Download - SOV Conduction

Transcript
  • 8/12/2019 SOV Conduction

    1/47

    Separation of Variables for Multi-

    dimensional Steady Systems Example 1: Laplaces equation in rectangular

    coordinates (p.93):

    See solution on page 93-99

    ),()()(),(

    yxuYbXaYXT

    ++ =0

    '''=+

    +

    k

    g

    TT yyxx

    TL

    TL

    Ty=0

    Tx=0

  • 8/12/2019 SOV Conduction

    2/47

    Example 2: Laplaces equation in cylindricalcoordinates

    r0 1

    011

    2 =++ UrUrU rrr

    U(1,)=f()

    1

  • 8/12/2019 SOV Conduction

    3/47

    Use separation of variables:

    1 becomes:

    Also, it must be periodic in :

    So:

    This is satisfied only if =n where n=0,1,2,, so:

    )()( = rRU

    :or

    cos,sin"'"

    0"1

    '1

    "

    22

    2

    ==+

    =++

    RRr

    RRr

    Rr

    Rr

    R

    )](cos[)](sin[

    cossin

    22 +++=+

    BA

    BA

    )2()( +=

    ,...2,1,0cossin =+= nnBnA nnn ;

  • 8/12/2019 SOV Conduction

    4/47

    R equation:

    This is the equidimesional equation. Characteristicequation obtained substituting R=rn:

    For n=0:

    For n0:

    0'"

    22

    =+ RnrRRr

    2220 nn ==+ or-1)-(

    rccRr

    c

    R

    rcRrRRr

    ln'

    '

    '

    lnln'ln0'"

    00

    0

    0

    2

    +==

    ==+

    oror

    or

    n

    n

    n

    nn rcrcR += '

    rccR ln'00+=

  • 8/12/2019 SOV Conduction

    5/47

    solution:

    However, u

  • 8/12/2019 SOV Conduction

    6/47

    Apply non homog. B.C.:

    Use orthogonality:

    First multiply by sin(m) and integrate in (0,2):

    =

    =++==

    11

    0 cossin)(),1(n

    n

    n

    n nbnaafU

    m

    n

    n

    n

    n

    admf

    dnmbdnma

    dmadmf

    =

    ++

    =

    =

    =

    2

    0

    0

    1

    2

    01

    2

    0

    0

    2

    0

    0

    2

    0

    sin)(

    cossinsinsin

    sinsin)(

    or

    4444 34444 21

    44 344 21

  • 8/12/2019 SOV Conduction

    7/47

    Next multiply by cos(m) and integrate in (0,2)

    Next multiply by 1 and integrate in (0,2)

    General 2-D cylindrical coordinate problems:

    mbdmf =2

    0

    cos)(

    2)( 0

    2

    0

    adf =

    ),(),(),( zTzrTrT

    Equidimensionalequation in r:

    sin and cos

    Bessel functionin r, exponential

    in z

    Thin walled tubes,can reduce to

    Cartesian coords.

  • 8/12/2019 SOV Conduction

    8/47

    Example 3: Semi-infinite solid cylinder

    Let = T - TThen:

    r

    r0

    z

    T

    )(0),(

    )()()0,(0),(

    ),0(0),0(

    0

    0

    2

    2

    finiter

    rFTrfrzr

    finitezzr

    zr

    rr

    r

    or

    === =

    ==

    =

    +

  • 8/12/2019 SOV Conduction

    9/47

    Let (r,z) = R(r)Z(z) Need eigenvalue problem in r-direction:

    ( )

    0)(,0

    and

    0)(,)0(or0)0(

    0

    "'

    1

    2

    2

    2

    0

    2

    2

    ==

    ===

    =+

    ==

    ZZ

    dr

    Zd

    rRfiniteRdr

    dR

    rR

    dr

    dRr

    dr

    d

    Z

    ZrR

    dr

    d

    Rr

  • 8/12/2019 SOV Conduction

    10/47

    Rn = AnJo(nr) where n are determined from Jo(nro)

    Also,

    Apply the non-homogeneous condition:

    Use orthogonality:

    =

    =

    =

    1

    0 )(),(

    )(

    n

    n

    z

    n

    z

    nn

    rJeazr

    eCzZ

    n

    n

    ===

    1

    0 )()()0,(

    n

    nn rJarFr

    =0

    0

    0

    2

    0

    0 0

    )(

    )()(

    r

    n

    r

    n

    n

    drrrJ

    drrJrrFa

    2

    )( 02

    1

    2

    0 rJr n=

  • 8/12/2019 SOV Conduction

    11/47

    Example 4: Laplaces eqn. In spherical coordinates:

    Axisymmetric no variation in direction

    r

    y

    zT(r,,)

    )(),(,),0(

    0sinsin

    12

    fRTfiniteT

    T

    r

    Tr

    r

    ==

    =

    +

  • 8/12/2019 SOV Conduction

    12/47

    Let T(r,) = R(r)() is the only possible homogeneous direction.

    Choose the (-) sign to end up with the following:

    Recast 1 as

    finiteR

    R

    dr

    dRr

    dr

    Rdr

    dd

    dd

    =

    =+

    =+

    )0(

    02

    0sinsin

    1

    2

    22

    and

    1

    2

    0sin

    cos1

    sin

    1 2

    =+

    d

    d

    d

    d

  • 8/12/2019 SOV Conduction

    13/47

    Let x = cos ; then and

    This is the so called Legendres eqn. If = n:

    0)1()1( 2 =++

    43421

    dx

    dx

    dx

    d

    dx

    d

    d

    dx

    dx

    d

    d

    d []sin

    [][]

    ==

    3

    )(),(: xQxP nn

    Legendre functionsof first kind (polynomials

    Of order n)

    Legendre functionsof second kind (in finiteseries)

  • 8/12/2019 SOV Conduction

    14/47

    Temperature Variation in a Solid Sphere

    Eqn. 2 is equidimensional eqn. Characteristiceqn. obtained by setting R = r

    K,2,1,0);(cos == nPA nn

    +=+=

    ++=

    +=

    =+=+

    )1(2

    )12(1

    2

    )1(411

    2

    411

    002)1(

    2,1

    2

    n

    nn

    nn

    oror

  • 8/12/2019 SOV Conduction

    15/47

    Hence

    Apply non-homog. B.C.:

    =

    +

    =

    ==+=

    0

    )1(

    )(cos),(

    0)0(;)(

    n

    n

    n

    n

    nnn

    nn

    nn

    PrarT

    DfiniteRrDrCrR

    ==

    +=

    =

    =

    1

    1 0

    0

    0

    0sin)(cos)(cos0)()(

    sin)(cos)(2

    12

    )(cos)(

    dPPdxxPxP

    dPfn

    Ra

    PRaf

    nnmn

    n

    n

    n

    n

    n

    n

    n

    or

  • 8/12/2019 SOV Conduction

    16/47

    For example: if

  • 8/12/2019 SOV Conduction

    17/47

    [ ]

    K

    +

    +=

    ==

    ===

    )(cos16

    7

    )(cos4

    3

    2

    1),(

    16

    7

    )35(2

    1

    2

    7

    04

    5)13(

    2

    1

    2

    5

    3

    3

    10

    1

    0 0

    3

    0

    3

    3

    1

    0

    301

    0

    202

    2

    PR

    r

    PR

    r

    T

    rT

    TdxxxTRa

    xxT

    dxxT

    Ra

    .

    .

  • 8/12/2019 SOV Conduction

    18/47

    Legendre Polynomials

    Consider the following linear second-order ODE withvariable coefficients:

    Or equivalently:

    0)1()1( 2 =++

    ydx

    dyx

    dx

    d

    0)1(2)1( 2

    22

    =++ ydxdy

    xdx

    yd

    x (5.109a)

    (5.109b)

  • 8/12/2019 SOV Conduction

    19/47

    This equation is known as Legendres diferential

    equationand its two linearly independent solutionsare called Legendre functionsof the firstand secondkind, respectively.

    When = n, where n is a positive integer or zero, theLegendre functions of the first kind becomes apolynomial of degree n.

    The general solution of Legendres equation for

    n = 0, 1, 2, can be written as

    Pn(x) are polynomials called Legendre Polynomialsofdegreen, and Qn(x) are the Legendre functions of thesecond kind

    )()()( 21 xQCxPCxy nn += (5.110)

  • 8/12/2019 SOV Conduction

    20/47

    The Legendre polynomials are given by:

    ...!5

    )4)(2)(3)(1(

    !3

    )2)(1()(

    ...!4

    )3)(1)(2(

    !2

    )1(1)(

    ,...7,5,3),()1(642

    531)1()(,)(

    ,...6,4,2),(642

    )1(531)1()(,1)(

    53

    42

    2/)1(

    1

    2/

    0

    ++

    ++

    =

    ++

    ++

    =

    =

    ==

    ===

    xnnnn

    xnn

    xxV

    xnnnn

    xnn

    xU

    nxVn

    nxPxxP

    nxUn

    nxPxP

    n

    n

    n

    n

    n

    n

    n

    n

    (5.111a,b)

    (5.111c,d)

    (5.112a)

    (5.112b)

  • 8/12/2019 SOV Conduction

    21/47

    The first six Legendre Polynomials are readily foundto be:

    Rodrigues Formula

    )157063(81)()13(

    21)(

    )33035(8

    1)()(

    )35(2

    1)(1)(

    355

    22

    24

    51

    3

    30

    xxxxPxxP

    xxxPxxP

    xxxPxP

    +==

    +==

    ==

    n

    n

    n

    nn x

    dx

    d

    nxP )1(

    !2

    1)(

    2 =

    (5.113)

    (5.114)

  • 8/12/2019 SOV Conduction

    22/47

    Recurrence formula:

    The following property of Legendre Polynomials is

    also frequently used:

    xn

    xPnxnPxP nnn

    )12(

    )()1()()( 11

    +

    ++= +

    ,...3,2,1),()12(

    11

    =+= +

    nxPndx

    dP

    dx

    dPn

    nn

    (5.115)

    (5.116)

  • 8/12/2019 SOV Conduction

    23/47

    If |x| < 1, the Legendre functions of the second kindare given by

    Notice that the Legendre Functions of the secondkind are infinite series, which are convergent when

    |x| < 1, but diverges as x 1

    ,...7,5,3),(531

    )1(642)1()(

    ),()(

    ,...6,4,2),()1(531

    642)1()(

    ),()(

    2/)1(

    11

    2/

    00

    =

    =

    =

    =

    =

    =

    +nxU

    n

    nxQ

    xUxQ

    nxVn

    nxQ

    xVxQ

    n

    n

    n

    n

    n

    n

    (5.117a,b)

    (5.117c,d)

  • 8/12/2019 SOV Conduction

    24/47

    Legendre Functions of the second kind Qn(x) also

    satisfy recurrence formulas (5.115) and (5.116)

    When |x| < 1

    Qn for any positive integer value of n:

    xxxxQ 10 tanh

    11ln

    21)( =+=

    (5.118)

    )...(

    )1(3

    )52()(

    1

    )12()()()( 310 xP

    n

    nxP

    n

    nxQxPxQ nnnn

    =

    (5.119)

  • 8/12/2019 SOV Conduction

    25/47

    If |x| < 1, the substitution x = cos transforms

    Legendres differential equation from the form(5.109b) into the form:

    or, equivalently

    when = n. Hence the general solution to (5.120a) is

    0)1(sinsin

    1

    =++

    ynnd

    dy

    d

    d

    (5.120a)

    0)1(cot2

    2 =+++ ynnddy

    dyd

    (5.120b)

    )(cos)(cos)(21 nn QCPCy += (5.121)

  • 8/12/2019 SOV Conduction

    26/47

    It should be noted here that Qn(cos) is not finite

    when cos = 1; that is when = k, k = 0, 1, 2, ,whereas Pn(cos) is merely a polynomial of degree nin cos. In particular we have

    .

    .

    .

    )cos33cos5(

    8

    1)cos3cos5(

    2

    1)(cos

    )12cos3(4

    1)1cos3(

    2

    1)(cos

    cos)(cos

    1)(cos

    3

    3

    22

    1

    0

    +==

    +==

    ==

    P

    P

    P

    P

  • 8/12/2019 SOV Conduction

    27/47

    When |x| < 1, the functions

    are called the associated Legendre functionsofdegreen and orderm of the firstand second kinds,respectively. They can be shown to satisfy thedifferential equation

    )()(,)()1()(

    )()(,)(

    )1()(

    02/2

    02/2

    xQxQdx

    xQdxxQ

    xPxPdx

    xPdxxP

    nnmn

    m

    mmn

    nnm

    n

    mmm

    n

    ==

    ==

    (5.122a)

    (5.122b)

    01

    )1(2)1(2

    2

    2

    22 =

    ++ y

    x

    mnn

    dx

    dyx

    dx

    ydx (5.123)

  • 8/12/2019 SOV Conduction

    28/47

    Non-Homogeneous Problems

    May result from non-homog. boundaries and/or non-homog. Governing equation

    Example 5: Non-homog. Boundaries

    The solutions can be added only when expressed ina common coordinate system. Sign for upper andlower B.C. depend on whether heat flux is in or out

    2 = 0 = 21= 0 22= 0 23= 0+ +

    F(y)

    o

    F(y)

    0

    0

    0 0

    0

    = hy

    k

    "q

    y

    k =

    11 =

    hy

    k

    01 =

    y 03 =

    y"2 q

    yk =

    22 =

    hy

    k 33 =

    hy

    k

  • 8/12/2019 SOV Conduction

    29/47

    Example 6: Non-homog. Term in the G.E. (use of

    partial solutions)

    L L

    x

    y

    l

    l 0 u

    0

    0

    0

    0

    u

    xy

    =0

    =0

    y=0

    x=0

    0),(),()0,(),0(

    0

    "'

    =====++

    yLlxxy

    k

    u

    yx

    yyxx 1

  • 8/12/2019 SOV Conduction

    30/47

    Assume soln. of following form:

    With form given by 2 :

    If u is function of x and y, try variation of parameters

    )(),(),(or

    )(),(),(

    43

    21

    yyxyx

    xyxyx

    +=+= 2

    3

    (

    2

    21

    111

    2

    1

    2

    2

    1

    2

    22

    2

    2

    ),

    0),()0,(),0(;0

    0)(;0)0(;0"'

    =

    ==

    =

    =

    +

    ===+

    lx

    yLx

    y

    y

    xyx

    Ldx

    dk

    udx

    d

  • 8/12/2019 SOV Conduction

    31/47

    Two-Dimensional Transients

    Example 7: Separation of variables (p134)

    Let U = W(r,)()

    4 becomes:

    )()0,,(;0),,1(

    ),,(

    12

    rfrUU

    rUU

    UUrr

    UU rrr

    ==

    ==++

    where4

    already normalized

    2

    2

    '111 =

    =

    ++ Wr

    Wr

    WW

    rrr

    exp. decayIn time

  • 8/12/2019 SOV Conduction

    32/47

    Also:

    Let W = R(r)()

    2= e

    011 2

    2

    =+++ WWr

    Wr

    Wrrr

    2222

    2

    2

    "'"

    0"1

    '1

    "

    =

    =++

    =+++

    rR

    Rr

    R

    Rr

    RRr

    Rr

    R

    or

    need periodicbehavior in

  • 8/12/2019 SOV Conduction

    33/47

    So;

    Now , so satisfies:

    ),(),,(:

    0)('"

    )2()(,cos,sin:

    2222

    rYrJR

    RnrrRRr

    n

    nn

    forwhere

    =++

    +==

    must be absent forfinite temp. at r=0

    0)(0),,1( == mnnJU

    0)( =mnnJ where mn is the mth zero crossing of Jn

    m = 1, 2, 3, ; n = 0, 1, 2,

    eigenvalues in r-dir. eigenvalues in -dir.

  • 8/12/2019 SOV Conduction

    34/47

    Unknown constants are again evaluated using

    orthogonality:

    first:

    =

    =

    +=1 0

    2)()cossin(),,(m n

    mnnmnmnmnerJnBnArU

    =

    = +=

    =

    1 0)()cossin(

    ),()0,,(

    m n

    mnnmnmn rJnBnA

    rfrU

    44 344 21444 3444 21

    dnrJAdnrf

    m

    mnnmn

    nrF

    =

    = 2

    0

    2

    1

    '''

    )',(

    2

    0'sin)('sin),(

  • 8/12/2019 SOV Conduction

    35/47

    next:

    Drop primes for convenience:

    =

    =

    =

    1

    0 ''

    2'''

    1

    01

    1

    0 '''''''''

    )(

    )()()()';(

    drrrJA

    drrJrrJAdrrJnrrF

    nmnnm

    m

    nmnmnnmnnmn

    { }

    1

    0

    2

    11

    2

    1

    0

    )()()(2

    );()(

    = +

    rJrJrJr

    A

    drnrFrrJ

    mnnmnnmnnmn

    mnn

  • 8/12/2019 SOV Conduction

    36/47

    or

    Determine Bmn similarly. See p. 138. Note n=0 hasto be treated separately (see p. 90)

    { }

    = + )()()(2

    1 211 mnnmnnmnnmn JJJA L.H.S.

    0)(

    2)(1 mnn

    mn

    mnn Jn

    J

    += +

    =

    =

    +

    +

    1

    0

    2

    02

    1

    2

    1

    1

    0

    sin),()()(

    2

    )(2

    1);()(

    drdnrfrrJJ

    A

    rJAdrnrFrrJ

    mnn

    mnn

    mn

    mnnmnmnn

  • 8/12/2019 SOV Conduction

    37/47

    Example 8: Reduction of multi-dimensional to one-dimensional transients.

    - Problem must be homog. and linear

    - I.C. should be constant or expressible in

    product form: e.g. Ri(r)Zi(z) or Xi(x)Yi(y),etc.

    L

    z

    rto

    to

    to ro

    0

    0

    2

    2

    2

    2

    )0,,(

    0),,(0),0,(

    0),,(

    11

    ttzrT

    LrTrT

    zrT

    T

    z

    T

    r

    T

    rr

    T

    i===

    =

    =

    +

    +

    1

  • 8/12/2019 SOV Conduction

    38/47

    Let

    Substitute in 1 :

    This will be satisfied if:

    ),(),( rZrRT= 2

    0111

    )(11

    =

    +

    +

    +=++

    ZZRZRR

    r

    R

    RZZRRZZRr

    ZR

    zzrrr

    zzrrr

    or

    ZZ

    RRrR

    zz

    rrr

    1

    11

    =

    =+

    and

  • 8/12/2019 SOV Conduction

    39/47

    B.C.:

    These are satisfied when:

    I.C.:

    One choice that will satisfy this:

    ),(),(),,(

    ),0(),(),0,(

    ),(),(),,( 00

    LZrRLrT

    ZrRrT

    zZrRzrT

    ==

    =

    0),(),0(0),( 0 == LZZrR ,,

    )0,()0,()0,,(0 zZrRttzrT i ==

    1)0,()0,( 00 == zZttrR i ,

  • 8/12/2019 SOV Conduction

    40/47

    This reduces the originial problem into 2 one-dim.

    Problems. Z is the solution to a 1-D transient in a slab: (p.84)

    R is the solution to a 1-D transient in an infinitely long

    cylinder: (p.120)

    where m satisfy J0(mr0) = 0. Solution for T is obtained from 2

    =

    +

    ++

    = 0/)12(

    222

    12

    ]/)12sin[(4

    ),(n

    Ln

    en

    LznzZ

    ( )

    =

    =1

    /)(

    010

    00

    20

    20

    )()(

    )(2),(

    m

    rr

    mm

    mi

    merJr

    rJttrR

  • 8/12/2019 SOV Conduction

    41/47

    Many other problems can be handled in a similar

    manner, e.g.

    See other examples, also p.265 I&P

    Can also include other homog. Conditions such asconvection. Cannot handle flux.

    Multi-D I.C. must be of product form.

    =

  • 8/12/2019 SOV Conduction

    42/47

    Some Multi-D Steady Problems

    Solvable By Separation of VariablesRectangular:

    2D (s.s):

    1 2 3

    qf1(x)

    f4(x)

    f3(x)

    f2(x) T0T0

    T0 f2(x)

    h, T0

  • 8/12/2019 SOV Conduction

    43/47

    3D (s.s.):

    A: 1 at T1, 2 at T2, all others at T0.B: 1 at T1, 2 at T2, all others convective conditions

    C: 1 at T1, convection at all others

    D: Region extends infinitely in the x-dirn

    from X=0.Surface at x=0 at T1. Convection at other foursurfaces

    x

    yz

    2

    6

    3

    5

    4

    1

  • 8/12/2019 SOV Conduction

    44/47

    Cylindrical:

    2D:

    (a) Short cylinder (r,z)

    (b) Circumferential temperature variation

    variation (r,) in a half infinite solidlong half cylinder: z > 0

    z

    r

    f(r) = T-Tr

    TS or h(for r=R or z=L)

    f()

    T0

    r

    z T

  • 8/12/2019 SOV Conduction

    45/47

    (c) Disk shaped input B.C. (flux or temperature)

    Can apply to bottom surface of a semi-infiniteregion or between two semi-infinite regions:

    Spherical (r,); axisymmetric

    (a) hollow sphere (b) solid hemisphere

    T0f()

    T0

    f()

    Multi Dimensional Transients Using

  • 8/12/2019 SOV Conduction

    46/47

    Multi-Dimensional Transients Using

    Separation of Variables Rectangular Regions:

    (i) Assuming surface temperature

    is T0 at all faces for t > 0 Ti(x,y,z)

    2H

    2W2L

    zx

    y

    ( ) ( ) ( )[ ]( ) dxdydz

    H

    zm

    L

    ym

    W

    xmTzyxTA

    HpLnWm

    H

    zm

    L

    ym

    W

    xmAe

    TtzyxT

    W L H

    imnp

    mnp

    m n p

    mnp

    tmnp

    sinsinsin),,(

    ///

    sinsinsin

    ),,,(

    0 0 0 0

    22222

    1 1 1

    0

    2

    =++=

    =

    =

    =

    =

    =

  • 8/12/2019 SOV Conduction

    47/47

    (ii)

    Cylindrical Regions:

    (i) (ii)

    L T0x

    y Ti(x,y)

    h, T0

    h, T0

    Ti(r,) h(Ts- T)T0

    T0

    T0

    Ti


Top Related