorption of

about 10 mm−1 in the infrared. While our measurements of absorptance coefficient are not precise

for low absorptances, this value is clearly distinct from zero. Pure Cr2O3, fired in air, tends to

become slightly rich in oxygen, which results in p-type semiconducting behavior [23, 24]. Thus it

is possible that the broadband IR absorption of Cr2O3 is due to free carrier absorption by mobile

holes. Ref. [23] also reports that doping with Al can reduce the p-type conductivity in Cr2O3, so

it seems likely that doping with Al and/or certain other metals can also reduce the IR absorption.

The modified chromium oxide green G03 is similar to G01 and G02 Cr2O3. However its green

reflectance peak at 550 nm is somewhat smaller and its infrared absorption is clearly much smaller

than those of samples G01 and G02.

draft—do not quote, copy, or circulate 10/44 December 21, 2004

Page 11: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

3.4.2 Cobalt Chromite Green

Cobalt chromite green (G04 - G06) is similar to cobalt chromite blue, and is commonly used for

military camouflage.

3.4.3 Cobalt Titanate Green

Cobalt titanate green (G07 - G09) is similar to cobalt chromite green, but scatters more strongly

across the entire solar spectrum and has a pronounced absorption trough around 500 nm. A white

background makes cobalt teal G07 very NIR reflective (0.72) but also appear light blue (hence, the

name teal). The other two cobalt titanate greens (G08, G09) have respectable NIR reflectances

(0.47, 0.37) over white and appear medium green.

3.4.4 Phthalocyanine Green

Phthalocyanine green (G10 - G11) is similar to phthalocyanine blue, but absorbs more strongly

in the short NIR. Hence, the NIR reflectance of a thin phthalo green film over white (G04), while

respectable, is only 70% of that achieved by a thin layer of phthalo blue over white (0.45 vs. 0.63).

Note also that the error in predicted reflectance over white for G05 is large, as discussed in the

companion article [1].

3.5 Red/Orange

3.5.1 Iron Oxide Red

Iron oxide red (R01 - R04) derives its appearance from weak scattering and very strong absorption

in the 400 - 600 nm band. One of the iron oxide reds (R01) exhibits moderate absorption across

the NIR that may be due to doping of the Fe2O3 hematite crystals with impurities or result from

broadband absorbing impurity phases such as Fe3O4; it is not a cool pigment. However, the

remaining three iron oxide reds weakly absorb in the NIR and present both a dark red appearance

and good NIR reflectance (0.53 - 0.67) over a white background. R02 also has a respectable NIR

reflectance (0.38) over a black background, and has backscattering S comparable with TiO2 white

in the NIR.

draft—do not quote, copy, or circulate 11/44 December 21, 2004

Page 12: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

3.5.2 Cadmium Orange

Cadmium orange (R05) has weak scattering and very strong absorption in the 400 - 600 nm band,

followed by strong scattering and virtually no absorption at longer wavelengths. Applied over a

white background, it appears bright orange and has very high NIR reflectance (0.87)—essentially

the same as that of the white background. Cadmium orange (and cadmium yellow, below) are

Cd(S,Se) direct bandgap semiconductors. They exhibit sharp transitions between absorbing and

non-absorbing regions, and have high refractive indices (e.g., 2.5 for CdS) that lead to large scat-

tering coefficients. However, sensitivity to acid and the toxicity of cadmium limit their applications.

3.5.3 Organic Red

Organic red pigments (R06 - R09) such as acra burnt orange, acra red, monastral red, and naphthol

red light have weak scattering and strong (sometimes very strong) absorption up to 600 nm, followed

by very weak absorption and moderate-to-weak scattering at longer wavelengths. As a result they

yield a medium-red color and a very high NIR reflectance (0.82 - 0.87) when applied over a white

background. Masstones of acra burnt orange, acra red, and naphthol red light are all lightfast;

their tints are slightly less so [2].

3.6 Yellow

3.6.1 Iron Oxide Yellow

Iron oxide yellow FeOOH (Y01) is a brownish yellow similar to iron oxide red. It appears tan and

has a high NIR reflectance (0.70) when applied over a white background.

3.6.2 Cadmium Yellow

Cadmium yellow (Y02) is similar to cadmium orange. It appears bright yellow and has very high

NIR reflectance (0.87) over white.

3.6.3 Chrome Yellow

Chrome yellow PbCrO4 (Y03) is optically similar to cadmium yellow but exhibits a more gradual

reduction in absorptance. It appears bright yellow and achieves a high NIR reflectance (0.82) over

white. In some applications, the presence of lead and/or the Cr(VI) ion impose limitations.

draft—do not quote, copy, or circulate 12/44 December 21, 2004

Page 13: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

3.6.4 Chrome Titanate Yellow

Chrome titanate yellow (Y04 - Y07) is similar to chrome yellow, but scatters more strongly in the

NIR. Its scattering coefficient can exceed 100 mm−1 in the short NIR, suggesting that this pigment

might be used in place of titanium white to provide a background of high NIR reflectance. Over a

black background, chrome titanate yellow appears brown to green and has moderate to high NIR

reflectance (0.26 - 0.62). Over white, it appears orange to yellow and has very high NIR reflectance

(0.80 - 0.86). Y07 over black produces a medium brown with NIR reflectance 0.62.

The data for Y04 and Y05 illustrate how the scattering coefficient S varies with particle size

(manufacturer data). For smaller particles, the decrease in S with increasing wavelength is more

dramatic.

3.6.5 Nickel Titanate Yellow

Nickel titanate yellow (Y08 - Y11) is similar to chrome titanate yellow. Note that these compounds

usually also contain antimony in their formulation. Over white, it appears a muted yellow and yields

very high NIR reflectance (0.77-0.85); over black, it appears yellowish green and achieves high NIR

reflectance (0.42 - 0.64). Y11 is a particularly good candidate to use over black.

3.6.6 Strontium Chromate Yellow + Titanium Dioxide

Strontium chromate yellow (solids mass fraction 11%) mixed with titanium dioxide (solids mass

fraction 9%) in a paint primer (Y12) appears greenish brown over a black background, and pale

yellow over a white background. It has very low absorption (order 1 mm−1) and strong scattering

(order 100 mm−1) at 1000 nm, giving it a good NIR reflectance over black (0.38) and a very high

NIR reflectance over white (0.86).

3.6.7 Hansa Yellow, Diarylide Yellow

Hansa yellow (Y13) and diarylide yellow (Y14) are weakly scattering, dyelike organic pigments

with high absorption below 500 nm and very weak absorption elsewhere. Over white, they appear

bright yellow and orange-yellow, respectively, and yield very high NIR reflectance (0.87).

draft—do not quote, copy, or circulate 13/44 December 21, 2004

Page 14: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

3.7 Pearlescents

3.7.1 Mica + Titanium Dioxide

Mica flakes coated with titanium dioxide (P01 - P09) exhibit strong scattering and weak ab-

sorption, producing their colors (e.g., gold, blue, green, orange, red, violet, or bright white) via

thin-film interference. Some have scattering coefficients exceeding 100 mm−1 in the near infrared.

Over white, they appear white and have very high NIR reflectance (0.88 - 0.90); over black, they

achieve their named colors and have high NIR reflectance (0.35 - 0.54). The NIR reflectance of a

pearlescent film over an opaque white background can exceed that of the background.

3.7.2 Mica + Titanium Dioxide + Iron Oxide

Mica flakes coated with titanium dioxide and iron oxide (P10 - P14) are in most cases similar

to mica flakes coated with only titanium dioxide, but are more absorbing, less scattering, darker,

and somewhat less reflecting in the NIR. The exception is rich bronze P10, which has very high

absorption and would not make a suitable cool pigment.

3.8 Aluminum + Iron Oxide + Silicon Oxide

While not characterized in the current study, the solar spectral reflectances of single-layer (iron

oxide Fe2O3) or double layer (Fe2O3 on silicon dioxide SiO2) interference coatings on aluminum

flakes are presented in Refs. [25, 26].

3.9 Cool and Hot Pigments

A simple way to evaluate the utility of a coating for “cool” applications is to consider its NIR

absorptance and NIR transmittance. If the NIR absorptance is low, the pigment is cool. However, a

cool pigment that has high NIR transmittance will require an NIR-reflective background (typically

white or metallic) to produce an NIR-reflecting coating. Charts of the NIR absorptance and

transmittance of the members of each color family are shown in Fig. 3. An ideal cool pigment

would appear near the lower left corner of the chart, indicating that it is weakly absorbing, weakly

transmitting, and thus strongly reflecting in the NIR. Pigments appearing higher on the left side of

the chart will form a cool coating if given an NIR-reflective background. Use of pigments appearing

toward the right side of the chart (i.e., those with strong NIR absorption) should be avoided in

cool applications. It should be noted that these charts do not provide perfect comparisons of

draft—do not quote, copy, or circulate 14/44 December 21, 2004

Page 15: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

“cool” performance because they show the NIR properties of films of varying thickness (10 - 37

µm) and visible hiding (visible transmittance 0 - 0.43 for non-pearlescents, and 0.02 - 0.54 for the

pearlescents). Black-filled circles indicate visible transmittance less than 0.1; gray-filled circles,

between 0.1 and 0.3; and white-filled circles, above 0.3.

There are cool films in the white, yellow, brown/black, red/orange, blue/purple, and pearlescent

families with NIR absorptance less than 0.1. These films have moderate to high NIR transmittance

(0.25 - 0.85), indicating than they would require an NIR-reflective background to perform well.

There are also other slightly less cool black/brown, blue/purple, green, red/orange, yellow and

pearlescent films with NIR absorptance less than 0.2. These have somewhat lower NIR transmit-

tances (0.20 - 0.70), but are still far from NIR-opaque. A handful of pearlescent, blue/purple, green

and red/orange films, along with half a dozen brown/black films, have NIR absorptances exceeding

0.5 and may considered warm. A few nonselective blacks with NIR absorptance approaching unity

may be considered hot.

Other useful metrics for “coolness” are NIR reflectances over white and black backgrounds (Ta-

ble 1). Over a white background, the coolest pigments—i.e., those with NIR reflectances of at least

0.7—include members of the pearlescent, white, yellow, black/brown, red/orange, and blue/purple

color families: mica coated w/titanium dioxide (0.88-0.90), titanium dioxide white (0.87), cadmium

yellow (0.87), cadmium orange (0.87), Hansa yellow (0.87), diarylide yellow (0.87), organic selective

black (0.85), organic red (0.83-0.87), dioxazine purple (0.82), chrome titanate yellow (0.80-0.86),

nickel titanate yellow (0.77-0.85), modified chromium oxide green (0.71), and iron oxide yellow

(0.70). Other pigments with NIR reflectances of at least 0.5 include members of the blue/purple,

black/brown, and green color families: cobalt aluminum blue (0.61-0.70), cobalt chromite blue

(0.54-0.70), phthalo blue (0.55-0.63), cobalt chromite green (0.58-0.64), ultramarine blue (0.52),

chromium oxide green (0.50-0.57), and other brown (0.50-0.74). Over a black background, the

coolest pigments—in this case, those with NIR reflectances of at least 0.3—include members of

the white, yellow, pearlescent, and green color families: titanium dioxide white (0.43-0.65), nickel

titanate yellow (0.42-0.64), mica coated w/titanium dioxide (0.31-0.54), and chromium oxide green

(0.33-0.40).

draft—do not quote, copy, or circulate 15/44 December 21, 2004

Page 16: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

4 Conclusions

Our characterizations of the solar spectral optical properties of 87 predominately single-pigment

paint films with thicknesses ranging from 10 to 37 µm have identified cool pigments in the white, yel-

low, brown/black, red/orange, blue/purple, and pearlescent color groupings with NIR absorptances

less than 0.1, as well as other pigments in the black/brown, blue/purple, green, red/orange, yellow

and pearlescent groupings with NIR absorptances less than 0.2. Most are NIR transmitting and

require an NIR-reflecting background to form a cool coating. Over an opaque white background,

some pigments in the pearlescent, white, yellow, red/orange, green, and blue/purple families offer

NIR reflectances of at least 0.7, while other pigments in the blue/purple, black/brown, and green

color families have NIR reflectances of at least 0.5. A few members of the white, yellow, pearlescent,

and green color families have NIR scattering sufficiently strong to yield NIR reflectances of at least

0.3 (and up to 0.64) over a black background.

Use of pigments with NIR absorptances approaching unity (e.g., nonselective blacks) should

be minimized in cool coatings, as might be the use of certain pearlescent, blue/purple, green and

red/orange, and brown/black pigments with NIR absorptances exceeding 0.5.

Acknowledgements

This work was supported by the California Energy Commission (CEC) through its Public Interest

Energy Research Program (PIER), by the Laboratory Directed Research and Development (LDRD)

program at Lawrence Berkeley National Laboratory (LBNL), and by the Assistant Secretary for

Renewable Energy under Contract No. DE-AC03-76SF00098. The authors wish to thank CEC

Commissioner Arthur Rosenfeld and PIER program project managers Nancy Jenkins and Chris

Scruton for their support and advice. Special thanks go also to Mark Levine, director of the

Environmental Energy Technologies Division at LBNL, and Stephen Wiel, head of the Energy

Analysis Department at LBNL, for their encouragement and support in the initiation of this project.

We also wish to thank the following people for their assistance: Kevin Stone and Melvin Pomerantz,

LBNL; Michelle Vondran, John Buchko, and Robert Scichili, BASF Corporation; Richard Abrams,

Robert Blonski, Ivan Joyce, Ken Loye, and Ray Wing, Ferro Corporation; Tom Steger and Jeffrey

Nixon, Shepherd Color Company; and Robert Anderson, Liquitex Artist Materials.

draft—do not quote, copy, or circulate 16/44 December 21, 2004

Page 17: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

References

[1] Ronnen Levinson, Paul Berdahl, and Hashem Akbari. Solar spectral optical properties of

pigments, Part I: model for deriving scattering and absorption coefficients from transmittance

and reflectance measurements. Solar Energy Materials & Solar Cells (accepted), 2004.

[2] Peter A. Lewis. Pigment Handbook, volume I. John Wiley and Sons, 1988.

[3] Gunter Buxbaum. Industrial Inorganic Pigments. Wiley-VCH, 2nd edition, 1998.

[4] Willy Herbst and Klaus Hunger. Industrial Organic Pigments. VCH, 1993.

[5] Y.S. Touloukian, D.P. DeWitt, and R.S. Hernicz. Thermal Radiative Properties: Coatings,

volume 9 of Thermophysical Properties of Matter. IFI/Plenum, 1972.

[6] Ralph Mayer. The Artist’s Handbook of Materials and Techniques. Viking Penguin, 5th edition,

1991.

[7] Society of Dyers and Colourists and American Association of Textile Chemists and Colorists.

Colour index international: Fourth online edition. http://www.colour-index.org.

[8] B. R. Palmer, P. Stamatakis, C. G. Bohren, and G. C. Salzman. A multiple-scattering model

for opacifying particles in polymer films. Journal of Coatings Technology, 61(779):41–47, 1989.

[9] E.S. Thiele and R.H. French. Computation of light scattering by anisotropic spheres of rutile

titania. Adv. Mater., 10(15):1271–1276, 1998.

[10] Paul Berdahl. Pigments to reflect the infrared radation from fire. Journal of Heat Transfer,

117:355–358, May 1995.

[11] D.J. Rutherford and L.A. Simpson. Use of a floculation gradient monitor for quantifying

titanium dioxide pigment dispersion in dry and wet paint films. Journal of Coatings Technology,

57(724):75–84, May 1985.

[12] R.R. Blakey and J.E. Hall. Pigment Handbook, volume I, chapter A (“Titanium Dioxide”),

pages 1–42. John Wiley and Sons, 1988.

[13] Daniel Russell Swiler. Manganese vanadium oxide pigments. U.S. Patent 6,485,557 B1, Nov

26 2002.

draft—do not quote, copy, or circulate 17/44 December 21, 2004

Page 18: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

[14] Dry Color Manufacturer’s Association (DCMA). Classification and chemical description of

the complex inorganic color pigments. Dry Color Manufacturer’s Association, P.O. Box 20839,

Alexandria, VA 22320, 1991.

[15] E. B. Rabinovitch and J. W. Summers. Infrared reflecting vinyl polymer compositions. U.S.

Patent 4,424,292, 1984.

[16] Terrence R. Sliwinski, Richard A. Pipoly, and Robert P. Blonski. Infrared reflective color

pigment. U.S. Patent 6,174,360 B1, Jan 16 2001.

[17] V.A.M. Brabers. The electrical conduction of titanomagnetites. Physica B, 205:143–152, 1995.

[18] L.B. Glebov and E.N. Boulos. Absorption of iron and water in the Na2O-CaO-MgO-SiO2

glasses, II. Selection of intrinsic, ferric, and ferrous spectra in the visible and UV regions. J.

Non-Crystalline Solids, 242:49–62, 1998.

[19] R.N. Clark. Manual of Remote Sensing, volume 3 (“Remote sensing for the earth sciences”),

chapter 1 (“Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy”, pages 3–58.

John Wiley and Sons, http://speclab.cr.usgs.gov, 1999. Fig. 5.

[20] R.J.H. Clark and D.G. Cobbold. Characterization of sulfur radical anions in solutions of alkali

polysulfides in dimethylformamide and hexamethylphosphoramide and in the solid state in

ultramarine blue, green, and red. Inorganic Chemistry, 17:3169–3174, 1978.

[21] N.B. Mckeown. Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge

Univ. Press, Cambridge, UK, 1998.

[22] S. Wilbrandt O. Stenzel A. Stendal, U. Beckers and C. von Borczyskowski. The linear optical

constants of thin phthalocyanine and fullerite films from the near infrared to the UV spectral

regions: estimation of electronic oscillator strength values. J. Phys. B, 29:2589–2595, 1996.

[23] D. de Cogan and G.A. Lonergan. Electrical conduction in Fe2O3 and Cr2O3. Solid State

Communications, 15:1517–1519, 1974.

[24] Hamnett Goodenough. Landolt-Bornstein Numerical Data and Functional Relationships in

Science and Technology, New Series, Group III: Crystal and Solid-State Physics, volume

17g (Semiconductors: Physics of Non-Tetrahedrally Bonded Binary Compounds III), chap-

ter 9.15.2.5.1: Oxides of chromium, pages 242–247,548–551. Springer-Verlag, Berlin, 1984.

draft—do not quote, copy, or circulate 18/44 December 21, 2004

Page 19: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

[25] G.B. Smith, A. Gentle, P. Swift, A. Earp, and N. Mronga. Coloured paints based on coated

flakes of metal as the pigment, for enhanced solar reflectance and cooler interiors: description

and theory. Solar Energy Materials & Solar Cells, 79(2):163–177, 2003.

[26] G.B. Smith, A. Gentle, P. Swift, A. Earp, and N. Mronga. Coloured paints based on iron oxide

and solicon oxide coated flakes of aluminium as the pigment, for energy efficient paint: optical

and thermal experiements. Solar Energy Materials & Solar Cells, 79(2):179–197, 2003.

draft—do not quote, copy, or circulate 19/44 December 21, 2004

Page 20: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

Cat

egor

yR

OW

nir

RO

Bnir

Tvis

δ(µm

)Film

Codes

tita

nium

diox

ide

whi

te0.

87-0

.88

0.24

-0.6

50.

10-0

.42

17-2

9W

01-W

04ca

rbon

blac

k0.

05-0

.06

0.04

-0.0

40.

03-0

.07

16-1

9B

01-B

02ot

her

non-

sele

ctiv

ebl

ack

0.04

-0.0

50.

04-0

.05

0.00

-0.0

720

-24

B03

-B04

chro

miu

mir

onox

ide

sele

ctiv

ebl

ack

0.23

-0.4

80.

11-0

.35

0.00

-0.1

519

-26

B05

-B11

orga

nic

sele

ctiv

ebl

ack

0.85

0.10

0.01

23B

12ir

onox

ide

brow

n0.

47-0

.61

0.06

-0.2

70.

03-0

.24

14-2

6B

13-B

15ot

her

brow

n0.

50-0

.74

0.22

-0.4

00.

01-0

.24

17-2

8B

16-B

21co

balt

alum

inat

ebl

ue0.

62-0

.71

0.09

-0.2

00.

16-0

.28

16-2

3U

01-U

05co

balt

chro

mit

ebl

ue0.

55-0

.70

0.10

-0.2

50.

05-0

.28

16-2

6U

06-U

09ir

onbl

ue0.

250.

050.

2712

U10

ultr

amar

ine

blue

0.52

0.05

0.20

23U

11ph

thal

ocya

nine

blue

0.55

-0.6

30.

06-0

.08

0.21

-0.2

214

-26

U12

-U13

diox

azin

epu

rple

0.82

0.05

0.21

10U

14ch

rom

ium

oxid

egr

een

0.50

-0.5

70.

33-0

.40

0.00

-0.0

112

-26

G01

-G02

mod

ified

chro

miu

mox

ide

gree

n0.

710.

220.

2223

G03

coba

ltch

rom

ite

gree

n0.

58-0

.64

0.14

-0.1

80.

17-0

.28

13-2

3G

04-G

06co

balt

tita

nate

gree

n0.

37-0

.73

0.21

-0.3

00.

04-0

.22

10-2

4G

07-G

09ph

thal

ocya

nine

gree

n0.

42-0

.45

0.06

-0.0

70.

10-0

.20

13-2

5G

10-G

11ir

onox

ide

red

0.31

-0.6

70.

19-0

.38

0.00

-0.0

813

-26

R01

-R04

cadm

ium

oran

ge0.

870.

260.

1810

R05

orga

nic

red

0.83

-0.8

70.

06-0

.14

0.15

-0.3

211

-27

R06

-R09

iron

oxid

eye

llow

0.70

0.21

0.16

19Y

01ca

dmiu

mye

llow

0.87

0.29

0.25

11Y

02ch

rom

eye

llow

0.83

0.34

0.18

24Y

03ch

rom

eti

tana

teye

llow

0.80

-0.8

60.

26-0

.62

0.05

-0.2

317

-26

Y04

-Y07

nick

elti

tana

teye

llow

0.77

-0.8

70.

22-0

.64

0.09

-0.5

117

-27

Y08

-Y11

stro

ntiu

mch

rom

ate

yello

w+

tita

nium

diox

ide

0.86

0.38

0.21

19Y

12H

ansa

yello

w0.

870.

060.

4311

Y13

diar

ylid

eye

llow

0.87

0.08

0.35

12Y

14m

ica

+ti

tani

umdi

oxid

e0.

88-0

.90

0.35

-0.5

40.

31-0

.54

17-3

7P

01-P

09m

ica

+ti

tani

umdi

oxid

e+

iron

oxid

e0.

27-0

.85

0.25

-0.4

40.

02-0

.42

20-2

4P

10-P

14

Tab

le1:

Ran

ges

ofN

IRre

flect

ance

over

whi

te(R

OW

nir),

NIR

refle

ctan

ceov

erbl

ack

(RO

Wnir),

visi

ble

tran

smit

tanc

e(T

vis)

,an

dth

ickn

ess

(δ)

mea

sure

dfo

rpi

gmen

ted

film

sin

each

pigm

ent

cate

gory

.

draft—do not quote, copy, or circulate 20/44 December 21, 2004

Page 21: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

I. Observed Film Property

00.20.40.60.81

ref.

(s=

0.73

,u=

0.13

,v=

0.83

,n=

0.71

)tr

a. (

s=0.

17,u

=0.

00,v

=0.

10,n

=0.

25)

abs.

(s=

0.09

,u=

0.87

,v=

0.07

,n=

0.04

)

29 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

10−1

100

101

102

103

●S

est

imat

ed fr

om M

ie th

eory

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.69

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

00.20.40.60.81

27 µ

m/w

hite

mea

sure

dca

lcul

ated

26 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.88

, nb

=0.

65

χ w=

0.02

, χb

=0.

01

[W01

]

Inor

gani

c O

xide

Whi

te

Ishi

hara

Tip

aque

CR

−90

(PW

6)

15%

PV

C; i

mag

es (

1A,1

B)

{tita

nium

dio

xide

whi

te}

I. Observed Film Property

ref.

(s=

0.65

,u=

0.13

,v=

0.77

,n=

0.60

)tr

a. (

s=0.

28,u

=0.

00,v

=0.

21,n

=0.

38)

abs.

(s=

0.06

,u=

0.87

,v=

0.02

,n=

0.02

)

18 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)●

●S

est

imat

ed fr

om M

ie th

eory

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.78

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

16 µ

m/w

hite

mea

sure

dca

lcul

ated

16 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.88

, nb

=0.

49

χ w=

0.04

, χb

=0.

01

[W02

]

Tita

nium

Dio

xide

Whi

te

Tita

nium

Dio

xide

(P

W 6

)

9% P

VC

; im

ages

(1C

,1D

)

{tita

nium

dio

xide

whi

te}

I. Observed Film Property

ref.

(s=

0.73

,u=

0.13

,v=

0.85

,n=

0.68

)tr

a. (

s=0.

20,u

=0.

00,v

=0.

11,n

=0.

28)

abs.

(s=

0.08

,u=

0.87

,v=

0.04

,n=

0.04

)

24 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

●S

est

imat

ed fr

om M

ie th

eory

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.83

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

25 µ

m/w

hite

mea

sure

dca

lcul

ated

26 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.88

, nb

=0.

61

χ w=

0.03

, χb

=0.

02

[W03

]

Tita

nium

Whi

te (

i)

Tita

nium

Dio

xide

(P

W 6

)

23%

PV

C; i

mag

es (

1E,1

F)

{tita

nium

dio

xide

whi

te}

I. Observed Film Property

ref.

(s=

0.46

,u=

0.13

,v=

0.55

,n=

0.41

)tr

a. (

s=0.

48,u

=0.

06,v

=0.

42,n

=0.

57)

abs.

(s=

0.07

,u=

0.81

,v=

0.03

,n=

0.02

)

17 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

●S

est

imat

ed fr

om M

ie th

eory

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.80

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

19 µ

m/w

hite

mea

sure

dca

lcul

ated

19 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.87

, nb

=0.

24

χ w=

0.03

, χb

=0.

01

[W04

]

Tita

nium

Whi

te (

ii)

Tita

nium

Dio

xide

(P

W 6

)

2% P

VC

; im

ages

(1G

,1H

)

{tita

nium

dio

xide

whi

te}

Figure 1: (i/xxi) Measurements and model calculations for 87 predominately single-pigment films. Shown from topto bottom are (I) measured reflectance, transmittance, and absorptance of film with void background; (II) Kubelka-Munkbackscattering and absorption coefficients S and K, and non-spectral forward scattering ratio σ; and (III) measured andcomputed film reflectances over white [w] and black [b] backgrounds, along with measured NIR reflectance n and RMS error χ.Also listed are pigment identification code; paint name; pigment name; pigment volume concentration (PVC); pigment particlesize, if known; and location of images in Fig. 2.

draft—do not quote, copy, or circulate 21/44 December 21, 2004

Page 22: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

I. Observed Film Property

00.20.40.60.81

ref.

(s=

0.04

,u=

0.04

,v=

0.04

,n=

0.04

)tr

a. (

s=0.

09,u

=0.

01,v

=0.

03,n

=0.

15)

abs.

(s=

0.87

,u=

0.95

,v=

0.93

,n=

0.81

)

19 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

10−1

100

101

102

103

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.99

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

00.20.40.60.81

19 µ

m/w

hite

mea

sure

dca

lcul

ated

18 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.05

, nb

=0.

04

χ w=

0.01

, χb

=0.

00

[B01

]

Car

bon

Bla

ck

Am

orph

ous

Car

bon

Bla

ck (

PB

k 7)

0.5%

PV

C; i

mag

es (

2A,2

B)

{car

bon

blac

k}

I. Observed Film Property

ref.

(s=

0.04

,u=

0.04

,v=

0.04

,n=

0.04

)tr

a. (

s=0.

15,u

=0.

03,v

=0.

07,n

=0.

22)

abs.

(s=

0.81

,u=

0.93

,v=

0.89

,n=

0.73

)

16 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)ab

sorp

tion

(K)

back

scat

terin

g (S

)

σ=

0.97

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

16 µ

m/w

hite

mea

sure

dca

lcul

ated

16 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.06

, nb

=0.

04

χ w=

0.00

, χb

=0.

00

[B02

]

Ivor

y B

lack

Am

orph

ous

Cha

rred

−Bon

e C

arbo

n (P

Bk

9)

18%

PV

C; i

mag

es (

2C,2

D)

{car

bon

blac

k}

I. Observed Film Property

ref.

(s=

0.05

,u=

0.04

,v=

0.04

,n=

0.05

)tr

a. (

s=0.

00,u

=0.

00,v

=0.

00,n

=0.

01)

abs.

(s=

0.95

,u=

0.96

,v=

0.96

,n=

0.94

)

24 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.93

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

25 µ

m/w

hite

mea

sure

dca

lcul

ated

24 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.05

, nb

=0.

05

χ w=

0.00

, χb

=0.

00

[B03

]

Cop

per

Chr

omite

Bla

ck

She

pher

d B

lack

1D

(P

Bk

28)

7% P

VC

; im

ages

(2E

,2F

)

{oth

er n

on−s

elec

tive

blac

k}

I. Observed Film Property

ref.

(s=

0.04

,u=

0.04

,v=

0.04

,n=

0.04

)tr

a. (

s=0.

07,u

=0.

07,v

=0.

07,n

=0.

08)

abs.

(s=

0.89

,u=

0.89

,v=

0.89

,n=

0.89

)

20 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.98

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

20 µ

m/w

hite

mea

sure

dca

lcul

ated

19 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.04

, nb

=0.

04

χ w=

0.00

, χb

=0.

00

[B04

]

Mar

s B

lack

Syn

thet

ic B

lack

Iron

Oxi

de (

PB

k 11

)

4% P

VC

; im

ages

(2G

,2H

)

{oth

er n

on−s

elec

tive

blac

k}

Figure 1: (ii/xxii) continued.

draft—do not quote, copy, or circulate 22/44 December 21, 2004

Page 23: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

I. Observed Film Property

00.20.40.60.81

ref.

(s=

0.10

,u=

0.05

,v=

0.05

,n=

0.15

)tr

a. (

s=0.

18,u

=0.

11,v

=0.

10,n

=0.

26)

abs.

(s=

0.71

,u=

0.84

,v=

0.86

,n=

0.59

)

22 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

10−1

100

101

102

103

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.83

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

00.20.40.60.81

21 µ

m/w

hite

mea

sure

dca

lcul

ated

23 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.23

, nb

=0.

11

χ w=

0.02

, χb

=0.

01

[B05

]

Chr

ome

Iron

Nic

kel B

lack

Spi

nel

She

pher

d B

lack

376

(P

Bk

30)

3% P

VC

; siz

e 0.

9 µm

; im

ages

(3A

,3B

)

{chr

omiu

m ir

on o

xide

sel

ectiv

e bl

ack}

I. Observed Film Property

ref.

(s=

0.16

,u=

0.05

,v=

0.05

,n=

0.26

)tr

a. (

s=0.

26,u

=0.

16,v

=0.

15,n

=0.

35)

abs.

(s=

0.58

,u=

0.79

,v=

0.80

,n=

0.39

)

24 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)ab

sorp

tion

(K)

back

scat

terin

g (S

)

σ=

0.81

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

23 µ

m/w

hite

mea

sure

dca

lcul

ated

23 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.40

, nb

=0.

17

χ w=

0.03

, χb

=0.

00

[B06

]

Chr

omiu

m G

reen

−Bla

ck H

emat

ite

She

pher

d B

lack

10C

909

(PG

17)

3% P

VC

; siz

e 1.

1 µm

; im

ages

(3C

,3D

)

{chr

omiu

m ir

on o

xide

sel

ectiv

e bl

ack}

I. Observed Film Property

ref.

(s=

0.23

,u=

0.05

,v=

0.06

,n=

0.38

)tr

a. (

s=0.

08,u

=0.

00,v

=0.

00,n

=0.

16)

abs.

(s=

0.69

,u=

0.95

,v=

0.94

,n=

0.45

)

19 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.78

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

22 µ

m/w

hite

mea

sure

dca

lcul

ated

20 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.46

, nb

=0.

35

χ w=

0.03

, χb

=0.

01

[B07

]

Chr

omiu

m G

reen

−Bla

ck H

emat

ite M

odifi

ed (

i)

Fer

ro B

lack

V−7

97

7% P

VC

; im

ages

(3E

,3F

)

{chr

omiu

m ir

on o

xide

sel

ectiv

e bl

ack}

I. Observed Film Property

ref.

(s=

0.18

,u=

0.05

,v=

0.05

,n=

0.31

)tr

a. (

s=0.

09,u

=0.

01,v

=0.

01,n

=0.

17)

abs.

(s=

0.72

,u=

0.95

,v=

0.94

,n=

0.52

)

26 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.76

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

27 µ

m/w

hite

mea

sure

dca

lcul

ated

28 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.37

, nb

=0.

28

χ w=

0.01

, χb

=0.

00

[B08

]

Chr

omiu

m G

reen

−Bla

ck H

emat

ite M

odifi

ed (

ii)

Fer

ro B

lack

V−7

99

7% P

VC

; im

ages

(3G

,3H

)

{chr

omiu

m ir

on o

xide

sel

ectiv

e bl

ack}

Figure 1: (iii/xxii) continued.

draft—do not quote, copy, or circulate 23/44 December 21, 2004

Page 24: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

I. Observed Film Property

00.20.40.60.81

ref.

(s=

0.18

,u=

0.05

,v=

0.05

,n=

0.29

)tr

a. (

s=0.

17,u

=0.

05,v

=0.

05,n

=0.

29)

abs.

(s=

0.65

,u=

0.90

,v=

0.90

,n=

0.42

)

20 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

10−1

100

101

102

103

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.87

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

00.20.40.60.81

22 µ

m/w

hite

mea

sure

dca

lcul

ated

19 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.43

, nb

=0.

17

χ w=

0.04

, χb

=0.

05

[B09

]

Chr

omiu

m G

reen

−Bla

ck H

emat

ite M

odifi

ed (

iii)

Fer

ro B

lack

V−7

99

6% P

VC

; im

ages

(4A

,4B

)

{chr

omiu

m ir

on o

xide

sel

ectiv

e bl

ack}

I. Observed Film Property

ref.

(s=

0.22

,u=

0.05

,v=

0.06

,n=

0.37

)tr

a. (

s=0.

08,u

=0.

00,v

=0.

00,n

=0.

16)

abs.

(s=

0.70

,u=

0.95

,v=

0.94

,n=

0.47

)

22 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)ab

sorp

tion

(K)

back

scat

terin

g (S

)

σ=

0.85

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

27 µ

m/w

hite

mea

sure

dca

lcul

ated

24 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.42

, nb

=0.

33

χ w=

0.02

, χb

=0.

01

[B10

]

Chr

omiu

m Ir

on O

xide

(i)

She

pher

d B

lack

411

(P

Br

29)

7% P

VC

; siz

e 0.

6 µm

; im

ages

(4C

,4D

)

{chr

omiu

m ir

on o

xide

sel

ectiv

e bl

ack}

I. Observed Film Property

ref.

(s=

0.19

,u=

0.05

,v=

0.06

,n=

0.31

)tr

a. (

s=0.

20,u

=0.

05,v

=0.

05,n

=0.

35)

abs.

(s=

0.61

,u=

0.90

,v=

0.90

,n=

0.34

)

22 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.81

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

22 µ

m/w

hite

mea

sure

dca

lcul

ated

24 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.48

, nb

=0.

22

χ w=

0.02

, χb

=0.

01

[B11

]

Chr

omiu

m Ir

on O

xide

(ii)

She

pher

d B

lack

411

(P

Br

29)

3% P

VC

; siz

e 0.

6 µm

; im

ages

(4E

,4F

)

{chr

omiu

m ir

on o

xide

sel

ectiv

e bl

ack}

I. Observed Film Property

ref.

(s=

0.13

,u=

0.04

,v=

0.05

,n=

0.21

)tr

a. (

s=0.

39,u

=0.

03,v

=0.

01,n

=0.

74)

abs.

(s=

0.48

,u=

0.93

,v=

0.93

,n=

0.05

)

23 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.75

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

20 µ

m/w

hite

mea

sure

dca

lcul

ated

19 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.85

, nb

=0.

10

χ w=

0.05

, χb

=0.

01

[B12

]

Per

ylen

e B

lack

BA

SF

Pal

ioge

n B

lack

L00

86 (

PB

32)

6% P

VC

; im

ages

(4G

,4H

)

{org

anic

sel

ectiv

e bl

ack}

Figure 1: (iv/xxii) continued.

draft—do not quote, copy, or circulate 24/44 December 21, 2004

Page 25: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

I. Observed Film Property

00.20.40.60.81

ref.

(s=

0.17

,u=

0.05

,v=

0.10

,n=

0.24

)tr

a. (

s=0.

37,u

=0.

00,v

=0.

14,n

=0.

60)

abs.

(s=

0.46

,u=

0.95

,v=

0.76

,n=

0.16

)

16 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

10−1

100

101

102

103

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.83

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

00.20.40.60.81

18 µ

m/w

hite

mea

sure

dca

lcul

ated

17 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.61

, nb

=0.

12

χ w=

0.03

, χb

=0.

01

[B13

]

Bur

nt S

ienn

a

Cal

cine

d N

atur

al Ir

on O

xide

(P

Br

7)

13%

PV

C; i

mag

es (

5A,5

B)

{iron

oxi

de b

row

n}

I. Observed Film Property

ref.

(s=

0.25

,u=

0.05

,v=

0.16

,n=

0.34

)tr

a. (

s=0.

18,u

=0.

00,v

=0.

03,n

=0.

32)

abs.

(s=

0.57

,u=

0.95

,v=

0.81

,n=

0.34

)

26 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)ab

sorp

tion

(K)

back

scat

terin

g (S

)

σ=

0.80

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

28 µ

m/w

hite

mea

sure

dca

lcul

ated

29 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.47

, nb

=0.

27

χ w=

0.01

, χb

=0.

01

[B14

]

Raw

Sie

nna

Nat

ural

Iron

Oxi

de (

PB

r 7)

20%

PV

C; i

mag

es (

5C,5

D)

{iron

oxi

de b

row

n}

I. Observed Film Property

ref.

(s=

0.10

,u=

0.04

,v=

0.07

,n=

0.13

)tr

a. (

s=0.

45,u

=0.

01,v

=0.

24,n

=0.

67)

abs.

(s=

0.45

,u=

0.95

,v=

0.69

,n=

0.20

)

14 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.86

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

14 µ

m/w

hite

mea

sure

dca

lcul

ated

15 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.47

, nb

=0.

06

χ w=

0.03

, χb

=0.

01

[B15

]

Raw

Um

ber

Nat

ural

Iron

Oxi

de w

/Man

gane

se (

PB

r 7)

11%

PV

C; i

mag

es (

5E,5

F)

{iron

oxi

de b

row

n}

I. Observed Film Property

ref.

(s=

0.32

,u=

0.05

,v=

0.25

,n=

0.41

)tr

a. (

s=0.

36,u

=0.

05,v

=0.

24,n

=0.

49)

abs.

(s=

0.31

,u=

0.89

,v=

0.51

,n=

0.09

)

22 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.80

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

23 µ

m/w

hite

mea

sure

dca

lcul

ated

24 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.74

, nb

=0.

27

χ w=

0.03

, χb

=0.

01

[B16

]

Iron

Tita

nium

Bro

wn

Spi

nel (

i)

She

pher

d B

row

n 15

6 (P

Bk

12)

5% P

VC

; siz

e 0.

9 µm

; im

ages

(5G

,5H

)

{oth

er b

row

n}

Figure 1: (v/xxii) continued.

draft—do not quote, copy, or circulate 25/44 December 21, 2004

Page 26: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

I. Observed Film Property

00.20.40.60.81

ref.

(s=

0.27

,u=

0.06

,v=

0.16

,n=

0.38

)tr

a. (

s=0.

29,u

=0.

09,v

=0.

19,n

=0.

40)

abs.

(s=

0.43

,u=

0.86

,v=

0.65

,n=

0.21

)

25 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

10−1

100

101

102

103

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.81

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

00.20.40.60.81

22 µ

m/w

hite

mea

sure

dca

lcul

ated

23 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.61

, nb

=0.

26

χ w=

0.02

, χb

=0.

01

[B17

]

Iron

Tita

nium

Bro

wn

Spi

nel (

ii)

She

pher

d B

row

n 8

(PB

k 12

)

5% P

VC

; siz

e 1.

2 µm

; im

ages

(6A

,6B

)

{oth

er b

row

n}

I. Observed Film Property

ref.

(s=

0.36

,u=

0.05

,v=

0.26

,n=

0.48

)tr

a. (

s=0.

23,u

=0.

00,v

=0.

12,n

=0.

35)

abs.

(s=

0.41

,u=

0.95

,v=

0.63

,n=

0.17

)

28 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)ab

sorp

tion

(K)

back

scat

terin

g (S

)

σ=

0.65

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

26 µ

m/w

hite

mea

sure

dca

lcul

ated

27 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.68

, nb

=0.

40

χ w=

0.02

, χb

=0.

01

[B18

]

Iron

Tita

nium

Bro

wn

Spi

nel (

iii)

She

pher

d G

olde

n B

row

n 19

(P

Bk

12)

9% P

VC

; siz

e 1.

2 µm

; im

ages

(6C

,6D

)

{oth

er b

row

n}

I. Observed Film Property

ref.

(s=

0.26

,u=

0.06

,v=

0.11

,n=

0.40

)tr

a. (

s=0.

27,u

=0.

06,v

=0.

09,n

=0.

43)

abs.

(s=

0.48

,u=

0.88

,v=

0.79

,n=

0.17

)

17 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.83

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

19 µ

m/w

hite

mea

sure

dca

lcul

ated

20 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.65

, nb

=0.

27

χ w=

0.03

, χb

=0.

02

[B19

]

Man

gane

se A

ntim

ony

Tita

nium

Buf

f Rut

ile

Fer

ro C

hest

nut B

row

n V

−103

64 (

PY

164

)

3% P

VC

; siz

e 1.

4 µm

; im

ages

(6E

,6F

)

{oth

er b

row

n}

I. Observed Film Property

ref.

(s=

0.22

,u=

0.05

,v=

0.09

,n=

0.35

)tr

a. (

s=0.

17,u

=0.

00,v

=0.

01,n

=0.

32)

abs.

(s=

0.60

,u=

0.95

,v=

0.89

,n=

0.33

)

23 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.81

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

22 µ

m/w

hite

mea

sure

dca

lcul

ated

21 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.50

, nb

=0.

27

χ w=

0.02

, χb

=0.

01

[B20

]

Zin

c Ir

on C

hrom

ite B

row

n S

pine

l (i)

She

pher

d B

row

n 12

(P

Br

33)

4% P

VC

; siz

e 0.

5 µm

; im

ages

(6G

,6H

)

{oth

er b

row

n}

Figure 1: (vi/xxii) continued.

draft—do not quote, copy, or circulate 26/44 December 21, 2004

Page 27: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

I. Observed Film Property

00.20.40.60.81

ref.

(s=

0.25

,u=

0.05

,v=

0.13

,n=

0.36

)tr

a. (

s=0.

31,u

=0.

08,v

=0.

17,n

=0.

45)

abs.

(s=

0.44

,u=

0.87

,v=

0.69

,n=

0.19

)

21 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

10−1

100

101

102

103

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.84

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

00.20.40.60.81

22 µ

m/w

hite

mea

sure

dca

lcul

ated

23 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.61

, nb

=0.

22

χ w=

0.03

, χb

=0.

01

[B21

]

Zin

c Ir

on C

hrom

ite B

row

n S

pine

l (ii)

She

pher

d B

row

n 15

7 (P

Br

33)

5% P

VC

; siz

e 1.

1 µm

; im

ages

(7A

,7B

)

{oth

er b

row

n}

I. Observed Film Property

ref.

(s=

0.20

,u=

0.20

,v=

0.15

,n=

0.23

)tr

a. (

s=0.

43,u

=0.

28,v

=0.

26,n

=0.

60)

abs.

(s=

0.37

,u=

0.53

,v=

0.59

,n=

0.17

)

16 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)ab

sorp

tion

(K)

back

scat

terin

g (S

)

σ=

0.82

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

24 µ

m/w

hite

mea

sure

dca

lcul

ated

23 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.64

, nb

=0.

11

χ w=

0.03

, χb

=0.

02

[U01

]

Cob

alt A

lum

inat

e B

lue

Spi

nel (

i)

Fer

ro B

lue

V−9

250

(PB

28)

9% P

VC

; siz

e 0.

6 µm

; im

ages

(7C

,7D

)

{cob

alt a

lum

inat

e bl

ue}

I. Observed Film Property

ref.

(s=

0.18

,u=

0.17

,v=

0.15

,n=

0.21

)tr

a. (

s=0.

45,u

=0.

24,v

=0.

27,n

=0.

63)

abs.

(s=

0.37

,u=

0.59

,v=

0.59

,n=

0.16

)

22 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.83

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

22 µ

m/w

hite

mea

sure

dca

lcul

ated

25 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.65

, nb

=0.

09

χ w=

0.01

, χb

=0.

01

[U02

]

Cob

alt A

lum

inat

e B

lue

Spi

nel (

ii)

She

pher

d B

lue

385

(PB

28)

9% P

VC

; siz

e 0.

4 µm

; im

ages

(7E

,7F

)

{cob

alt a

lum

inat

e bl

ue}

I. Observed Film Property

ref.

(s=

0.28

,u=

0.07

,v=

0.21

,n=

0.35

)tr

a. (

s=0.

38,u

=0.

11,v

=0.

28,n

=0.

48)

abs.

(s=

0.35

,u=

0.83

,v=

0.51

,n=

0.17

)

23 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.83

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

23 µ

m/w

hite

mea

sure

dca

lcul

ated

23 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.71

, nb

=0.

20

χ w=

0.02

, χb

=0.

02

[U03

]

Cob

alt A

lum

inat

e B

lue

Spi

nel (

iii)

She

pher

d B

lue

424

(PB

28)

6% P

VC

; siz

e 1.

4 µm

; im

ages

(7G

,7H

)

{cob

alt a

lum

inat

e bl

ue}

Figure 1: (vii/xxii) continued.

draft—do not quote, copy, or circulate 27/44 December 21, 2004

Page 28: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

I. Observed Film Property

00.20.40.60.81

ref.

(s=

0.20

,u=

0.20

,v=

0.16

,n=

0.23

)tr

a. (

s=0.

41,u

=0.

17,v

=0.

22,n

=0.

58)

abs.

(s=

0.40

,u=

0.63

,v=

0.62

,n=

0.19

)

23 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

10−1

100

101

102

103

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.78

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

00.20.40.60.81

24 µ

m/w

hite

mea

sure

dca

lcul

ated

25 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.62

, nb

=0.

12

χ w=

0.02

, χb

=0.

01

[U04

]

Cob

alt A

lum

inum

Blu

e

She

pher

d A

rtic

Blu

e 3A

(P

B 2

8)

9% P

VC

; im

ages

(8A

,8B

)

{cob

alt a

lum

inat

e bl

ue}

I. Observed Film Property

ref.

(s=

0.21

,u=

0.17

,v=

0.15

,n=

0.26

)tr

a. (

s=0.

34,u

=0.

11,v

=0.

16,n

=0.

51)

abs.

(s=

0.45

,u=

0.72

,v=

0.69

,n=

0.23

)

23 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)ab

sorp

tion

(K)

back

scat

terin

g (S

)

σ=

0.86

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

22 µ

m/w

hite

mea

sure

dca

lcul

ated

22 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.62

, nb

=0.

12

χ w=

0.02

, χb

=0.

01

[U05

]

Cob

alt B

lue

Oxi

des

of C

obal

t and

Alu

min

um (

PB

28)

14%

PV

C; i

mag

es (

8C,8

D)

{cob

alt a

lum

inat

e bl

ue}

I. Observed Film Property

ref.

(s=

0.26

,u=

0.29

,v=

0.19

,n=

0.32

)tr

a. (

s=0.

33,u

=0.

17,v

=0.

16,n

=0.

49)

abs.

(s=

0.40

,u=

0.54

,v=

0.65

,n=

0.19

)

23 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.85

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

23 µ

m/w

hite

mea

sure

dca

lcul

ated

23 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.68

, nb

=0.

18

χ w=

0.02

, χb

=0.

01

[U06

]

Cer

ulea

n B

lue

Cob

alt C

hrom

ite (

PB

36)

13%

PV

C; i

mag

es (

8E,8

F)

{cob

alt c

hrom

ite b

lue}

I. Observed Film Property

ref.

(s=

0.23

,u=

0.16

,v=

0.13

,n=

0.33

)tr

a. (

s=0.

21,u

=0.

03,v

=0.

05,n

=0.

36)

abs.

(s=

0.56

,u=

0.81

,v=

0.82

,n=

0.32

)

26 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.71

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

23 µ

m/w

hite

mea

sure

dca

lcul

ated

26 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.55

, nb

=0.

25

χ w=

0.02

, χb

=0.

02

[U07

]

Cob

alt C

hrom

ite B

lue

She

pher

d B

lue

190−

A (

PB

36)

8% P

VC

; im

ages

(8G

,8H

)

{cob

alt c

hrom

ite b

lue}

Figure 1: (viii/xxii) continued.

draft—do not quote, copy, or circulate 28/44 December 21, 2004

Page 29: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

I. Observed Film Property

00.20.40.60.81

ref.

(s=

0.19

,u=

0.14

,v=

0.12

,n=

0.26

)tr

a. (

s=0.

38,u

=0.

17,v

=0.

20,n

=0.

55)

abs.

(s=

0.43

,u=

0.68

,v=

0.68

,n=

0.19

)

16 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

10−1

100

101

102

103

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.86

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

00.20.40.60.81

17 µ

m/w

hite

mea

sure

dca

lcul

ated

15 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.64

, nb

=0.

12

χ w=

0.02

, χb

=0.

01

[U08

]

Cob

alt C

hrom

ite B

lue−

Gre

en S

pine

l (i)

Fer

ro B

lue

V−9

248

(PB

36)

4% P

VC

; im

ages

(9A

,9B

)

{cob

alt c

hrom

ite b

lue}

I. Observed Film Property

ref.

(s=

0.20

,u=

0.20

,v=

0.15

,n=

0.24

)tr

a. (

s=0.

46,u

=0.

26,v

=0.

28,n

=0.

63)

abs.

(s=

0.34

,u=

0.54

,v=

0.57

,n=

0.13

)

23 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)ab

sorp

tion

(K)

back

scat

terin

g (S

)

σ=

0.84

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

22 µ

m/w

hite

mea

sure

dca

lcul

ated

22 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.70

, nb

=0.

10

χ w=

0.02

, χb

=0.

01

[U09

]

Cob

alt C

hrom

ite B

lue−

Gre

en S

pine

l (ii)

She

pher

d B

lue

212

(PB

36)

4% P

VC

; siz

e 0.

6 µm

; im

ages

(9C

,9D

)

{cob

alt c

hrom

ite b

lue}

I. Observed Film Property

ref.

(s=

0.09

,u=

0.07

,v=

0.05

,n=

0.13

)tr

a. (

s=0.

46,u

=0.

39,v

=0.

20,n

=0.

68)

abs.

(s=

0.45

,u=

0.54

,v=

0.75

,n=

0.19

)

23 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.85

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

23 µ

m/w

hite

mea

sure

dca

lcul

ated

23 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.52

, nb

=0.

05

χ w=

0.02

, χb

=0.

02

[U10

]

Fre

nch

Ultr

amar

ine

Blu

e

Com

plex

Sili

cate

of N

a an

d A

l with

S (

PB

29)

24%

PV

C; i

mag

es (

9E,9

F)

{ultr

amar

ine

blue

}

I. Observed Film Property

ref.

(s=

0.09

,u=

0.06

,v=

0.06

,n=

0.13

)tr

a. (

s=0.

44,u

=0.

01,v

=0.

21,n

=0.

68)

abs.

(s=

0.47

,u=

0.94

,v=

0.74

,n=

0.20

)

14 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.78

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

13 µ

m/w

hite

mea

sure

dca

lcul

ated

14 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.63

, nb

=0.

08

χ w=

0.03

, χb

=0.

01

[U11

]

Pht

halo

Blu

e (i)

Cop

per

Pht

halo

cyan

ine

(PB

15)

18%

PV

C; i

mag

es (

9G,9

H)

{pht

halo

cyan

ine

blue

}

Figure 1: (ix/xxii) continued.

draft—do not quote, copy, or circulate 29/44 December 21, 2004

Page 30: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

I. Observed Film Property

00.20.40.60.81

ref.

(s=

0.08

,u=

0.05

,v=

0.05

,n=

0.10

)tr

a. (

s=0.

44,u

=0.

02,v

=0.

22,n

=0.

66)

abs.

(s=

0.48

,u=

0.93

,v=

0.72

,n=

0.23

)

26 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

10−1

100

101

102

103

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.82

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

00.20.40.60.81

23 µ

m/w

hite

mea

sure

dca

lcul

ated

23 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.55

, nb

=0.

06

χ w=

0.03

, χb

=0.

00

[U12

]

Pht

halo

Blu

e (ii

)

Toy

o Li

onel

BF

−282

01 (

PB

15)

5% P

VC

; im

ages

(10

A,1

0B)

{pht

halo

cyan

ine

blue

}

I. Observed Film Property

ref.

(s=

0.08

,u=

0.05

,v=

0.05

,n=

0.10

)tr

a. (

s=0.

55,u

=0.

16,v

=0.

21,n

=0.

87)

abs.

(s=

0.37

,u=

0.79

,v=

0.74

,n=

0.03

)

10 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)ab

sorp

tion

(K)

back

scat

terin

g (S

)

σ=

0.37

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

11 µ

m/w

hite

mea

sure

dca

lcul

ated

12 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.82

, nb

=0.

05

χ w=

0.04

, χb

=0.

01

[U13

]

Dio

xazi

ne P

urpl

e

Car

bazo

le D

ioxa

zine

(P

V 2

3 R

S)

13%

PV

C; i

mag

es (

10C

,10D

)

{dio

xazi

ne p

urpl

e}

I. Observed Film Property

ref.

(s=

0.06

,u=

0.06

,v=

0.05

,n=

0.08

)tr

a. (

s=0.

32,u

=0.

36,v

=0.

27,n

=0.

37)

abs.

(s=

0.61

,u=

0.58

,v=

0.68

,n=

0.55

)

12 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.87

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

12 µ

m/w

hite

mea

sure

dca

lcul

ated

11 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.25

, nb

=0.

05

χ w=

0.03

, χb

=0.

01

[U14

]

Pru

ssia

n B

lue

Milo

ri B

lue

(PB

27)

12%

PV

C; i

mag

es (

22E

,22F

)

{iron

blu

e}

I. Observed Film Property

ref.

(s=

0.29

,u=

0.06

,v=

0.14

,n=

0.45

)tr

a. (

s=0.

10,u

=0.

00,v

=0.

00,n

=0.

20)

abs.

(s=

0.60

,u=

0.94

,v=

0.86

,n=

0.36

)

26 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.79

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

26 µ

m/w

hite

mea

sure

dca

lcul

ated

24 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.50

, nb

=0.

40

χ w=

0.01

, χb

=0.

00

[G01

]

Chr

ome

Gre

en

Bay

er G

N−M

Chr

ome

Oxi

de G

reen

(P

G 1

7)

9% P

VC

; im

ages

(10

E,1

0F)

{chr

omiu

m o

xide

gre

en}

Figure 1: (x/xxii) continued.

draft—do not quote, copy, or circulate 30/44 December 21, 2004

Page 31: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

I. Observed Film Property

00.20.40.60.81

ref.

(s=

0.28

,u=

0.06

,v=

0.12

,n=

0.43

)tr

a. (

s=0.

18,u

=0.

00,v

=0.

01,n

=0.

34)

abs.

(s=

0.54

,u=

0.94

,v=

0.87

,n=

0.24

)

12 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

10−1

100

101

102

103

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.83

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

00.20.40.60.81

13 µ

m/w

hite

mea

sure

dca

lcul

ated

12 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.57

, nb

=0.

33

χ w=

0.03

, χb

=0.

01

[G02

]

Chr

omiu

m O

xide

Gre

en

Anh

ydro

us C

hrom

ium

Ses

quio

xide

(P

G 1

7)

16%

PV

C; i

mag

es (

10G

,10H

)

{chr

omiu

m o

xide

gre

en}

I. Observed Film Property

ref.

(s=

0.22

,u=

0.05

,v=

0.07

,n=

0.36

)tr

a. (

s=0.

37,u

=0.

18,v

=0.

22,n

=0.

51)

abs.

(s=

0.41

,u=

0.76

,v=

0.71

,n=

0.13

)

23 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)ab

sorp

tion

(K)

back

scat

terin

g (S

)

σ=

0.79

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

22 µ

m/w

hite

mea

sure

dca

lcul

ated

23 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.71

, nb

=0.

22

χ w=

0.03

, χb

=0.

01

[G03

]

Chr

omiu

m G

reen

−Bla

ck M

odifi

ed

Fer

ro C

amou

flage

Gre

en V

−126

50

5% P

VC

; siz

e 1.

1 µm

; im

ages

(11

A,1

1B)

{mod

ified

chr

omiu

m o

xide

gre

en}

I. Observed Film Property

ref.

(s=

0.21

,u=

0.12

,v=

0.13

,n=

0.30

)tr

a. (

s=0.

36,u

=0.

15,v

=0.

21,n

=0.

51)

abs.

(s=

0.42

,u=

0.73

,v=

0.67

,n=

0.19

)

23 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.79

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

23 µ

m/w

hite

mea

sure

dca

lcul

ated

22 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.64

, nb

=0.

17

χ w=

0.02

, χb

=0.

02

[G04

]

Cob

alt C

hrom

ite B

lue−

Gre

en S

pine

l (iii

)

She

pher

d G

reen

187

B (

PB

36)

4% P

VC

; siz

e 1.

2 µm

; im

ages

(11

C,1

1D)

{cob

alt c

hrom

ite g

reen

}

I. Observed Film Property

ref.

(s=

0.18

,u=

0.06

,v=

0.07

,n=

0.28

)tr

a. (

s=0.

41,u

=0.

22,v

=0.

28,n

=0.

54)

abs.

(s=

0.41

,u=

0.72

,v=

0.64

,n=

0.18

)

13 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.82

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

14 µ

m/w

hite

mea

sure

dca

lcul

ated

14 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.64

, nb

=0.

14

χ w=

0.02

, χb

=0.

02

[G05

]

Cob

alt C

hrom

ite G

reen

Spi

nel (

i)

Fer

ro C

amou

flage

Gre

en V

−126

00 (

PG

26)

5% P

VC

; siz

e 1.

8 µm

; im

ages

(11

E,1

1F)

{cob

alt c

hrom

ite g

reen

}

Figure 1: (xi/xxii) continued.

draft—do not quote, copy, or circulate 31/44 December 21, 2004

Page 32: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

I. Observed Film Property

00.20.40.60.81

ref.

(s=

0.19

,u=

0.06

,v=

0.07

,n=

0.30

)tr

a. (

s=0.

30,u

=0.

11,v

=0.

17,n

=0.

43)

abs.

(s=

0.51

,u=

0.83

,v=

0.76

,n=

0.27

)

23 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

10−1

100

101

102

103

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.82

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

00.20.40.60.81

22 µ

m/w

hite

mea

sure

dca

lcul

ated

23 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.58

, nb

=0.

18

χ w=

0.02

, χb

=0.

01

[G06

]

Cob

alt C

hrom

ite G

reen

Spi

nel (

ii)

She

pher

d G

reen

179

(P

G 2

6)

7% P

VC

; im

ages

(11

G,1

1H)

{cob

alt c

hrom

ite g

reen

}

I. Observed Film Property

ref.

(s=

0.33

,u=

0.07

,v=

0.26

,n=

0.41

)tr

a. (

s=0.

32,u

=0.

04,v

=0.

22,n

=0.

43)

abs.

(s=

0.35

,u=

0.89

,v=

0.52

,n=

0.16

)

10 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)ab

sorp

tion

(K)

back

scat

terin

g (S

)

σ=

0.84

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

11 µ

m/w

hite

mea

sure

dca

lcul

ated

14 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.73

, nb

=0.

30

χ w=

0.04

, χb

=0.

02

[G07

]

Cob

alt T

eal

Ligh

t Gre

en O

xide

(P

G 5

0)

10%

PV

C; i

mag

es (

12A

,12B

)

{cob

alt t

itana

te g

reen

}

I. Observed Film Property

ref.

(s=

0.22

,u=

0.05

,v=

0.13

,n=

0.31

)tr

a. (

s=0.

22,u

=0.

02,v

=0.

09,n

=0.

34)

abs.

(s=

0.56

,u=

0.93

,v=

0.78

,n=

0.35

)

22 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.84

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

22 µ

m/w

hite

mea

sure

dca

lcul

ated

22 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.47

, nb

=0.

21

χ w=

0.02

, χb

=0.

01

[G08

]

Cob

alt T

itana

te G

reen

Spi

nel (

i)

She

pher

d G

reen

223

(P

G 5

0)

5% P

VC

; siz

e 0.

8 µm

; im

ages

(12

C,1

2D)

{cob

alt t

itana

te g

reen

}

I. Observed Film Property

ref.

(s=

0.20

,u=

0.05

,v=

0.11

,n=

0.29

)tr

a. (

s=0.

14,u

=0.

01,v

=0.

04,n

=0.

23)

abs.

(s=

0.67

,u=

0.95

,v=

0.85

,n=

0.49

)

24 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.70

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

25 µ

m/w

hite

mea

sure

dca

lcul

ated

24 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.37

, nb

=0.

26

χ w=

0.03

, χb

=0.

01

[G09

]

Cob

alt T

itana

te G

reen

Spi

nel (

ii)

She

pher

d S

herw

ood

Gre

en 5

(P

G 5

0)

9% P

VC

; im

ages

(12

E,1

2F)

{cob

alt t

itana

te g

reen

}

Figure 1: (xii/xxii) continued.

draft—do not quote, copy, or circulate 32/44 December 21, 2004

Page 33: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

I. Observed Film Property

00.20.40.60.81

ref.

(s=

0.08

,u=

0.05

,v=

0.05

,n=

0.10

)tr

a. (

s=0.

38,u

=0.

00,v

=0.

20,n

=0.

55)

abs.

(s=

0.55

,u=

0.95

,v=

0.74

,n=

0.35

)

13 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

10−1

100

101

102

103

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.86

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

00.20.40.60.81

12 µ

m/w

hite

mea

sure

dca

lcul

ated

12 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.45

, nb

=0.

06

χ w=

0.06

, χb

=0.

01

[G10

]

Pht

halo

Gre

en (

i)

Chl

orin

ated

Cop

per

Pht

halo

cyan

ine

(PG

7)

13%

PV

C; i

mag

es (

12G

,12H

)

{pht

halo

cyan

ine

gree

n}

I. Observed Film Property

ref.

(s=

0.08

,u=

0.04

,v=

0.05

,n=

0.12

)tr

a. (

s=0.

27,u

=0.

00,v

=0.

10,n

=0.

45)

abs.

(s=

0.64

,u=

0.96

,v=

0.85

,n=

0.44

)

25 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)ab

sorp

tion

(K)

back

scat

terin

g (S

)

σ=

0.81

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

25 µ

m/w

hite

mea

sure

dca

lcul

ated

25 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.42

, nb

=0.

07

χ w=

0.10

, χb

=0.

01

[G11

]

Pht

halo

Gre

en (

ii)

Cla

riant

GT

−674

−D E

ndur

opht

hal G

reen

B (

PG

7)

4% P

VC

; im

ages

(13

A,1

3B)

{pht

halo

cyan

ine

gree

n}

I. Observed Film Property

ref.

(s=

0.20

,u=

0.05

,v=

0.10

,n=

0.29

)tr

a. (

s=0.

06,u

=0.

00,v

=0.

00,n

=0.

12)

abs.

(s=

0.74

,u=

0.95

,v=

0.89

,n=

0.59

)

26 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.71

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

24 µ

m/w

hite

mea

sure

dca

lcul

ated

23 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.31

, nb

=0.

28

χ w=

0.01

, χb

=0.

01

[R01

]

Red

Iron

Oxi

de (

i)

Bay

er B

ayfe

rrox

662

2 Ir

on O

xide

(P

R 1

01)

9% P

VC

; im

ages

(13

C,1

3D)

{iron

oxi

de r

ed}

I. Observed Film Property

ref.

(s=

0.29

,u=

0.04

,v=

0.14

,n=

0.43

)tr

a. (

s=0.

12,u

=0.

00,v

=0.

00,n

=0.

24)

abs.

(s=

0.59

,u=

0.96

,v=

0.85

,n=

0.33

)

23 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.73

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

28 µ

m/w

hite

mea

sure

dca

lcul

ated

24 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.53

, nb

=0.

38

χ w=

0.02

, χb

=0.

01

[R02

]

Red

Iron

Oxi

de (

ii)

Ele

men

tis R

O−3

097

(PR

101

)

8% P

VC

; im

ages

(13

E,1

3F)

{iron

oxi

de r

ed}

Figure 1: (xiii/xxii) continued.

draft—do not quote, copy, or circulate 33/44 December 21, 2004

Page 34: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

I. Observed Film Property

00.20.40.60.81

ref.

(s=

0.24

,u=

0.05

,v=

0.15

,n=

0.33

)tr

a. (

s=0.

31,u

=0.

01,v

=0.

08,n

=0.

54)

abs.

(s=

0.45

,u=

0.95

,v=

0.77

,n=

0.13

)

13 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

10−1

100

101

102

103

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.82

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

00.20.40.60.81

13 µ

m/w

hite

mea

sure

dca

lcul

ated

13 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.67

, nb

=0.

19

χ w=

0.02

, χb

=0.

01

[R03

]

Red

Iron

Oxi

de (

iii)

Fer

ro R

ed V

−138

10 (

PR

101

)

3% P

VC

; siz

e 0.

27 µ

m; i

mag

es (

13G

,13H

)

{iron

oxi

de r

ed}

I. Observed Film Property

ref.

(s=

0.25

,u=

0.05

,v=

0.15

,n=

0.36

)tr

a. (

s=0.

25,u

=0.

00,v

=0.

04,n

=0.

45)

abs.

(s=

0.50

,u=

0.95

,v=

0.81

,n=

0.19

)

16 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)ab

sorp

tion

(K)

back

scat

terin

g (S

)

σ=

0.78

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

16 µ

m/w

hite

mea

sure

dca

lcul

ated

17 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.62

, nb

=0.

26

χ w=

0.04

, χb

=0.

01

[R04

]

Red

Oxi

de

Syn

thet

ic R

ed Ir

on O

xide

(P

R 1

01)

13%

PV

C; i

mag

es (

14A

,14B

)

{iron

oxi

de r

ed}

I. Observed Film Property

ref.

(s=

0.35

,u=

0.05

,v=

0.29

,n=

0.44

)tr

a. (

s=0.

36,u

=0.

00,v

=0.

18,n

=0.

54)

abs.

(s=

0.29

,u=

0.95

,v=

0.53

,n=

0.02

)

10 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.80

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

11 µ

m/w

hite

mea

sure

dca

lcul

ated

10 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.87

, nb

=0.

26

χ w=

0.04

, χb

=0.

01

[R05

]

Cad

miu

m O

rang

e

Cad

miu

m O

rang

e (P

O 2

0)

14%

PV

C; i

mag

es (

14C

,14D

)

{cad

miu

m o

rang

e}

I. Observed Film Property

ref.

(s=

0.10

,u=

0.05

,v=

0.07

,n=

0.12

)tr

a. (

s=0.

56,u

=0.

02,v

=0.

26,n

=0.

86)

abs.

(s=

0.35

,u=

0.93

,v=

0.67

,n=

0.02

)

11 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.86

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

11 µ

m/w

hite

mea

sure

dca

lcul

ated

12 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.83

, nb

=0.

06

χ w=

0.03

, χb

=0.

01

[R06

]

Acr

a B

urnt

Ora

nge

Qui

nacr

idon

e (P

R 2

06)

24%

PV

C; i

mag

es (

14E

,14F

)

{org

anic

red

}

Figure 1: (xiv/xxii) continued.

draft—do not quote, copy, or circulate 34/44 December 21, 2004

Page 35: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

I. Observed Film Property

00.20.40.60.81

ref.

(s=

0.12

,u=

0.07

,v=

0.10

,n=

0.13

)tr

a. (

s=0.

58,u

=0.

04,v

=0.

32,n

=0.

85)

abs.

(s=

0.30

,u=

0.89

,v=

0.58

,n=

0.02

)

27 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

10−1

100

101

102

103

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.82

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

00.20.40.60.81

24 µ

m/w

hite

mea

sure

dca

lcul

ated

25 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.85

, nb

=0.

06

χ w=

0.03

, χb

=0.

01

[R07

]

Acr

a R

ed

Qui

nacr

idon

e R

ed G

amm

a (P

R 2

09)

13%

PV

C; i

mag

es (

14G

,14H

)

{org

anic

red

}

I. Observed Film Property

ref.

(s=

0.22

,u=

0.06

,v=

0.16

,n=

0.29

)tr

a. (

s=0.

41,u

=0.

01,v

=0.

15,n

=0.

67)

abs.

(s=

0.37

,u=

0.93

,v=

0.69

,n=

0.04

)

26 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)ab

sorp

tion

(K)

back

scat

terin

g (S

)

σ=

0.74

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

25 µ

m/w

hite

mea

sure

dca

lcul

ated

22 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.86

, nb

=0.

14

χ w=

0.04

, χb

=0.

01

[R08

]

Mon

astr

al R

ed

Cib

a G

eigy

Mon

astr

al N

RT

−742

−D S

carle

t (P

V 1

9)

6% P

VC

; im

ages

(15

A,1

5B)

{org

anic

red

}

I. Observed Film Property

ref.

(s=

0.20

,u=

0.05

,v=

0.18

,n=

0.22

)tr

a. (

s=0.

47,u

=0.

01,v

=0.

18,n

=0.

76)

abs.

(s=

0.33

,u=

0.94

,v=

0.64

,n=

0.01

)

13 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.71

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

11 µ

m/w

hite

mea

sure

dca

lcul

ated

13 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.87

, nb

=0.

12

χ w=

0.04

, χb

=0.

01

[R09

]

Nap

htho

l Red

Lig

ht

Nap

htho

l AS

−OL

(PR

9)

36%

PV

C; i

mag

es (

15C

,15D

)

{org

anic

red

}

I. Observed Film Property

ref.

(s=

0.29

,u=

0.05

,v=

0.26

,n=

0.33

)tr

a. (

s=0.

35,u

=0.

00,v

=0.

16,n

=0.

54)

abs.

(s=

0.37

,u=

0.95

,v=

0.58

,n=

0.13

)

19 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.79

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

19 µ

m/w

hite

mea

sure

dca

lcul

ated

20 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.70

, nb

=0.

21

χ w=

0.03

, χb

=0.

01

[Y01

]

Yel

low

Oxi

de

Syn

thet

ic H

ydra

ted

Iron

Oxi

de (

PY

42)

16%

PV

C; i

mag

es (

15E

,15F

)

{iron

oxi

de y

ello

w}

Figure 1: (xv/xxii) continued.

draft—do not quote, copy, or circulate 35/44 December 21, 2004

Page 36: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

I. Observed Film Property

00.20.40.60.81

ref.

(s=

0.42

,u=

0.05

,v=

0.42

,n=

0.46

)tr

a. (

s=0.

38,u

=0.

00,v

=0.

25,n

=0.

52)

abs.

(s=

0.20

,u=

0.95

,v=

0.34

,n=

0.02

)

11 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

10−1

100

101

102

103

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.79

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

00.20.40.60.81

11 µ

m/w

hite

mea

sure

dca

lcul

ated

10 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.87

, nb

=0.

29

χ w=

0.04

, χb

=0.

01

[Y02

]

Cad

miu

m Y

ello

w L

ight

Cad

miu

m Y

ello

w (

PY

35)

15%

PV

C; i

mag

es (

15G

,15H

)

{cad

miu

m y

ello

w}

I. Observed Film Property

ref.

(s=

0.41

,u=

0.04

,v=

0.39

,n=

0.45

)tr

a. (

s=0.

33,u

=0.

00,v

=0.

18,n

=0.

49)

abs.

(s=

0.26

,u=

0.96

,v=

0.43

,n=

0.05

)

24 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)ab

sorp

tion

(K)

back

scat

terin

g (S

)

σ=

0.72

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

30 µ

m/w

hite

mea

sure

dca

lcul

ated

25 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.83

, nb

=0.

34

χ w=

0.04

, χb

=0.

01

[Y03

]

Chr

ome

Yel

low

Dom

inio

n C

olor

Kro

lor

KY

−781

−D (

PY

34)

10%

PV

C; i

mag

es (

16A

,16B

)

{chr

ome

yello

w}

I. Observed Film Property

ref.

(s=

0.41

,u=

0.05

,v=

0.31

,n=

0.53

)tr

a. (

s=0.

30,u

=0.

02,v

=0.

19,n

=0.

42)

abs.

(s=

0.29

,u=

0.93

,v=

0.50

,n=

0.06

)

17 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.77

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

21 µ

m/w

hite

mea

sure

dca

lcul

ated

23 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.82

, nb

=0.

46

χ w=

0.02

, χb

=0.

01

[Y04

]

Chr

ome

Ant

imon

y T

itani

um B

uff R

utile

(i)

Fer

ro A

utum

n G

old

V−1

0415

(P

Br

24)

6% P

VC

; siz

e 1.

3 µm

; im

ages

(16

C,1

6D)

{chr

ome

titan

ate

yello

w}

I. Observed Film Property

ref.

(s=

0.38

,u=

0.06

,v=

0.34

,n=

0.44

)tr

a. (

s=0.

37,u

=0.

01,v

=0.

23,n

=0.

52)

abs.

(s=

0.25

,u=

0.93

,v=

0.43

,n=

0.04

)

18 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.81

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

19 µ

m/w

hite

mea

sure

dca

lcul

ated

17 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.86

, nb

=0.

26

χ w=

0.03

, χb

=0.

01

[Y05

]

Chr

ome

Ant

imon

y T

itani

um B

uff R

utile

(ii)

Fer

ro B

right

Gol

den

Yel

low

V−1

0411

(P

Br

24)

3% P

VC

; siz

e 0.

5 µm

; im

ages

(16

E,1

6F)

{chr

ome

titan

ate

yello

w}

Figure 1: (xvi/xxii) continued.

draft—do not quote, copy, or circulate 36/44 December 21, 2004

Page 37: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

I. Observed Film Property

00.20.40.60.81

ref.

(s=

0.48

,u=

0.06

,v=

0.39

,n=

0.60

)tr

a. (

s=0.

22,u

=0.

00,v

=0.

09,n

=0.

34)

abs.

(s=

0.30

,u=

0.94

,v=

0.52

,n=

0.06

)

24 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

10−1

100

101

102

103

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.79

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

00.20.40.60.81

24 µ

m/w

hite

mea

sure

dca

lcul

ated

23 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.84

, nb

=0.

51

χ w=

0.02

, χb

=0.

01

[Y06

]

Chr

ome

Ant

imon

y T

itani

um B

uff R

utile

(iii

)

She

pher

d Y

ello

w 1

93 (

PB

r 24

)

7% P

VC

; im

ages

(16

G,1

6H)

{chr

ome

titan

ate

yello

w}

I. Observed Film Property

ref.

(s=

0.50

,u=

0.06

,v=

0.37

,n=

0.66

)tr

a. (

s=0.

14,u

=0.

00,v

=0.

05,n

=0.

24)

abs.

(s=

0.35

,u=

0.94

,v=

0.58

,n=

0.10

)

26 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)ab

sorp

tion

(K)

back

scat

terin

g (S

)

σ=

0.72

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

26 µ

m/w

hite

mea

sure

dca

lcul

ated

27 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.80

, nb

=0.

62

χ w=

0.02

, χb

=0.

01

[Y07

]

Chr

ome

Tita

nate

Yel

low

Ishi

hara

Tip

aque

TY

−300

(P

Br

24)

12%

PV

C; i

mag

es (

17A

,17B

)

{chr

ome

titan

ate

yello

w}

I. Observed Film Property

ref.

(s=

0.35

,u=

0.06

,v=

0.33

,n=

0.40

)tr

a. (

s=0.

53,u

=0.

22,v

=0.

51,n

=0.

58)

abs.

(s=

0.12

,u=

0.72

,v=

0.16

,n=

0.03

)

17 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.78

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

17 µ

m/w

hite

mea

sure

dca

lcul

ated

17 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.87

, nb

=0.

22

χ w=

0.02

, χb

=0.

02

[Y08

]

Nic

kel A

ntim

ony

Tita

nium

Yel

low

Rut

ile (

i)

Fer

ro Y

ello

w V

−941

5 (P

Y 4

2)

3% P

VC

; siz

e 1.

2 µm

; im

ages

(17

C,1

7D)

{nic

kel t

itana

te y

ello

w}

I. Observed Film Property

ref.

(s=

0.49

,u=

0.06

,v=

0.45

,n=

0.56

)tr

a. (

s=0.

31,u

=0.

01,v

=0.

24,n

=0.

40)

abs.

(s=

0.20

,u=

0.93

,v=

0.31

,n=

0.04

)

24 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.77

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

23 µ

m/w

hite

mea

sure

dca

lcul

ated

22 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.85

, nb

=0.

43

χ w=

0.02

, χb

=0.

02

[Y09

]

Nic

kel A

ntim

ony

Tita

nium

Yel

low

Rut

ile (

ii)

Fer

ro Y

ello

w V

−941

6 (P

Y 5

3)

5% P

VC

; siz

e 0.

8 µm

; im

ages

(17

E,1

7F)

{nic

kel t

itana

te y

ello

w}

Figure 1: (xvii/xxii) continued.

draft—do not quote, copy, or circulate 37/44 December 21, 2004

Page 38: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

I. Observed Film Property

00.20.40.60.81

ref.

(s=

0.48

,u=

0.06

,v=

0.46

,n=

0.54

)tr

a. (

s=0.

32,u

=0.

01,v

=0.

28,n

=0.

38)

abs.

(s=

0.20

,u=

0.93

,v=

0.26

,n=

0.08

)

22 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

10−1

100

101

102

103

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.71

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

00.20.40.60.81

22 µ

m/w

hite

mea

sure

dca

lcul

ated

23 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.81

, nb

=0.

45

χ w=

0.03

, χb

=0.

02

[Y10

]

Nic

kel A

ntim

ony

Tita

nium

Yel

low

Rut

ile (

iii)

She

pher

d Y

ello

w 1

95 (

PY

53)

7% P

VC

; siz

e 1.

2 µm

; im

ages

(17

G,1

7H)

{nic

kel t

itana

te y

ello

w}

I. Observed Film Property

ref.

(s=

0.62

,u=

0.06

,v=

0.61

,n=

0.68

)tr

a. (

s=0.

15,u

=0.

00,v

=0.

09,n

=0.

22)

abs.

(s=

0.23

,u=

0.94

,v=

0.30

,n=

0.11

)

27 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)ab

sorp

tion

(K)

back

scat

terin

g (S

)

σ=

0.62

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

24 µ

m/w

hite

mea

sure

dca

lcul

ated

25 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.77

, nb

=0.

64

χ w=

0.02

, χb

=0.

01

[Y11

]

Nic

kel T

itana

te Y

ello

w

Ishi

hara

Tip

aque

TY

−50

(PY

53)

15%

PV

C; i

mag

es (

18A

,18B

)

{nic

kel t

itana

te y

ello

w}

I. Observed Film Property

ref.

(s=

0.51

,u=

0.09

,v=

0.54

,n=

0.53

)tr

a. (

s=0.

32,u

=0.

00,v

=0.

21,n

=0.

44)

abs.

(s=

0.17

,u=

0.91

,v=

0.25

,n=

0.03

)

19 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.80

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

18 µ

m/w

hite

mea

sure

dca

lcul

ated

18 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.86

, nb

=0.

38

χ w=

0.02

, χb

=0.

02

[Y12

]

Prim

er

Str

ontiu

m C

hrom

ate

Yel

low

+ T

itani

um D

ioxi

de

23%

PV

C; i

mag

es (

18C

,18D

)

{str

ontiu

m c

hrom

ate

yello

w +

tita

nium

dio

xide

}I. Observed Film Property

ref.

(s=

0.17

,u=

0.05

,v=

0.21

,n=

0.14

)tr

a. (

s=0.

63,u

=0.

05,v

=0.

43,n

=0.

84)

abs.

(s=

0.21

,u=

0.91

,v=

0.36

,n=

0.02

)

11 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.80

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

12 µ

m/w

hite

mea

sure

dca

lcul

ated

11 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.87

, nb

=0.

06

χ w=

0.05

, χb

=0.

01

[Y13

]

Yel

low

Med

ium

Azo

Ary

lide

Yel

low

5G

X (

PY

74

LF)

23%

PV

C; i

mag

es (

18E

,18F

)

{Han

sa y

ello

w}

Figure 1: (xviii/xxii) continued.

draft—do not quote, copy, or circulate 38/44 December 21, 2004

Page 39: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

I. Observed Film Property

00.20.40.60.81

ref.

(s=

0.20

,u=

0.05

,v=

0.21

,n=

0.20

)tr

a. (

s=0.

57,u

=0.

07,v

=0.

35,n

=0.

79)

abs.

(s=

0.24

,u=

0.89

,v=

0.43

,n=

0.01

)

12 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

10−1

100

101

102

103

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.81

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

00.20.40.60.81

13 µ

m/w

hite

mea

sure

dca

lcul

ated

11 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.87

, nb

=0.

08

χ w=

0.04

, χb

=0.

01

[Y14

]

Yel

low

Ora

nge

Azo

Dia

rylid

e Y

ello

w (

PY

83

HR

70)

25%

PV

C; i

mag

es (

18G

,18H

)

{dia

rylid

e ye

llow

}

I. Observed Film Property

ref.

(s=

0.44

,u=

0.20

,v=

0.42

,n=

0.47

)tr

a. (

s=0.

48,u

=0.

15,v

=0.

50,n

=0.

51)

abs.

(s=

0.08

,u=

0.64

,v=

0.08

,n=

0.02

)

20 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)ab

sorp

tion

(K)

back

scat

terin

g (S

)

σ=

0.44

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

22 µ

m/w

hite

mea

sure

dca

lcul

ated

22 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.88

, nb

=0.

41

χ w=

0.04

, χb

=0.

01

[P01

]

Brig

ht G

old

(Pea

rlesc

ent)

Eng

elha

rd E

xter

ior

Mea

rlin

239X

Brig

ht G

old

8% P

VC

; im

ages

(19

A,1

9B)

{mic

a +

titan

ium

dio

xide

}

I. Observed Film Property

ref.

(s=

0.48

,u=

0.29

,v=

0.58

,n=

0.41

)tr

a. (

s=0.

41,u

=0.

09,v

=0.

31,n

=0.

53)

abs.

(s=

0.11

,u=

0.62

,v=

0.11

,n=

0.06

)

23 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.10

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

25 µ

m/w

hite

mea

sure

dca

lcul

ated

22 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.88

, nb

=0.

36

χ w=

0.10

, χb

=0.

00

[P02

]

Brig

ht W

hite

(P

earle

scen

t)

Eng

elha

rd E

xter

ior

Mea

rlin

139X

Brig

ht W

hite

11%

PV

C; i

mag

es (

19C

,19D

)

{mic

a +

titan

ium

dio

xide

}

I. Observed Film Property

ref.

(s=

0.45

,u=

0.16

,v=

0.41

,n=

0.51

)tr

a. (

s=0.

48,u

=0.

08,v

=0.

54,n

=0.

47)

abs.

(s=

0.07

,u=

0.76

,v=

0.05

,n=

0.02

)

17 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.46

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

18 µ

m/w

hite

mea

sure

dca

lcul

ated

19 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.90

, nb

=0.

46

χ w=

0.05

, χb

=0.

03

[P03

]

Inte

rfer

ence

Blu

e

Mic

a C

oate

d w

/Tita

nium

Dio

xide

9% P

VC

; im

ages

(19

E,1

9F)

{mic

a +

titan

ium

dio

xide

}

Figure 1: (xix/xxii) continued.

draft—do not quote, copy, or circulate 39/44 December 21, 2004

Page 40: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

I. Observed Film Property

00.20.40.60.81

ref.

(s=

0.45

,u=

0.24

,v=

0.44

,n=

0.47

)tr

a. (

s=0.

50,u

=0.

17,v

=0.

53,n

=0.

51)

abs.

(s=

0.05

,u=

0.59

,v=

0.03

,n=

0.02

)

21 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

10−1

100

101

102

103

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.43

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

00.20.40.60.81

25 µ

m/w

hite

mea

sure

dca

lcul

ated

25 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.89

, nb

=0.

45

χ w=

0.06

, χb

=0.

02

[P04

]

Inte

rfer

ence

Gol

d

Mic

a C

oate

d w

/Tita

nium

Dio

xide

6% P

VC

; im

ages

(19

G,1

9H)

{mic

a +

titan

ium

dio

xide

}

I. Observed Film Property

ref.

(s=

0.52

,u=

0.18

,v=

0.56

,n=

0.52

)tr

a. (

s=0.

39,u

=0.

02,v

=0.

36,n

=0.

46)

abs.

(s=

0.09

,u=

0.80

,v=

0.09

,n=

0.02

)

37 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)ab

sorp

tion

(K)

back

scat

terin

g (S

)

σ=

0.33

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

31 µ

m/w

hite

mea

sure

dca

lcul

ated

31 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.90

, nb

=0.

42

χ w=

0.03

, χb

=0.

02

[P05

]

Inte

rfer

ence

Gre

en

Mic

a C

oate

d w

/Tita

nium

Dio

xide

9% P

VC

; im

ages

(20

A,2

0B)

{mic

a +

titan

ium

dio

xide

}

I. Observed Film Property

ref.

(s=

0.48

,u=

0.28

,v=

0.42

,n=

0.54

)tr

a. (

s=0.

45,u

=0.

06,v

=0.

53,n

=0.

43)

abs.

(s=

0.07

,u=

0.66

,v=

0.05

,n=

0.03

)

17 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.47

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

17 µ

m/w

hite

mea

sure

dca

lcul

ated

17 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.89

, nb

=0.

49

χ w=

0.05

, χb

=0.

03

[P06

]

Inte

rfer

ence

Ora

nge

Mic

a C

oate

d w

/Tita

nium

Dio

xide

9% P

VC

; im

ages

(20

C,2

0D)

{mic

a +

titan

ium

dio

xide

}

I. Observed Film Property

ref.

(s=

0.49

,u=

0.27

,v=

0.43

,n=

0.57

)tr

a. (

s=0.

44,u

=0.

06,v

=0.

53,n

=0.

41)

abs.

(s=

0.06

,u=

0.68

,v=

0.05

,n=

0.02

)

19 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.20

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

19 µ

m/w

hite

mea

sure

dca

lcul

ated

19 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.90

, nb

=0.

54

χ w=

0.04

, χb

=0.

03

[P07

]

Inte

rfer

ence

Red

Mic

a C

oate

d w

/Tita

nium

Dio

xide

9% P

VC

; im

ages

(20

E,2

0F)

{mic

a +

titan

ium

dio

xide

}

Figure 1: (xx/xxii) continued.

draft—do not quote, copy, or circulate 40/44 December 21, 2004

Page 41: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

I. Observed Film Property

00.20.40.60.81

ref.

(s=

0.47

,u=

0.23

,v=

0.41

,n=

0.55

)tr

a. (

s=0.

46,u

=0.

07,v

=0.

54,n

=0.

43)

abs.

(s=

0.07

,u=

0.70

,v=

0.05

,n=

0.02

)

18 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

10−1

100

101

102

103

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.55

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

00.20.40.60.81

19 µ

m/w

hite

mea

sure

dca

lcul

ated

19 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.90

, nb

=0.

48

χ w=

0.05

, χb

=0.

02

[P08

]

Inte

rfer

ence

Vio

let

Mic

a C

oate

d w

/Tita

nium

Dio

xide

9% P

VC

; im

ages

(20

G,2

0H)

{mic

a +

titan

ium

dio

xide

}

I. Observed Film Property

ref.

(s=

0.47

,u=

0.28

,v=

0.58

,n=

0.39

)tr

a. (

s=0.

46,u

=0.

05,v

=0.

36,n

=0.

57)

abs.

(s=

0.08

,u=

0.68

,v=

0.06

,n=

0.04

)

21 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)ab

sorp

tion

(K)

back

scat

terin

g (S

)

σ=

0.47

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

23 µ

m/w

hite

mea

sure

dca

lcul

ated

25 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.88

, nb

=0.

35

χ w=

0.08

, χb

=0.

01

[P09

]

Irid

esce

nt W

hite

Mic

a C

oate

d w

/Tita

nium

Dio

xide

10%

PV

C; i

mag

es (

21A

,21B

)

{mic

a +

titan

ium

dio

xide

}

I. Observed Film Property

ref.

(s=

0.41

,u=

0.19

,v=

0.36

,n=

0.47

)tr

a. (

s=0.

43,u

=0.

08,v

=0.

42,n

=0.

47)

abs.

(s=

0.16

,u=

0.72

,v=

0.21

,n=

0.05

)

20 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.26

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

20 µ

m/w

hite

mea

sure

dca

lcul

ated

22 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.85

, nb

=0.

43

χ w=

0.05

, χb

=0.

00

[P10

]

Bra

ss (

Pea

rlesc

ent)

Eng

elha

rd E

xter

ior

Mea

rlin

2329

X B

rass

8% P

VC

; im

ages

(21

C,2

1D)

{mic

a +

titan

ium

dio

xide

+ ir

on o

xide

}

I. Observed Film Property

ref.

(s=

0.35

,u=

0.11

,v=

0.32

,n=

0.40

)tr

a. (

s=0.

32,u

=0.

03,v

=0.

13,n

=0.

50)

abs.

(s=

0.34

,u=

0.86

,v=

0.55

,n=

0.11

)

22 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.11

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

23 µ

m/w

hite

mea

sure

dca

lcul

ated

22 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.71

, nb

=0.

36

χ w=

0.04

, χb

=0.

00

[P11

]

Brig

ht B

ronz

e (P

earle

scen

t)

Eng

elha

rd E

xter

ior

Mea

rlin

249X

Brig

ht B

ronz

e

11%

PV

C; i

mag

es (

21E

,21F

)

{mic

a +

titan

ium

dio

xide

+ ir

on o

xide

}

Figure 1: (xxi/xxii) continued.

draft—do not quote, copy, or circulate 41/44 December 21, 2004

Page 42: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

I. Observed Film Property

00.20.40.60.81

ref.

(s=

0.35

,u=

0.10

,v=

0.24

,n=

0.47

)tr

a. (

s=0.

24,u

=0.

02,v

=0.

11,n

=0.

37)

abs.

(s=

0.40

,u=

0.88

,v=

0.65

,n=

0.15

)

24 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

10−1

100

101

102

103

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.27

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

00.20.40.60.81

22 µ

m/w

hite

mea

sure

dca

lcul

ated

25 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.67

, nb

=0.

44

χ w=

0.02

, χb

=0.

01

[P12

]

Brig

ht C

oppe

r (P

earle

scen

t)

Eng

elha

rd E

xter

ior

Mea

rlin

349X

Brig

ht C

oppe

r

11%

PV

C; i

mag

es (

21G

,21H

)

{mic

a +

titan

ium

dio

xide

+ ir

on o

xide

}

I. Observed Film Property

ref.

(s=

0.22

,u=

0.09

,v=

0.19

,n=

0.26

)tr

a. (

s=0.

07,u

=0.

00,v

=0.

02,n

=0.

12)

abs.

(s=

0.71

,u=

0.90

,v=

0.79

,n=

0.62

)

20 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)ab

sorp

tion

(K)

back

scat

terin

g (S

)

σ=

0.60

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

17 µ

m/w

hite

mea

sure

dca

lcul

ated

17 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.27

, nb

=0.

25

χ w=

0.01

, χb

=0.

00

[P13

]

Ric

h B

ronz

e

Mic

a C

oate

d w

/Tita

nium

Dio

xide

and

Iron

Oxi

de

8% P

VC

; im

ages

(22

A,2

2B)

{mic

a +

titan

ium

dio

xide

+ ir

on o

xide

}

I. Observed Film Property

ref.

(s=

0.33

,u=

0.09

,v=

0.19

,n=

0.46

)tr

a. (

s=0.

27,u

=0.

04,v

=0.

16,n

=0.

39)

abs.

(s=

0.40

,u=

0.87

,v=

0.65

,n=

0.14

)

22 µ

m/v

oid

uvvi

sni

r

II. K−M Coefficient (mm−1

)

abso

rptio

n (K

)ba

cksc

atte

ring

(S)

σ=

0.24

500

1000

1500

2000

2500

Wav

elen

gth

(nm

)

III. Observed Film Reflectance

19 µ

m/w

hite

mea

sure

dca

lcul

ated

22 µ

m/b

lack

mea

sure

dca

lcul

ated

n w=

0.68

, nb

=0.

42

χ w=

0.03

, χb

=0.

00

[P14

]

Rus

set (

Pea

rlesc

ent)

Eng

elha

rd E

xter

ior

Mea

rlin

449X

Rus

set

10%

PV

C; i

mag

es (

22C

,22D

)

{mic

a +

titan

ium

dio

xide

+ ir

on o

xide

}

Figure 1: (xxii/xxii) continued.

draft—do not quote, copy, or circulate 42/44 December 21, 2004

Page 43: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

A B C D E F G H

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

1

Fig

ure

2:C

olor

imag

esof

pain

tfil

ms

cite

din

Fig

.1.

Show

nfo

rea

chpa

int

film

isit

sap

pear

ance

over

aw

hite

back

grou

nd,

follo

wed

byit

sap

pear

ance

over

abl

ack

back

grou

nd.

draft—do not quote, copy, or circulate 43/44 December 21, 2004

Page 44: LBNL Pigment Survey

R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

NIR

Tra

nsm

ittan

ce

0.0

0.2

0.4

0.6

0.8

1.0

1

2

3

4

White (W)

cool ← → hot

● ●

●●

1

2

3

4

5

6

7 8

9

10

11

12

13

14

15

16

1718

19

20

21

Black/Brown (B)

cool ← → hot

opaq

ue ←

→ tr

ansp

aren

t

NIR

Tra

nsm

ittan

ce

●●

●●

●●●

0.0

0.2

0.4

0.6

0.8

1.0

12

3

4

56

7

8

9

10

111213

14

Blue/Purple (U)

● ●●

●●

1

2

3 45

67

8

9

10

11

Green (G)

opaq

ue ←

→ tr

ansp

aren

t

NIR

Tra

nsm

ittan

ce

●●

0.0

0.2

0.4

0.6

0.8

1.0

1

2

3

4

5

67

8

9

Red/Orange (R)

●●●

●●

●●

123

4

5

6

7

8

9 10

11

12

1314

Yellow (Y)op

aque

←→

tran

spar

ent

NIR Absorptance

NIR

Tra

nsm

ittan

ce

●●●●●●●●

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1 2345678

9

1011

12

13

14

Pearlescent (P)

Fig

ure

3:N

IRab

sorp

tanc

esan

dtr

ansm

itta

nces

of87

pigm

ente

dfil

ms.

Api

gmen

tw

ith

low

NIR

-abs

orpt

ance

isco

ol,bu

ta

cool

pigm

ent

wit

hhi

ghN

IRtr

ansm

itta

nce

requ

ires

anN

IR-r

eflec

ting

back

grou

nd.

The

colo

rof

each

circ

le’s

inte

rior

indi

cate

svi

sibl

etr

ansm

itta

nce:

blac

k,le

ssth

an0.

1;gr

ay,be

twee

n0.

1an

d0.

3;w

hite

,ov

er0.

3.

draft—do not quote, copy, or circulate 44/44 December 21, 2004


Top Related