dpg2011 ake11.3dreyer triplejunction-waferbonding

17
© Fraunhofer ISE © Fraunhofer ISE GaInP/GaAs/Si Triple-Junction Solar Cell Formed by Wafer Bonding Karen Dreyer, Elvira Fehrenbacher, Eduard Oliva, Stephanie Essig, Vera Klinger, Tobias Roesener, Antonio Leimenstoll, Felix Schätzle, Martin Hermle, Andreas Bett, Frank Dimroth Fraunhofer-Institut für Solare Energiesysteme ISE DPG-Frühjahrstagung 2011 03/16/2011

Upload: feng-zhu

Post on 21-Apr-2015

19 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: DPG2011 AKE11.3Dreyer TripleJunction-WaferBonding

© Fraunhofer ISE © Fraunhofer ISE

GaInP/GaAs/Si Triple-Junction Solar CellFormed by Wafer Bonding

Karen Dreyer, Elvira Fehrenbacher, Eduard Oliva, Stephanie Essig,Vera Klinger, Tobias Roesener, Antonio Leimenstoll, Felix Schätzle, Martin Hermle, Andreas Bett,Frank Dimroth

Fraunhofer-Institut fürSolare Energiesysteme ISE

DPG-Frühjahrstagung 201103/16/2011

Page 2: DPG2011 AKE11.3Dreyer TripleJunction-WaferBonding

© Fraunhofer ISE2

Outline

Triple-junction solar cells

The GaInP/GaAs/Si solar cell

Why these semiconductors?

Challenge of the fabrication process

Wafer bonding process

Results of the GaInP/GaAs/Si solar cell characterisation

Page 3: DPG2011 AKE11.3Dreyer TripleJunction-WaferBonding

© Fraunhofer ISE © Fraunhofer ISE

3

Triple-Junction Solar CellsConcentrator Technology

Single-junction Si solar cell:

η = 25.5 % Spectrum: AM 1.5g [1]

GaInP/GaInAs/Ge triple-junction solar cell:

η = 41.6 % at 364 sunsSpectrum: AM 1.5d [1]

Advantages of concentrator cells:

Efficiency enhancement underconcentrated light

Cost reduction by decreasingsolar cell size to a few mm²

Bottom cellMiddle cell

Top cell

Single-junction cell

[1] Green et al., Progress in Photovoltaics: Research and Applications 18 (5), 2010

Page 4: DPG2011 AKE11.3Dreyer TripleJunction-WaferBonding

© Fraunhofer ISE © Fraunhofer ISE

4

Triple-Junction Solar CellsIII-V Semiconductors

Wide range of possiblebandgap energies

Epitaxy: high crystal qualityfor lattice matchedsemiconductors

5,4 5,5 5,6 5,7 5,8 5,9 6,0 6,10,0

0,5

1,0

1,5

2,0

2,5

AlAs

InP

InAs

GaAs

Ga0,5

In0,5

P

Ga0,99

In0,01

As

GeIn

x Ga1-x As

Alx In

1-x As

Lattice Matched Triple Junction

Band

gap

Ener

gy [e

V]

Lattice Constant [Å]

InPx As

1-x

Page 5: DPG2011 AKE11.3Dreyer TripleJunction-WaferBonding

© Fraunhofer ISE © Fraunhofer ISE

5

Triple-Junction Solar CellsSolar Cell Designs

III-V on SiliconConventional lattice

matched triple-junction solar cell

Ge 0.66 eVGaInAs 1.4 eVGaInP 1.9 eV

Si 1.12 eVGaAs 1.42 eVGaInP 1.9 eV

Ge bottom cell produceshigh excess current

Cannot be used dueto serial connection

Higher bandgap

Higher voltage

Cheaper substratematerial

Page 6: DPG2011 AKE11.3Dreyer TripleJunction-WaferBonding

© Fraunhofer ISE © Fraunhofer ISE

6

Triple-Junction Solar CellsIII-V on Silicon

4% lattice mismatchbetween III-V dual-junction and siliconsolar cell

5,4 5,5 5,6 5,7 5,8 5,9 6,0 6,10,0

0,5

1,0

1,5

2,0

2,5

AlAs

InP

InAs

GaAs

Ga0,51

In0,49

P

GaAs

Si

Ga0,5

In0,5

P

Ga0,99

In0,01

As

Ge4% lattice mismatch

Alx In

1-x As

InPx As

1-xInx Ga

1-x As

Lattice Matched Triple Junction Triple Junction, III-V on Si

Band

gap

Ener

gy [e

V]

Lattice Constant [Å]

Page 7: DPG2011 AKE11.3Dreyer TripleJunction-WaferBonding

© Fraunhofer ISE © Fraunhofer ISE

7

III-V on SiliconProcess of Fabrication

Page 8: DPG2011 AKE11.3Dreyer TripleJunction-WaferBonding

© Fraunhofer ISE © Fraunhofer ISE

8

III-V on SiliconDirect Wafer Bonding: Surface Cleaning and Activation

Demands on bond interface:

High electrical conductivity

Transparency

Surface cleaning and activation by Ar-beam

Bonding in vacuum chamber at room temperature

Si cell

electrostatic chuck

Argon gun

Argon gun

III-V solar celltemporary stabilisation

bonding layer

Page 9: DPG2011 AKE11.3Dreyer TripleJunction-WaferBonding

© Fraunhofer ISE © Fraunhofer ISE

9

GaInP/GaAs/Si Solar CellIV-Characteristic

Remarkable cellefficiency for the firstGaInP/GaAs/Si solar cell fabricated bywafer bonding:

20.5 % under AM 1.5d spectrum

0,0 0,5 1,0 1,5 2,0 2,5 3,00

2

4

6

8

10

Cell ID: FE112x7y2

A = 0,0547 cm2

VOC

= 2,778 V

JSC

= 8,56 mA cm-2

FF = 86.3 %η = 20.5 %

Cur

rent

Den

sity

[mA

/cm

2 ]

Voltage [V]

Page 10: DPG2011 AKE11.3Dreyer TripleJunction-WaferBonding

© Fraunhofer ISE © Fraunhofer ISE

10

GaInP/GaAs/Si Solar CellExternal Quantum Efficiency

Si subcell has lowestcurrent density

limits the total current density

Energy conversion in Si has to be increased

Thickness of uppersubcells should bereduced

300 400 500 600 700 800 900 1000 1100 12000

20

40

60

80

100

Si J SC =

9,5

6 m

A c

m-2

GaA

s

J SC =

14,

3 m

A c

m-2

GaI

nP

J SC =

11,

6 m

A c

m-2

Cell ID: FE112EQE Spectrum: AM 1.5d

EQE

[%]

Wavelength [nm]

Page 11: DPG2011 AKE11.3Dreyer TripleJunction-WaferBonding

© Fraunhofer ISE © Fraunhofer ISE

11

GaInP/GaAs/Si Solar CellEfficiency under Concentrated Illumination

Efficiency starts decreasingat 24 suns

Series resistancein cell structure

1 10 10020

21

22

23

24

Maximum: 23,3 % @ 24 suns

Effic

ienc

y [%

]

Concentration [X]

Cell ID: FE112x7y2

Page 12: DPG2011 AKE11.3Dreyer TripleJunction-WaferBonding

© Fraunhofer ISE © Fraunhofer ISE

12

GaInP/GaAs/Si Solar CellTEM Analysis of Bond Interface

TEM: amorphous layerbetween GaAs and Si of 3-4 nm thickness

Reason for seriesresistance?

High Resolution TEM Image,

Bright Field, Zone Axis Si

Universität Kiel, Institut für Materialwissenschaft, Gruppe Prof. Dr. Jäger, 2010

Page 13: DPG2011 AKE11.3Dreyer TripleJunction-WaferBonding

© Fraunhofer ISE © Fraunhofer ISE

13

Summary

Successful fabrication of first GaInP/GaAs/Si by wafer bonding

Remarkable cell efficiency of 23.3 % at 24 suns

Si subcell limits the current density

Efficiency decreases strongly under high concentration

Amorphous layer at the bond interface probably reduces currentdensity under high concentration

Page 14: DPG2011 AKE11.3Dreyer TripleJunction-WaferBonding

© Fraunhofer ISE © Fraunhofer ISE

14

AcknowledgementsI thank…

…the Bundesministerium für Bildung und Forschung (BMBF) for financial support(Förderkennzeichen 03SF0329A, „III-V-Si“)

…all co-workers from the groupIII-V – Epitaxy and Solar Cells

Page 15: DPG2011 AKE11.3Dreyer TripleJunction-WaferBonding

© Fraunhofer ISE © Fraunhofer ISE

15

Thank You Very Much for Your Attention!

Karen Dreyer

www.ise.fraunhofer.de

[email protected]

Fraunhofer Institute for Solar Energy Systems ISE“III-V – Epitaxy and Solar Cells”

Page 16: DPG2011 AKE11.3Dreyer TripleJunction-WaferBonding

© Fraunhofer ISE © Fraunhofer ISE

16

III-V on SiProcess of Production: Lift-Off

Page 17: DPG2011 AKE11.3Dreyer TripleJunction-WaferBonding

© Fraunhofer ISE © Fraunhofer ISE

17

Triple-Junction Solar CellsTheoretical Conversion Efficiency

500 1000 1500 2000 25000

200

400

600

800

1000

1200

1400

1600

energy that can be used by a Silicon solar cell

transmission losses

thermalization losses

Spe

ctra

l Irr

adia

nce

[W/ m

2 µm]

Wavelength [nm]

AM1.5g spectrum Si (1.12 eV)

500 1000 1500 2000 25000

200

400

600

800

1000

1200

1400

1600

transmission losses

thermalization losses

Spec

tral I

rradi

atio

n [W

/m2 µm

]

AM 1.5g spectrum GaInP (1,88 eV) GaInAs (1,44 eV) Ge (0,66 eV)

Wavelength [nm]

ηtheoretical, AM 1.5g = 33,3 % ηtheoretical, AM 1.5g = 50 %