Transcript

Nernst branes in gauged supergravity

Michael Haack (LMU Munich) BSI 2011, Donji Milanovac, August 30

1108.0296 (with S. Barisch, G.L. Cardoso, S. Nampuri, N.A. Obers)

MotivationGauge/Gravity correspondence:

Gauge theory at finite temperature and density

Charged black branein AdS

Mainly studied Reissner-Nordström (RN) black branes

Problem: RN black branes have finite entropy density at T=0, in conflict with the 3rd law of thermodynamics (Nernst law)

Task: Look for black branes with vanishing entropy density at T=0 (Nernst branes)

Outline

AdS/CFT at finite T and charge density

Review Reissner Nordström black holes

Extremal black holes (T=0)

Dilatonic black holes

Nernst brane solution

Gauge/gravity correspondence

r

Locally:

ds2 =dr2

r2+ r2(!dt2 + d!x2)

AdS

Stringtheorie

Feldtheorie

Supergravity

Gauge theory

Generalizes to other dimensions and other gauge theories

!

N = 4, SU(N) Yang-Mills in ‘t Hooft limit,

Supergravity in the space AdS5

i.e. for large , and large N !‘tHooft = g2Y MN

Original AdS/CFT correspondence: [Maldacena]

Short review of AdS/CFT at finite T and charge density

Short review of AdS/CFT at finite T and charge density

AdS/CFTdictionary

J. Maldacena

(Editor)

AdSCFT

Vacuum Empty AdS

ds2 =dr2

r2+ r2(!dt2 + d!x2)

Thermal ensembleat temperature T

AdS black brane

r !"r0

AdSCFT

Vacuum Empty AdS

ds2 =dr2

r2+ r2(!dt2 + d!x2)

Thermal ensembleat temperature

f = 1! 2M

rD!1

T

T = TH ! r0 !M1/(D!1)

ds2 =dr2

r2f+ r2(!fdt2 + d!x2)

AdSCFT

Thermal ensembleat temperature T

Charged black branewith gauge field

At !!

rD!3and charge density!

Usually Reissner-Nordström (RN):

with

f = 1! 2M

rD!1+

Q2

r2(D!2)

Q ! !

RN black hole(4D, asymptotically flat, spherical horizon)

Charged black hole solution of

ds2 = !!

1! 2M

r+

Q2

r2

"dt2 +

dr2

#1! 2M

r + Q2

r2

$ + r2d!2

A =Q

rdt

!d4x!"g[R" Fµ!Fµ! ]

RN metric can be written as

ds2 = !!r2

dt2 +r2

!dr2 + r2d"2

with

! =( r ! r+)(r ! r!)

where

r± = M ±!

M2 !Q2

r+ : event horizon

Black hole for M ! |Q|

TH =!

M2 !Q2

2Mr2+

|Q|!M!" 0

Extremal black holes|Q| = M

TH = 0

r+ = r! = M

ds2 = !!

1! M

r

"2

dt2 +dr2

#1! M

r

$2 + r2d!2

Distance to the horizon at r = M! R

M+!

dr

1! Mr

!!0!"#

Near horizon geometry: r = M(1 + !)Introduce

ds2 ! ("!2dt2 + M2!!2d!2) + M2d!2

AdS2 ! S2to lowest order in !

Near horizon geometry: r = M(1 + !)Introduce

ds2 ! ("!2dt2 + M2!!2d!2) + M2d!2

AdS2 ! S2

Infinite throat:

[From: Townsend “Black Holes”]

to lowest order in !

Entropy: S ! AH

Horizon area

Extremal RN: AH = 4!M2 , i.e. non-vanishing entropy!

Entropy: S ! AH

Horizon area

Extremal RN: AH = 4!M2 , i.e. non-vanishing entropy!

For black branes

ds2 = !e2U(r)dt2 + e!2U(r)dr2 + e2A(r)d!x2

entropy density

Horizon radius

s ! e2A(r0)

Possible solutionsIn 5d, RN unstable at low temperature in presence of magnetic field and Chern-Simons term

[D’Hoker, Kraus]

In general dimensions, RN not the zero temperature ground state when coupled to

(i) charged scalars (holographic superconductors)[Gubser; Hartnoll, Herzog, Horowitz]

(ii) neutral scalars (dilatonic black holes)[Goldstein, Kachru, Prakash, Trivedi; Cadoni, D’Appollonio, Pani]

Possible solutionsIn 5d, RN unstable at low temperature in presence of magnetic field and Chern-Simons term

[D’Hoker, Kraus]

In general dimensions, RN not the zero temperature ground state when coupled to

(i) charged scalars (holographic superconductors)[Gubser; Hartnoll, Herzog, Horowitz]

(ii) neutral scalars (dilatonic black holes)[Goldstein, Kachru, Prakash, Trivedi; Cadoni, D’Appollonio, Pani]

no embedding into string theory

Dilatonic black holes(4D, asymptotically flat, spherical horizon)

Charged black hole solution of !

d4x!"g[R" !µ"!µ"" e!2!"Fµ#Fµ# ]

E.g. ! = 1

[Garfinkle, Horowitz, Strominger]

F = P sin(!) d! ! d"e!2! = e!2!0 ! P 2

Mr

ds2 = !!

1! 2M

r

"dt2 +

!1! 2M

r

"!1

dr2 + r

!r ! P 2e2!0

M

"d!2

,

For ! < 1 : ST!0!" 0 [Preskill, Schwarz, Shapere,

Trivedi, Wilczek]

Strategy

Look for extremal Nernst branes (with AdS asymptotics) in N=2 supergravity with vector multiplets

(i) Contains neutral scalars

(ii) Straightforward embedding into string theory

(iii) Attractor mechanism

Attractor mechanism: Values of scalar fields at the horizon are fixed, independent of their asymptotic values

First found for N=2 supersymmetric, asymptotically flat black holes in 4D [Ferrara, Kallosh, Strominger]

Consequence of infinite throat of extremal BH

Half the number of d.o.f. =! order equations1st

Compare domain walls in fake supergravity[Freedmann, Nunez, Schnabl, Skenderis; Celi, Ceresole, Dall’Agata, Van Proyen, Zagermann; Zagermann; Skenderis, Townsend]

0.5 1.0 1.5

!0.5

0.5

1.0

r !"r = r0

!(r)

SupergravityN = 2

NIJ ,NIJ , V can be expressed in terms of holomorphic

prepotential F (X)

V (X, X) =!N IJ ! 2XIXJ

" #hK FKI ! hI

$ #hK FKJ ! hJ

$E.g.

!2F

!XI!XK

12R!NIJ DµXI DµXJ + 1

4 ImNIJ F Iµ! Fµ!J

! 14ReNIJ F I

µ! Fµ!J ! V (X, X)

order equations1st

Ansatz

ds2 = !e2U(r)dt2 + e!2U(r)dr2 + e2A(r)(dx2 + dy2)

F Itr !

!(ImN )!1

"IJQJ F I

xy ! P I,

Plug into action and rewrite it as sum of squares

S1d =!

dr"

!

#!!

! ! f!(!)$2

+ total derivative

{!!} = {U, A,XI}with

!!! ! f!(!) = 0 =! !S1d = 0

Y !I = eA N IJ qJ

A! = !Re!XI qI

"

Supersymmetry preserving configurations solve:

[compare also: Gnecchi, Dall’Agata]

U ! = e"U"2A Re!XI QI

"! e"U Im

!XI hI

"[Barisch, Cardoso, Haack, Nampuri, Obers]

Y !I = eA N IJ qJ

A! = !Re!XI qI

"

Supersymmetry preserving configurations solve:

[compare also: Gnecchi, Dall’Agata]

Y I = XIeA

U ! = e"U"2A Re!XI QI

"! e"U Im

!XI hI

"[Barisch, Cardoso, Haack, Nampuri, Obers]

Y !I = eA N IJ qJ

A! = !Re!XI qI

"

Supersymmetry preserving configurations solve:

[compare also: Gnecchi, Dall’Agata]

Y I = XIeA

U ! = e"U"2A Re!XI QI

"! e"U Im

!XI hI

"

QI = QI ! FIJP JhI = hI ! FIJhJ,

qI = e!U!2A(QI ! ie2AhI)

[Barisch, Cardoso, Haack, Nampuri, Obers]

Y !I = eA N IJ qJ

A! = !Re!XI qI

"

Supersymmetry preserving configurations solve:

Constraint:

QIhI ! P IhI = 0

[compare also: Gnecchi, Dall’Agata]

Y I = XIeA

U ! = e"U"2A Re!XI QI

"! e"U Im

!XI hI

"

QI = QI ! FIJP JhI = hI ! FIJhJ,

qI = e!U!2A(QI ! ie2AhI)

[Barisch, Cardoso, Haack, Nampuri, Obers]

Nernst brane

STU-model, i.e. XI , I = 0, . . . , 3

ds2 = !e2U(r)dt2 + e!2U(r)dr2 + e2A(r)d!x2

Consider Q0, h1, h2, h3 != 0

e!2U r"0!"!

Q0

h1 h2 h3

1(2r)5/2

, e2A r"0!"!

Q0

h1 h2 h3(2r)1/2

infinite throat s! 0

[Barisch, Cardoso, Haack, Nampuri, Obers]

e!2U r"#!"!

Q0

h1 h2 h3

1(2r)3/2

, e2A r"#!"!

Q0

h1 h2 h3(2r)3/2

Not asymptotically AdS

Summary

Nernst brane in N=2 supergravity with AdS asymptotics?

Extremal RN black brane has finite entropy, in conflictwith the third law of thermodynamics (Nernst law)

Ground state might be a different extremal black brane with vanishing entropy Nernst brane

Applications to gauge/gravity correspondence?


Top Related