Transcript
  • Wallaby science meeting - Dec 2 2010

    Westerbork ultra-deep HI observations at z=0.2

    Glenn Morrisson (Hawaii)Bianca Poggianti (Padova)David Schiminovich (Columbia)Arpad Szomoru (JIVE)Marc Verheijen (Kapteyn)Min Yun (UMASS)

    Aeree Chung (CfA)Ryan Cybulski (UMASS)Boris Deshev (Kapteyn)K.S. Dwarakanath (RRI)Jacqueline van Gorkom (Columbia)Maria Montero-Castano (Columbia)

  • Wallaby science meeting - Dec 2 2010

    HI, ICM, SFR, SFH, SPs and the environment

    Bravo

    -Alfaro

    et al, 2001

    Poggian

    ti & van

    Gorko

    m, 2

    001

    Coma Abell 2670

    What is the role and fate of cold gas in galaxy evolution?

  • Wallaby science meeting - Dec 2 2010

    Why clusters at higher redshift?

    ! Exploratory steps towards understanding the role and fate of cold gas in cosmological evolution.

    Why Z~0.2 ?! Highest redshift for ‘practical’ HI imaging with existing arrays

    ! Lowest redshift where cosmological evolutionary effects are seen

    Content of galaxy clusters and the surrounding field evolves over cosmic time.

  • Wallaby science meeting - Dec 2 2010

    0 0.1 0.2 0.3 0.4 0.5

    redshift

    0

    0.1

    0.2

    0.3

    0.4

    blu

    e fr

    action

    Abrah

    am et al, 1

    996

    Butcher-Oemler effect

    The fraction of blue (starforming?) galaxies in clusters increases with redshift and peaks in cluster outskirts.

    A963

    Key question: different accretion rate/efficiency or different field population?

    Butch

    er & O

    emler, 1

    984

  • Wallaby science meeting - Dec 2 2010

    Morphological mix in clusters depends on redshift and compactness

    Fasano et al, 2

    000

    • HEC LEC

  • Wallaby science meeting - Dec 2 2010

    Clusters of different compactness

    Concentration of ellipticals:

    High " S0/E low Low " S0/E high

    Fasano et al, 2000

  • Wallaby science meeting - Dec 2 2010

    Goals of HI observations at intermediate z

    • Characterize nature of blue galaxy population " gas content, SFR, stellar populations

    • Witness galaxy transformation in various environments " which physical mechanisms dominate where? gas accretion and depletion

    • SFR versus environment and gas content

    • Evolving !HI from blind HI 21cm emission surveys

    • Evolving HI Mass Function? " HIMF in different environments

    • HI based Tully-Fisher and rotation curve studies

  • Wallaby science meeting - Dec 2 2010

    1 Mpc 1 Mpc

    z=0.188z=0.206INT - B,R

    A tale of two clusters

    Abell 2192Abell 963

    work in progress( thesis Boris Deshev )

  • Wallaby science meeting - Dec 2 2010

    1 Mpc 1 Mpc1 Mpc1 Mpc

    z=0.188z=0.206INT - B,R

    A tale of two clusters

    Abell 2192Abell 963

    work in progress( thesis Boris Deshev )

  • Wallaby science meeting - Dec 2 2010

    INT - 2.5m SDSS

    SDSS @ Z=0.2 is of insufficient qualityto determine morphologies and detect LSB galaxies.

    B: 5x15minR: 5x 6min

  • Wallaby science meeting - Dec 2 2010

    Ultra-deep WSRT observations

    • Minimum detectable HI mass: 2x109 Msun over 150 km/s profile width

    (4" in each of 3 spectral resolution elements)

    • Corresponding limiting column density:

    3x1019 (cm-2) over 80 km/s profile width at 7".

    This requires: 78x12hr for A2192 at z=0.188

    117x12hr for A963 at z=0.206

  • Wallaby science meeting - Dec 2 2010

    Survey Volume & Large Scale Structure

    SDSS redshift slice

    325 Mpc

    combined volume: 7x10 Mpc4 3

    HIPASS

    Alfalfa

  • Wallaby science meeting - Dec 2 2010

    WSRT observational setup

    • Long-term program over 8 semesters

    • 8x10MHz bands, overlapping to cover 1160-1220 MHz Z = 0.164-0.224 , surveyed volume # 70,000 Mpc3

    • 8x256 channels, covering 18,000 km/s velocity range 20 km/s velocity resolution (after Hanning smoothing)

    • dual polarisation, 2-bit correlation, recirculation

    • 117x12hr on Abell 963 , 78x12hr on Abell 2192

    rms noise per channel: 14 $Jy and 17 $Jy (%V=80 km/s)

    ~5-15% lost to RFI, antenna 5 offline (APERTIF prototype)

    Verheijen et al, 2007, A

    pJ Lett, 6

    68, 9

  • Wallaby science meeting - Dec 2 2010

    WSRT observational setup

    • Long-term program over 8 semesters

    • 8x10MHz bands, overlapping to cover 1160-1220 MHz Z = 0.164-0.224 , surveyed volume # 70,000 Mpc3

    • 8x256 channels, covering 18,000 km/s velocity range 20 km/s velocity resolution (after Hanning smoothing)

    • dual polarisation, 2-bit correlation, recirculation

    • 117x12hr on Abell 963 , 78x12hr on Abell 2192

    rms noise per channel: 14 $Jy and 17 $Jy (%V=80 km/s)

    ~5-15% lost to RFI, antenna 5 offline (APERTIF prototype)

    Verheijen et al, 2007, A

    pJ Lett, 6

    68, 9

    A963 A2192

    semester # measurements

    2005 -A 20-B 15

    2006 -A 33 15-B 5

    2007 -A 33 12-B 3

    2008 -A 31 8-B 15

    total 117 73

    hours 1404 876

    pilot study

  • Wallaby science meeting - Dec 2 2010

    achieved rms noise

    A2192

    A963

    Flagged: 5-8% 15-17%

  • Wallaby science meeting - Dec 2 2010

    achieved rms noise

    A2192

    A963

    Flagged: 5-8% 15-17%

    before after

    0 256 0 256channel

    tim

    e

    0 hr

    12 hr

    channel

    10 MHz 10 MHz

  • Wallaby science meeting - Dec 2 2010

    IF-based selfcal

  • Wallaby science meeting - Dec 2 2010

    Abell 2192 Abell 963

    " = 7 $Jy/beam (confusion limited) " = !12 $Jy/beam (DR limited)

    continuum

    SFR # 10 Msun/yr ( deep GALEX data more sensitive )

  • Wallaby science meeting - Dec 2 2010

    %V = (1+Z)!C!%f/f0 = (1+Z)!8.24 km/s

    Velocity smoothing the data cubes:

    R2 : R = 2%V = 20 km/s # 1544 channelsR4 : R = 4%V = 40 km/s # 768 channelsR6 : R = 6%V = 60 km/s # 510 channelsR8 : R = 8%V = 80 km/s # 383 channels

  • Wallaby science meeting - Dec 2 2010

    Abell 2192 Abell 963

    R=80 km/s" = 17 $Jy/beam " = 14 $Jy/beam

    Detection criteria: 1x8" or 1.5x6" or 2x5" or 3x4" or 4x3" in N consecutive spectral resolution elements.

    line cubes

    Spectrally smoothed to R=20, 40, 60, 80 km/s

  • Wallaby science meeting - Dec 2 2010

    R2 R4 R6 R8 R2 R4 R6 R8

    positive detections negative detections

    1x8"

    2x5"

    3x4"

    4x3"

    simple source finding results

  • Wallaby science meeting - Dec 2 2010

    R2 R4 R6 R8 R2 R4 R6 R8

    positive detections negative detections

    1x8"

    2x5"

    3x4"

    4x3"

    simple source finding results

  • Wallaby science meeting - Dec 2 2010

    R-band B-band Near-UV Far-UVINT optical GALEX ultra-violet

    Stellar counterparts

  • Wallaby science meeting - Dec 2 2010

    A 2192 A 963

    Cube dimensions : 9.5 x 9.5 x 325 Mpc3

    Synthesized beam size : 65 x 80 kpc2 x 80 km/s

  • Wallaby science meeting - Dec 2 2010

    0.164 redsihft 0.224Cube dimensions: 9.5 x 9.5 x 85 Mpc3

    surroundings of Abell 963

    85 Mpc

  • Wallaby science meeting - Dec 2 2010

    Examples of detections (based on pilot data)

  • Wallaby science meeting - Dec 2 2010

    Examples of detections (based on pilot data)

  • Wallaby science meeting - Dec 2 2010

    detected HI masses

    Determination of HI Mass Function and !HIrequires completion corrections : to be done...

    144 HI detectionswith SDSS counterparts

    (both clusters combined)

  • Wallaby science meeting - Dec 2 2010

    MHI =

    2x10

    9

    Relative HI gas mass fractions

  • Wallaby science meeting - Dec 2 2010

    Colour-Magnitude diagram

    : optical redshifts

    : HI detections

  • Wallaby science meeting - Dec 2 2010

    Stacking HI spectra (based on pilot data)

    Average HI mass: 2x10 M •&9~

  • Wallaby science meeting - Dec 2 2010

    Conclusions

    • Expected rms achieved with the WSRT

    • HI emission from >150 individual galaxies at Z#0.2

    • Blind HI surveys uncover LSS not seen by SDSS

    • Blue ‘BO-galaxies’ gas-poor wrt similar field galaxies

    • !HI and HI-based TF at Z=0.2 expected soon

    The HI-universe at Z#0.2 is under reach !


Top Related