Transcript
Page 1: University of Portsmouth Department of Mathematics Project Presentation

6 May, 2004 1

University of Portsmouth

Department of Mathematics

Project Presentation

Barycentric representation of some interpolants: Theory and numerics.

By: Maria Apostolou

Supervisor: Dr. A. Makroglou

2nd Assessor: Dr. A. Osbaldestin

Page 2: University of Portsmouth Department of Mathematics Project Presentation

2

Aim

• To study some numerical methods in their classical and barycentric form such as:– Lagrange– Rational

• To implement some of them numerically.

• The MATLAB package has been used for programming.

Page 3: University of Portsmouth Department of Mathematics Project Presentation

3

Outline of the Talk 1. Interpolation problem.

2. Lagrange interpolation.

3. Barycentric representation

3.1 Lagrange type

3.2 Linear rational type

4. Numerical results

5. Conclusions.

6. Further Research.

Page 4: University of Portsmouth Department of Mathematics Project Presentation

4

ReferencesThe main references are:1) Berrut, J. P. and Mittelmann, H. D., Lebesgue Constant

Minimizing Liner Rational Interpolation of Continuous Functions over the Interval,comp. Maths applic. , 33 (1997), 77-86.

2) Salzer, H. E., Lagrangian interpolation at the Chebyshev points Xn,v cos (v/n), v = 0(1)n; some unnoted advantages, The Computer Journal, 15 (1972), 156-159.

3) Werner, W., Polynomial interpolation : Lagrange versus Newton, Mathematics of Computation, vol. 43 (1984), 205-217.

4) Hahn, B. D. “Essential MATLAB for Scientists and Engineers”, Arnold, 1997.

Page 5: University of Portsmouth Department of Mathematics Project Presentation

5

1. Interpolation problem• One of the types of approximation methods is the interpolation.• The problem of interpolation for one dimensional data can be stated

as follows: given a set of data of the form (xi, yi), i = 0, 1, . . ., n where the xi are distinct, find a function say p(x) such that p(xi) = yi, i = 0, 1, . . ., n.

• Quite often the interpolation function is a polynomial such as: Lagrange, Newton and Neville.

• A well known problem of polynomial interpolation is that when used with a ‘large’ number of equidistant points xi, the errors at points close to the end points of the interval of consideration grow catastrophically.

Page 6: University of Portsmouth Department of Mathematics Project Presentation

6

2. Lagrange interpolation-One approach to the interpolation problem is the

Lagrange method.

The Lagrange form is:

(2.1)

where

)()(...)(0

00 xlyxlylyxpn

kkknnn

n

kjj jk

jk xx

xxxl

,0 )(

)()(

Page 7: University of Portsmouth Department of Mathematics Project Presentation

7

3. Barycentric representation3.1 Lagrange type

The Lagrange type barycentric formula is:

,

Proof. Since

1

1

1

1

])(

[

])(

[

)(n

j j

j

n

j j

jj

n

xx

Axx

yA

xp

n

jkkkj

j

xxA

,1

)(

1

1

1

1)(n

jj xl

Page 8: University of Portsmouth Department of Mathematics Project Presentation

8

the Lagrange interpolation polynomial can be written

Let:

So we rewrite lj as:

1

11

1

1

1

)(

)(

)()(n

jn

jj

n

jjj

jjn

xl

yxl

yxlxp

n

jkkkj

j

xxA

,1

)(

1

1

,1

)()(n

jkkkjj xxAxl

Page 9: University of Portsmouth Department of Mathematics Project Presentation

9

Thus

(4.1)

We divide both nominator and denominator by

1

1

1

,1

1

1

1

,1

)(

)(

)(n

j

n

jkkkj

n

j

n

jkkkjj

n

xxA

xxyA

xp

1

,1

)(n

jkkkxx

Page 10: University of Portsmouth Department of Mathematics Project Presentation

10

So (4.1) became

(4.2)

So (4.2) became

1

1

1

1

1

,1

1

1

1

1

1

,1

)(

),(

)(

)(

)(

n

kk

n

j

n

jkkkj

n

kk

n

j

n

jkkk

jj

n

xx

xxA

xx

xxyA

xp

1

1

1

1

])(

[

])(

[

)(n

j j

j

n

j j

jj

n

xx

Axx

yA

xp

Page 11: University of Portsmouth Department of Mathematics Project Presentation

11

Advantage of the Lagrange barycentric form

The main advantage of the barycentric form is related to improvements in the numerical stability of the Lagrange interpolation process. The main reason for this improvement is reported in Werner (1984, p.210) to be the fact that even if the weights Aj are

not computed very accurately, the barycentric formula continues to be an interpolating formula .

Page 12: University of Portsmouth Department of Mathematics Project Presentation

12

3.2 Linear rational type

The form of the linear rational interpolant of barycentric form is:

The constants uk are chosen so that the Lebesgueconstant

is minimized under the constrains

n

k k

k

n

k k

kk

un

xxuxxyu

xr

0

0)(

)(

)()(

n

kkk

n

kkk

bxa

n

k

uk

bxa

un

xxu

xxuxl

0

0)()(

))/((

)/()( supsup

ikMum k ,

Page 13: University of Portsmouth Department of Mathematics Project Presentation

13

4. Numerical results - Table1The results for the function: y=exp(-x2) using classicalLagrange with equidistant points fon n = 21are: xval function values comp. value abs errors

-0.950 0.40555451 0.40555278 1.723e-006 -0.750 0.56978282 0.56978272 1.002e-007 -0.550 0.73896849 0.73896849 3.123e-009 -0.350 0.88470590 0.88470590 3.307e-011 -0.150 0.97775124 0.97775124 2.698e-014 0.150 0.97775124 0.97775124 1.110e-016 0.350 0.88470590 0.88470590 3.531e-014 0.550 0.73896849 0.73896849 1.641e-012 0.750 0.56978282 0.56978282 1.758e-010 0.950 0.40555451 0.40555451 5.392e-009

Page 14: University of Portsmouth Department of Mathematics Project Presentation

14

Numerical results – Table2The results for the function: y=exp(-x2) using classicalLagrange with chebyshev points fon n = 21are: xval function values comp. value abs errors

-0.950 0.40555451 0.40555457 6.070e-008 -0.750 0.56978282 0.56978283 1.544e-009 -0.550 0.73896849 0.73896849 2.786e-011 -0.350 0.88470590 0.88470590 1.312e-012 -0.150 0.97775124 0.97775124 1.033e-014 0.150 0.97775124 0.97775124 8.882e-016 0.350 0.88470590 0.88470590 6.661e-016 0.550 0.73896849 0.73896849 2.849e-013 0.750 0.56978282 0.56978282 5.472e-012 0.950 0.40555451 0.40555450 1.016e-010

Page 15: University of Portsmouth Department of Mathematics Project Presentation

15

Numerical results –Table3The results for the function : y=exp(-x2) using barycentric withequidistant points for n = 21are: xval function values comp. value abs errors

-0.950 0.40555451 0.40555451 2.262e-012 -0.750 0.56978282 0.56978282 2.220e-014 -0.550 0.73896849 0.73896849 8.882e-016 -0.350 0.88470590 0.88470590 3.331e-016 -0.150 0.97775124 0.97775124 0.000e+000 0.150 0.97775124 0.97775124 0.000e+000 0.350 0.88470590 0.88470590 2.220e-016 0.550 0.73896849 0.73896849 7.772e-016 0.750 0.56978282 0.56978282 1.910e-014 0.950 0.40555451 0.40555451 2.593e-012

Page 16: University of Portsmouth Department of Mathematics Project Presentation

16

Numerical results – Table4The results for the function : y=exp(-x2) using barycentric withChebychev points fon n = 21are: xval function values comp. value abs errors

-0.950 0.40555451 0.40555451 1.249e-014 -0.750 0.56978282 0.56978282 9.437e-015 -0.550 0.73896849 0.73896849 2.998e-015 -0.350 0.88470590 0.88470590 4.885e-015 -0.150 0.97775124 0.97775124 5.551e-016 0.150 0.97775124 0.97775124 1.110e-016 0.350 0.88470590 0.88470590 4.552e-015 0.550 0.73896849 0.73896849 2.665e-015 0.750 0.56978282 0.56978282 9.437e-015 0.950 0.40555451 0.40555451 1.255e-014

Page 17: University of Portsmouth Department of Mathematics Project Presentation

17

Numerical results - Table5The results for the function : y=exp(-x2) using classicalLagrange with Chebychev points fon n = 101are: xval function values comp. value abs errors

-0.450 0.81668648 -8.91078343 9.727e+000 -0.350 0.88470590 0.88616143 1.456e-003 -0.250 0.93941306 0.93941296 9.892e-008 -0.150 0.97775124 0.97775124 2.802e-012 -0.050 0.99750312 0.99750312 1.010e-014 0.050 0.99750312 0.99750312 2.069e-011 0.150 0.97775124 0.97626064 1.491e-003 0.250 0.93941306 -11403.06993416 1.140e+004 0.350 0.88470590 -1057124943.27642430 1.057e+009

Page 18: University of Portsmouth Department of Mathematics Project Presentation

18

Numerical results – Table6The results for the function : y=exp(-x2) using barycentric withChebychev points fon n = 101are: xval function values comp. value abs errors

-1.000 0.36787944 0.36787944 1.665e-016 -0.800 0.52729242 0.52729242 2.220e-016 -0.600 0.69767633 0.69767633 5.551e-016 -0.400 0.85214379 0.85214379 1.110e-016 -0.200 0.96078944 0.96078944 4.441e-016 0.000 1.00000000 1.00000000 4.441e-016 0.200 0.96078944 0.96078944 1.110e-016 0.400 0.85214379 0.85214379 5.551e-016 0.600 0.69767633 0.69767633 2.220e-016 0.800 0.52729242 0.52729242 2.220e-016 1.000 0.36787944 0.36787944 0.000e+000

Page 19: University of Portsmouth Department of Mathematics Project Presentation

19

Numerical results – Table7The results for the function : y=1/(1+25x2) using ClassicalLagrange with Chebychev points fon n = 101are: xval function values comp. value abs errors

-0.350 0.24615385 -653263076.28299761 6.533e+008 -0.250 0.39024390 -5003.80824613 5.004e+003 -0.150 0.64000000 0.64080180 8.018e-004 -0.050 0.94117647 0.94117647 8.735e-010 0.050 0.94117647 0.94117647 8.546e-010 0.150 0.64000000 0.64000000 8.834e-010 0.250 0.39024390 0.39024400 9.680e-008 0.350 0.24615385 0.24822379 2.070e-003 0.450 0.16494845 4.18889959 4.024e+000 0.550 0.11678832 -68734.99358674 6.874e+004

Page 20: University of Portsmouth Department of Mathematics Project Presentation

20

Numerical results – Table8The results for the function : y=1/(1+25x2) usingbarycentric with Chebychev points fon n = 101are: xval function values comp. value abs errors

-1.000 0.03846154 0.03846154 7.409e-010 -0.800 0.05882353 0.05882353 5.050e-010 -0.600 0.10000000 0.10000000 9.597e-010 -0.400 0.20000000 0.20000000 1.019e-009 -0.200 0.50000000 0.50000000 1.920e-009 0.000 1.00000000 1.00000000 4.441e-016 0.200 0.50000000 0.50000000 1.920e-009 0.400 0.20000000 0.20000000 1.019e-009 0.600 0.10000000 0.10000000 9.597e-010 0.800 0.05882353 0.05882353 5.050e-010 1.000 0.03846154 0.03846154 7.409e-010

Page 21: University of Portsmouth Department of Mathematics Project Presentation

21

5. Conclusions• Evaluating the results of the Tables 1, 2, 3 and 4 for they=exp(-x2) function when n = 21 we notice that the errors withthe barycentric form are a lot more accurate than thecorresponding results with the Classical form.• Also we notice that the results for Chebyshev nodesare more accurate that those with equidistant nodes asexpected.• The errors in Table 6 with n=101 and Chebyshev nodes areall of the order E-16, while the errors in Table 5 (classicalLagrange, n=101, Chebyshev nodes) increase catastrophicallyat points outside the interval [-0.15, 0.15].

Page 22: University of Portsmouth Department of Mathematics Project Presentation

22

• The errors in Table 8 with n=101 and Chebyshevnodes are all of the order E-10, E-09, while the errorsin Table 7 (classical Lagrange, n=101, Chebyshevnodes) increase catastrophically at points outside theinterval [-0.15, 0.15].

• So the general conclusion is that with respect to accuracyand numerical stability the barycentric form of the Lagrange interpolation method stays very accurate for large n (n+1 the number of points) and thus it should be used in all applications where Lagrange interpolation is used (Approximation theory, differential equations etc).

Page 23: University of Portsmouth Department of Mathematics Project Presentation

23

6. Further researchIdeas for further research may include

• Exploring the application of the barycentric form to 2-dimensional data.

• The computation of other types of interpolation methods using their barycentric form.

• The use of barycentric approach when using interpolation in solving equations of various types.


Top Related