Transcript
Page 1: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 1/32

Upper Bounds

forRing-Linear

Codes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

Vitaly

Skachek

Upper Bounds for Ring-Linear Codes

Eimear Byrne1, Marcus Greferath1, Axel Kohnert2,

Vitaly Skachek1

1Claude Shannon Institute andSchool of Mathematical Sciences

University College DublinIreland

2Dept MathematicsUniversity of Bayreuth

Germany

May 19 2009

Page 2: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 2/32

Upper Bounds

forRing-Linear

Codes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

Vitaly

Skachek

Outline

Codes over finite fields

Code optimalityBounds for codes for the Hamming weight

Ring-linear coding

The homogeneous weight

Bounds on the size of a code for the homogeneous weight

Page 3: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 3/32

Upper Bounds

forRing-Linear

Codes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

Vitaly

Skachek

Notation

F  = GF (q ), q  = p m some prime p 

R  is a finite ring with identity

R̂  := HomZ(R ,C×) the characters on (R , +)

χ ∈ R̂  is a character on (R , +)

C  is a code of length n and minimum distance d 

Page 4: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 4/32

Upper Bounds

forRing-Linear

Codes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

Vitaly

Skachek

Using Codes for Error Correction

One parameter that indicates the error-correcting capability of a code is its minimum distance.

Page 5: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 5/32

Upper Bounds

forRing-Linear

Codes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Using Codes for Error Correction

One parameter that indicates the error-correcting capability of a code is its minimum distance.The higher the minimum distance, the more errors that can bedetected and corrected by the receiver.

Page 6: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 6/32

Upper Bounds

forRing-Linear

Codes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Using Codes for Error Correction

One parameter that indicates the error-correcting capability of a code is its minimum distance.The higher the minimum distance, the more errors that can bedetected and corrected by the receiver.

Page 7: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 7/32

Upper Bounds

forRing-Linear

Codes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Using Codes for Error Correction

One parameter that indicates the error-correcting capability of a code is its minimum distance.The higher the minimum distance, the more errors that can bedetected and corrected by the receiver.

Page 8: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 8/32

Upper Bounds

forRing-Linear

Codes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Code Optimality

The Main Coding Problem:

1 For fixed length n and minimum distance d , what is themaximum size of any code over R ?i.e., what is AR (n, d )?

2 For a fixed length n and minimum distance d , what is the

maximum size of any linear code over R ?i.e., what is B R (n, d )?

Page 9: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 9/32

Upper Bounds

forRing-Linear

Codes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Some Distance Functions

Definition (Hamming Metric)

Let u, v ∈ R n. The Hamming distance between u and v is thenumber of components where u and v differ, i.e.

dHam(u, v) = |{i  : u i  = v i }|

u = [0, 0, 1, 1, 3, 3], v = [1, 2, 2, 1, 1, 3] ∈ Z4

d Ham(u, v) = 4.

Page 10: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 10/32

Upper Bounds

forRing-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Some Distance Functions

Definition (Lee Metric)

Let u , v  ∈ Zm. The Lee distance between u  and v  is theabsolute value modulo m of  u − v , i.e.

dLee(u , v ) = |u − v |m =

u − v  if  u − v  ∈ {0, ..., m/2}v  − u  otherwise

If u, v ∈ Znm then dLee(u, v) =

i =1..n |u i  − v i |m.

u = [0, 0, 1, 1, 3, 3], v = [1, 2, 2, 1, 1, 3] ∈ Z4

d Lee(u, v) = 1 + 2 + 1 + 2 = 6

Page 11: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 11/32

Upper Bounds

forRing-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Some Bounds for Codes over Finite Fields

Singleton: |C | ≤ Aq (n, d ) ≤ q n−d +1

Hamming: |C | ≤ Aq (n, d ) ≤ q n

V q (n, d −12

),

Plotkin: |C | ≤ Aq (n, d ) ≤ d d −γ n

, γ  = q −1q 

, if  n < d γ 

Gilbert-Varshamov: Aq (n, d ) ≥ q n

V q (n,d −1)

Elias-Bassalygo bound

Mc-Eliece-Rodemich-Rumsey-Welch boundLinear Programming bound

Page 12: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 12/32

Upper Bounds

forRing-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Asymptotic Representations

Page 13: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 13/32

Upper Bounds

forRing-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Codes over Finite Rings

Definition

An code of length n over R  is a nonempty subset of  R n. A(left) linear code of length n over R  is a left R -submodule of R n.

We will usually assume that R  is a finite Frobenius ring.

Many of the foundational results of classical coding theory (e.g.the MacWilliams’ theorems) can be extended to the finite ringcase when R  is Frobenius.

[Wood, Honold, Nechaev, Greferath, Schmidt..]

Page 14: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 14/32

Upper Bounds

forRing-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Finite Frobenius Rings

For a finite ring R , R̂  is an R  − R  bimodule via

χr (x ) = χ(rx ), r χ(x ) = χ(xr )

for all x , r  ∈ R , χ ∈ R̂ .R is a finite Frobenius ring iff 

R R  R R̂ 

Then R R̂  = R χ for some (left) generating character χ

Page 15: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 15/32

Upper Bounds

forRing-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Finite Frobenius Rings

Let R  and S  be finite Frobenius rings, let G  be a finite group.The following are examples of Frobenius rings.

integer residue rings Zm

Galois rings

principal ideal rings

R  × S 

the matrix ring M n(R )the group ring R [G ]

Page 16: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 16/32

Upper Bounds

forRing-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Homogeneous Weights

Definition

A weight w  : R  −→ Q is (left) homogeneous , if  w (0) = 0 and

1 If  Rx  = Ry  then w (x ) = w (y ) for all x , y  ∈ R .

2 There exists a real number γ  such that

y ∈Rx 

w (y ) = γ |Rx | for all x  ∈ R  \ {0}.

Page 17: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 17/32

Upper Bounds

forRing-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Examples of Homogeneous Weights

ExampleOn every finite field Fq  the Hamming weight is a homogeneousweight of average value γ  = q −1

q .

Example

On Z4 the Lee weight is homogeneous with γ  = 1.

x  0 1 2 3

w Lee(x ) 0 1 2 1

Page 18: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 18/32

Upper Bounds

forRing-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Examples of Homogeneous Weights

ExampleOn Z10 the following weight is homogeneous with γ  = 1:

x  0 1 2 3 4 5 6 7 8 9

whom(x ) 0 1 54 1 5

4 2 54 1 5

4 1

Page 19: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 19/32

Upper Bounds

forRing-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Examples of Homogeneous Weights

Example

On the ring R  of 2 × 2 matrices over GF(2) the weight

w  : R  −→ R, X  →

0 : X  = 0,2 : X  singular, X  = 0,1 : otherwise,

is a homogeneous weight of average value γ  = 32 .

Page 20: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 20/32

Upper Bounds

forRing-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Examples of Homogeneous Weights

Example

On a local Frobenius ring R  with q -element residue field theweight

w  : R  −→ R, x  →

0 : x  = 0,q 

q −1 : x  ∈ soc (R ), x  = 0,

1 : otherwise,

is a homogeneous weight of average value γ  = 1.

Which finite rings admit a homogeneous weight?

Up to the choice of  γ , every finite ring admits a uniquehomogeneous weight .

Page 21: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 21/32

Upper Bounds

forRing-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Homogeneous Weights of FFRs

Theorem (Honold)

Let R be a finite Frobenius ring with generating character  χ.

Then the homogeneous weights on R are precisely the functions 

w  : R  −→ R, x  → γ 

1 −1

|R ×|

u ∈R ×

χ(xu )

where  γ  is a real number.

Page 22: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 22/32

Upper Bounds

forRing-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Bounds on AR (n, d ) for the Homogeneous Weight

The following bounds have been found for codes over FFRs forthe homogeneous weight.

Sphere-packing (Hamming)

Sphere-covering (Gilbert-Varshamov)

Plotkin-like bounds

Elias-like bounds

Singleton-like boundLinear programming bound

Page 23: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 23/32

Upper Boundsfor

Ring-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

A Key Lemma

Lemma

Let C  ≤ R R n

be a linear code, and let x  ∈ R n

. Then1

|C |

c ∈C 

w (x  + c ) = γ |supp(C )| +

i ∈supp(C )

w (x i ).

C

Page 24: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 24/32

Upper Boundsfor

Ring-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Residual Codes

Definition

Let C  ≤R  R n, c  ∈ R n. Res (C , c ) := {(x i ) : x  ∈ C , c i  = 0}.Example

Let C  be the Z4-linear code generated by

1 0 0 0 3 1 2 10 1 0 0 1 2 3 10 0 1 0 3 3 3 20 0 0 1 2 3 1 1

.

Let c  = [0, 0, 0, 2, 0, 2, 2, 2]. Then Res (C , c ) is generated by

1 0 0 30 1 0 10 0 1 3

0 0 0 2

.

R id l C d

Page 25: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 25/32

Upper Boundsfor

Ring-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Residual Codes

Theorem

Let C  ≤ R R n have minimum homogeneous weight d, and let c  ∈ C satisfy  (c ) := w Ham < d 

γ . Then Res (C , c ) has 

length n − (c ),

minimum homogeneous weight d  ≥ d  − γ(c ),

|Res (C , c )| =|C |

|Rc |and 

|C | ≤ |Rc | d  − γ(c )d  − γ n

.

B d B ( d) f h H W i h

Page 26: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 26/32

Upper Boundsfor

Ring-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Bounds on B R (n, d ) for the Homogeneous Weight

Corollary (BGKS)

Let C  ≤ R R 

n

be a linear code of minimum homogeneous weight d and minimum Hamming weight  where  ≤ n ≤ d γ 

. Then

|C | ≤ |R |d  − γ

d  − γ n.

B d B ( d) f h H W i h

Page 27: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 27/32

Upper Boundsfor

Ring-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Bounds on B R (n, d ) for the Homogeneous Weight

Corollary (BGKS)

Let C  ≤ R R n be a linear code of minimum homogeneous 

weight d and minimum Hamming weight  where  < n ≤ d γ 

.Let Q be the maximum size of any minimal ideal of R. Then

|C | ≤ Q d  − γ

d  − γ n.

A Pl tki O ti l C d

Page 28: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 28/32

Upper Boundsfor

Ring-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

A Plotkin Optimal Code

ExampleLet R  = F

2×22 . Let C  be the length 16m − 1 Simplex Code over

R . Then |C | = 16m,

d  = |R |mγ  = 16mγ,

:= dHam(C ) = 16m −16m

4=

3

416m.

R  has 3 minimal ideals, each of size Q  = 4 and so

|C | ≤ Q  d  − γd  − γ n

= 416mγ − 3

4 16mγ 

16mγ − (16m − 1)γ = 4

16m

4= 16m.

B d B ( d) f th H W i ht

Page 29: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 29/32

Upper Boundsfor

Ring-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Bounds on B R (n, d ) for the Homogeneous Weight

Singleton-like bounds:

Theorem (BGKS)

Let C  ≤ R R n be an [n, d ] linear code and suppose that n ≤ d γ 

.Then

n − |R | − 1

|R |

γ 

log|R | |C | − 1

.

Theorem (BGKS)

Let C be an [n, d ] code over R satisfying n ≤d γ  and  (C ) < n.

Let P  := max{|Ra| : a ∈ R n, Ra ≤ C , (a) < n}. Then

n −

P  − 1

γ 

≥ logP  |C | − logP  |R | .

A Class of MDS Codes

Page 30: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 30/32

Upper Boundsfor

Ring-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

A Class of MDS Codes

Example

Let R  be a chain ring of length 2. Then R × = R \rad R  and|R | = q 2. Let U  := R 2\rad R 2, let P  := {xR  : x  ∈ U }. Then

|P| = q 2

+ q .Let C  < R R n be the length n := q 2 + q  code with 2 × ngenerator matrix whose columns are the distinct elements of  P .

Clearly (c ) < n for each c  ∈ C .

C  is free of rank 2 and the maximal cyclic submodules of  C have size P  := |R | = q 2.

Let r  = logP  |C | − 1 = logq 2 q 4 − 1 = 1.

Page 31: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 31/32

Upper Boundsfor

Ring-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Example (cont.)

Setting γ  = 1, each word xG  of  C  has weight

w (xG ) =

q 2 + q  if  x  ∈ U q 3

q −1 if  x  ∈ radR 2,

=⇒ n −

P  − 1

P d 

= n −

q 2 − 1

q 2(q 2 + q )

= n − q 2 + q − 1 −1

= q 2 + q − q 2 − q + 1 = 1 = r .

References

Page 32: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 32/32

Upper Boundsfor

Ring-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

References

E. Byrne, M. Greferath and M. E. O’Sullivan, The linear programming bound for codes over finite Frobenius rings,Designs, Codes and Cryptography, Vol. 42 , 3 (2007), pp.289 - 301.

I. Constantinescu and W. Heise, A metric for codes over 

residue class rings of integers , Problemy PeredachiInformatsii 33 (1997), no. 3, 22–28.

M. Greferath and M. E. O’Sullivan, On Bounds for Codes over Frobenius Rings under Homogeneous Weights ,Discrete Mathematics 289 (2004), 11–24.

T. Honold, A characterization of finite Frobenius rings,Arch. Math. (Basel), 76 (2001), 406–415.

J. A. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math. 121

(1999), 555–575.


Top Related