Transcript
Page 1: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Multidimensional Lightcuts

Bruce WalterAdam ArbreeKavita Bala

Donald P. Greenberg

Program of Computer Graphics, Cornell University

Page 2: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Problem

• Simulate complex, expensive phenomena

– Complex illumination

– Anti-aliasing

– Motion blur

– Participating media

– Depth of field

Pixel= (L x,ω)...Lights

∫PixelArea

∫Aperture

∫Volume

∫Time

Pixel= (L x,ω)...Lights

∫PixelArea

∫Time

Page 3: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Problem

• Simulate complex, expensive phenomena

– Complex illumination

– Anti-aliasing

– Motion blur

– Participating media

– Depth of field

Pixel= (L x,ω)...Lights

∫PixelArea

∫Time

∫Volume

Page 4: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Problem

• Simulate complex, expensive phenomena

– Complex illumination

– Anti-aliasing

– Motion blur

– Participating media

– Depth of field

Pixel= (L x,ω)...Lights

∫PixelArea

∫Time

∫Volume

∫Aperture

Page 5: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Problem

• Complex integrals over multiple dimensions

– Requires many samples

Pixel= (L x,ω)...Lights

∫PixelArea

∫Time

∫Volume

∫Aperture

camera

Page 6: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Multidimensional Lightcuts

• New unified rendering solution

– Solves all integrals simultaneously

– Accurate

– Scalable

0

600

1200

1800

0 100 200 300

Samples per pixel

Image time (secs)

Supersampling

Multidimensional

Page 7: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Related Work• Motion blur

– Separable [eg, Korein & Badler 83, Catmull 84, Cook 87, Sung 02]

– Qualitative [eg, Max & Lerner 85, Wloka & Zeleznik 96, Myszkowski et al. 00, Tawara et al. 04]

– Surveys [Sung et al. 02, Damez et al. 03]

• Volumetric– Approximate [eg, Premoze et al. 04, Sun et al. 05]

– Survey [Cerezo et al. 05]

• Monte Carlo– Photon mapping [Jensen & Christensen 98, Cammarano & Jensen 02]

– Bidirectional [Lafortune & Willems 93, Bekaert et al. 02, Havran et al. 03]

– Metropolis [Veach & Guibas 97, Pauly et al. 00, Cline et al. 05]

Page 8: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Related Work

• Lightcuts (SIGGRAPH 2005)

– Scalable solution forcomplex illumination

– Area lights

– Sun/sky

– HDR env maps

– Indirect illumination

• Millions of lights †hundreds of shadow rays

– But only illumination at a single point

Page 9: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Insight

• Holistic approach

– Solve the complete pixel integral

– Rather than solving each integral individually

Pixel= (L x,ω)...Lights

∫PixelArea

∫Time

∫Volume

∫Aperture

Page 10: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Direct only (relative cost 1x) Direct+Indirect (1.3x)

Direct+Indirect+Volume (1.8x) Direct+Indirect+Volume+Motion (2.2x)

Page 11: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Camera

• Discretize full integral into 2 point sets

– Light points (L)

– Gather points (G)

Point Sets

Light points

Page 12: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Camera

• Discretize full integral into 2 point sets

– Light points (L)

– Gather points (G)

Point Sets

Light points

Page 13: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Camera

• Discretize full integral into 2 point sets

– Light points (L)

– Gather points (G)

Point Sets

Light points

Pixel

Gather points

Page 14: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

• Discretize full integral into 2 point sets

– Light points (L)

– Gather points (G)

Point Sets

Light points

Gather points

Page 15: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Discrete Equation

Material term

Pixel = Sj Mji Gji Vji Ii( j,i) GxL

Geometric term

Visibility term

Light intensity

Gather strength

• Sum over all pairs of gather and light points

– Can be billions of pairs per pixel

Page 16: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Key Concepts

• Unified representation

– Pairs of gather and light points

• Hierarchy of clusters

– The product graph

• Adaptive partitioning (cut)

– Cluster approximation

– Cluster error bounds

– Perceptual metric (Weber’s law)

Page 17: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Product Graph

• Explicit hierarchy would be too expensive

– Up to billions of pairs per pixel

• Use implicit hierarchy

– Cartesian product of two trees (gather & light)

Page 18: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Light tree

Gather tree

Product Graph

L0 L1 L2 L3

L4 L5

L6

G1G0

G2

L0

L1 L2L3

G0

G1

Page 19: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Product Graph

Light tree

Gather tree

X =L0 L1 L2 L3

L4 L5

L6

G1G0

G2G1

G0

G2

L0 L4 L1 L6 L2 L5 L3

Product Graph

Page 20: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Product Graph

Light tree

Gather tree

X =L0 L1 L2 L3

L4 L5

L6

G1G0

G2G1

G0

G2

L0 L4 L1 L6 L2 L5 L3

Product Graph

Page 21: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Product Graph

G1

G0

G2

L0 L4 L1 L6 L2 L5 L3

Product Graph

Page 22: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Product Graph

G1

G0

G2

L0 L4 L1 L6 L2 L5 L3

Product Graph

Page 23: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Product Graph

Light tree

Gather tree

X =L0 L1 L2 L3

L4 L5

L6

G1G0

G2G1

G0

G2

L0 L4 L1 L6 L2 L5 L3

Product Graph

Page 24: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Cluster Representatives

Page 25: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Cluster Representatives

Page 26: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

• Collapse cluster-cluster interactions to point-cluster

– Minkowski sums

– Reuse boundsfrom Lightcuts

• Compute maximum over multiple BRDFs

– Rasterize into cube-maps

• More details in the paper

Error Bounds

Page 27: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Algorithm Summary

• Once per image

– Create lights and light tree

• For each pixel

– Create gather points and gather tree for pixel

– Adaptively refine clusters in product graph until all cluster errors < perceptual metric

Page 28: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

L6

G2

L1 L2 L3L4 L5L0

G1

G0

• Start with a coarse cut

– Eg, source node of product graph

Algorithm Summary

Page 29: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

L6

G2

L1 L2 L3L4 L5L0

G1

G0

• Choose node with largest error bound & refine

– In gather or light tree

Algorithm Summary

Page 30: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

L6

G2

L1 L2 L3L4 L5L0

G1

G0

• Choose node with largest error bound & refine

– In gather or light tree

Algorithm Summary

Page 31: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

L6

G2

L1 L2 L3L4 L5L0

G1

G0

• Repeat process

Algorithm Summary

Page 32: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

L6

G2

L1 L2 L3L4 L5L0

G1

G0

• Until all clusters errors < perceptual metric

– 2% of pixel value (Weber’s law)

Algorithm Summary

Page 33: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Results

• Limitations

– Some types of paths not included

• Eg, caustics

– Prototype only supports diffuse, Phong, and Ward materials and isotropic media

Page 34: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Roulette

7,047,430 Pairs per pixel Time 590 secsAvg cut size 174 (0.002%)

Page 35: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Roulette

QuickTime™ and aMPEG-4 Video decompressor

are needed to see this picture.

Page 36: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Scalability

Image time vs. Gather points

0

400

800

1200

1600

0 50 100 150 200 250 300

Gather points (avg per pixel)

Image time (secs)

MultidimensionalOriginal lightcutsEye rays only

Page 37: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Image time vs. Gather points

0

400

800

1200

1600

0 50 100 150 200 250 300

Gather points (avg per pixel)

Image time (secs)

MultidimensionalOriginal lightcutsEye rays only

Scalability

Page 38: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Metropolis Comparison

Our resultTime 9.8min

MetropolisTime 148min (15x) Visible noise5% brighter (caustics etc.)

Zoomed insets

Page 39: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Kitchen

5,518,900 Pairs per pixel Time 705 secsAvg cut size 936 (0.017%)

Page 40: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Kitchen

QuickTime™ and aMPEG-4 Video decompressor

are needed to see this picture.

Page 41: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Tableau

QuickTime™ and aMPEG-4 Video decompressor

are needed to see this picture.

Page 42: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Temple

QuickTime™ and aMPEG-4 Video decompressor

are needed to see this picture.

Page 43: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Conclusions

• New rendering algorithm

– Unified handling of complex effects

• Motion blur, participating media, depth of field etc.

– Product graph

• Implicit hierarchy over billions of pairs

– Scalable & accurate

Page 44: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Future Work

• Other types of paths

– Caustics, etc.

• Bounds for more functions

– More materials and media types

• Better perceptual metrics

• Adaptive point generation

Page 45: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Acknowledgements

• National Science Foundation grants ACI-0205438 and CCF-0539996

• Intel corporation for support and equipment

• The modelers

– Kitchen: Jeremiah Fairbanks

– Temple: Veronica Sundstedt, Patrick Ledda, and the graphics group at University of Bristol

– Stanford and Georgia Tech for Buddha and Horse geometry

Page 46: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

The End

• Questions?

Page 47: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Multidimensional Multidimensional LightcutsLightcuts

Bruce WalterBruce WalterAdam ArbreeAdam ArbreeKavita BalaKavita Bala

Donald P. GreenbergDonald P. Greenberg

Program of Computer Graphics, Cornell UniversityProgram of Computer Graphics, Cornell University

Page 48: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

L0 L1 L2 L3

L4 L5

L6

G1G0

G2

Exists at first or second time instant.

L0 L1 L2 L3

L3L2

L1L2

G1

L1L0

G0

G1G0

Light Tree Gather Tree

Representatives

Page 49: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Lightcuts key concepts

• Unified representation

– Convert all lights to points

• Hierarchy of clusters

– The light tree

• Adaptive cut

– Partitions lights into clusters

Cut

LightTree

Lights

Page 50: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

180 Gather points X 13,000 Lights = 234,000 Pairs per pixel

Avg cut size 447 (0.19%)

Page 51: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

114,149,280 Pairs per pixel Avg cut size 821Time 1740 secs

Page 52: Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Program of Computer Graphics, Cornell University

Types of Point Lights

• Omni

– Spherical lights

• Oriented

– Area lights, indirect lights

• Directional

– HDR env maps, sun&sky


Top Related