dr. john anthony professor university of kentucky

41
Dr. John Anthony Professor University of Kentucky

Upload: spencer-montgomery

Post on 18-Dec-2015

217 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Dr. John Anthony Professor University of Kentucky

Dr. John AnthonyProfessorUniversity of Kentucky

Page 2: Dr. John Anthony Professor University of Kentucky

John AnthonyCenter for Applied Energy Research / Department of Chemistry University of Kentucky

Carbon-Based Materials for Solar Power Generation

OFET

OLED

OPV

Anthony AromaticsResearch Group

Page 3: Dr. John Anthony Professor University of Kentucky

Crystalline silicon solar cell Power conversion efficiency = 18 - 24%

Amorphous silicon solar cellPower conversion efficiency = 6 - 9%

Carbon-based solar cellPower conversion efficiency = 3 - 5%

Solar Cells

Pow

er C

onve

rsio

n E

ffici

ency

Module C

ost

Page 4: Dr. John Anthony Professor University of Kentucky

An impressive amount of energy goes into Si production

3,400 °F

Silicon

+ Carbon Dioxide

(1.6 pounds CO2 produced per pound of silicon)

arc furnace, C electrodes

Page 5: Dr. John Anthony Professor University of Kentucky

Extract the starting materials needed to make carbon-based solar cells from agricultural feedstocks.

Use the resulting “active inks” to form solar cells by spray-painting or inkjet printing

Page 6: Dr. John Anthony Professor University of Kentucky

(donor) (acceptor)

e-

Organic Excitonic Solar Cells

+ - -+ -+-+ -+

Page 7: Dr. John Anthony Professor University of Kentucky

Donor Acceptor

Voc

charge separation LUMO

HOMO

LUMO

HOMO

Organic Solar Cells

The “easy” stuff

Voc

Jsc

FFPCE = (Voc)(Jsc)(FF)

(Plight)x100%

Page 8: Dr. John Anthony Professor University of Kentucky

Advantage: Allows deposition of best-quality films of donor & acceptor

Single heterojunction solar cell

Disadvantages: • Small interface area between donor & acceptor• Layer thickness limited by exciton diffusion length (< 40 nm)NOTE: Amount of light absorbed is directly related to the thickness of the film (Beer’s law).

Tang, C. W., Two-layer organic photovoltaic cell, Applied Physics Letters (1986), 48(2), 183-5

Page 9: Dr. John Anthony Professor University of Kentucky

Molecules must self-segregate during film formation

• Use one crystalline component and one amorphous component• Crystalline molecules with very different shapes - spheres vs. rods, for example

maximizes interfacial area

Bulk heterojunction solar cell

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger “Polymer photovoltiac cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions” Science 1995, v. 270, 1789

J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, A. B. Holmes “Efficient photodiodes from interpenetrating polymer networks” Nature 1995, v.376, 498

Page 10: Dr. John Anthony Professor University of Kentucky

+ -

In this case, crystal packing can impact:• Morphology• Phase separation• Exciton diffusion length• Charge transport

Organic Solar Cells

Bulk heterojunctionmaximizes interfacial area

Page 11: Dr. John Anthony Professor University of Kentucky

Basic aromatic self-assembly

}

What is necessary for charge transport?

Page 12: Dr. John Anthony Professor University of Kentucky

Induced pi-stacking

1) Disrupt edge-to-face interactions with substitution at peri positions2) Place substituent far enough from π-system to allow (or enhance) stacking. 3) Adjust size of substituent to control amount of π-overlap4) Substituent on central ring lends both solubility and stability to the material

Page 13: Dr. John Anthony Professor University of Kentucky

Tuning a chromophore for a particular application takes place in three stages:

– Coarse: Induce (electronics) or eliminate (optics) π-stacking– Medium: Explore broad π-stacking motifs to optimize for desired application– Fine: Fine-tune precise nature of stacking to optimize performance

Page 14: Dr. John Anthony Professor University of Kentucky

Ried, W.; Anthöfer, F. Angew. Chem. 1953, 65, 601

(> 85%)

(scale: up to 30 g)

The silylethyne-substituted pentacenes are highly soluble, stable and easy to prepare, and form large, high quality crystals from solution.

Templating acene self-assembly

Page 15: Dr. John Anthony Professor University of Kentucky

X

X

y

X

X

X

1-D, long-axis slip

1-D, short-axis slip

1-D column, regular & dimerized

2-D “brickwork”

Alter π-stacking motif

J. E. Anthony, D. L. Eaton and S. R. Parkin Org. Lett. 2001, 4, 15.

Page 16: Dr. John Anthony Professor University of Kentucky

Carbon-based active layer is added by spin-casting

Aluminum cathode is added by evaporation under high vacuum

ITO

ITO glass (used in cell phones)

Bulk-heterojunction solar cells from a highly crystalline donor and much less crystalline acceptor

PCBM (acceptor)

ADT(donor)

Page 17: Dr. John Anthony Professor University of Kentucky

We can engineer semiconductors with various π-stacking motifs, which in turn impacts charge transport properties and crystal growth

S. Subramanian, S. R. Parkin, S. Park, T. N. Jackson, J. E. Anthony J. Mater. Chem. 19 7984 - 7989 (2009).

Intrastack contact: 3.5 ÅInterstack contact: 3.58 Å

µFET = 0.5 cm2 / Vs

“Intrastack” contact: 3.48 Å“Interstack” contact: 3.23 Å

µFET = 1.0 cm2 / Vs

Intrastack contact: 3.49 ÅInterstack contact: 3.84 Å

µFET = 10-4 cm2 / Vs

2-D π-stack

1-D π-stack

Intrastack contact: 3.83 Å µFET = 10-3 cm2 / Vs

2-D π-stack

Approximate 2-D π-stack

Page 18: Dr. John Anthony Professor University of Kentucky

Crystal packing

PV efficiency

Excellent2-D

No PV response

Excellent2-D

No PVresponse

Poor2-D

(> 3.8 Å)

0.24%Voc = 0.82 V

Jsc = 0.2 mA / cm2

Type of crystal packing has significant impact on PV performance

Page 19: Dr. John Anthony Professor University of Kentucky

60 sODCB vapor

120 sODCB vapor

180 sODCB vapor

“as spun”

Solvent vapor annealing of Ethyl TES ADT / PCBM films

Prof. George Malliaras, Matthew Lloyd

Page 20: Dr. John Anthony Professor University of Kentucky

Device 1

Device 2

Device 3

Device 5

Device 4

Device 6

r2 = 0.98

“Starburst” concentration relates directly to solar cell current

Fluorescence micrograph of actual device

Prof. George Malliaras, Matt Lloyd

Page 21: Dr. John Anthony Professor University of Kentucky

Jsc = 3 mA/cm2, Voc = 0.84 V, > 1% PCE

1-D π-stack, poor overlapµFET = 10-4 cm2 / Vs

Bulk-heterojunction acene solar cells

Lloyd, Mayer, Subramanian, Mourey, Herman, Bapat, Anthony, Malliaras J. Am. Chem. Soc. 2007, 129, 9144

Page 22: Dr. John Anthony Professor University of Kentucky

Small molecule bulk heterojunction solar cells

Organic active layer is added by spin-casting

Silver cathode is added by evaporation under high vacuum

ITO

Lloyd, Mayer, Subramanian, Mourey, Herman, Bapat, Anthony, Malliaras J. Am. Chem. Soc. 2007, 129, 9144

+

1-D π-stack

Page 23: Dr. John Anthony Professor University of Kentucky

Device performance before annealing:Voc= 0.84VIsc= 0.971 mA/cm2

Eff = 0.25%FF = 0.372RR = -0.391

Small molecule bulk heterojunction solar cells

Dr. R. Shashidhar, Dr. Guofeng Li

Page 24: Dr. John Anthony Professor University of Kentucky

Recent progress

A. B. Tamayo, B. Walker, T.-Q. Nguyen J. Phys. Chem. C. 2008, 112, 11545

Voc = 0.67 VJsc = 8.42 mA / cm2

FF = 0.45PCE = 2.33%

Voc = 0.78 VJsc = 14.4 mA / cm2

FF = 0.59PCE = 6.70%

Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, A. J. Heeger Nature Materials 2012, 11, 44

Page 25: Dr. John Anthony Professor University of Kentucky

ITO AnodeGlass substrate

P3HT / Pentacene (1:1 wt:wt)

Pentacenes as drop-in replacements for PCBM

+ PEDOT / PSS

CsF:Al Cathode

Under these conditions, P3HT/PCBM devices yield PCE = 2.5 - 3%

Pentacene acceptor

Controls crystal packing, tunes morphology, phase separation - related to device current (Jsc)

Controls LUMO energy - charge separation efficiency, voltage (Voc)

Prof. George Malliaras, Yee-Fun Lim

P3HT donor

Page 26: Dr. John Anthony Professor University of Kentucky

Voc = 0.79 V Voc = 0.59 V Voc = 0.56 V

Voc = 0.84 V Voc = 0.70 V Voc = 0.64 V

Pentacene acceptors for organic solar cellsPositional impact of substituent on open-circuit voltage

(differences in electrochemical LUMO are typically less than 0.05V)

Prof. George Malliaras, Yee-Fun Lim

Voc = 0.88 V

Voc = 0.96 V

Page 27: Dr. John Anthony Professor University of Kentucky

1-D slipped stack

2-D brickwork

sandwich herringbone

double 1-D

Pentacene acceptors for organic solar cells

Impact of crystal packing on short-circuit current

Page 28: Dr. John Anthony Professor University of Kentucky

Structure R Packing Voc Jsc FF PCEn-propyl double

sandwich 0.84 V 0.75 mA/cm2 0.40 0.25%

iso-propyl 1-D slipped 0.80 V 1.27 mA/cm2 0.34 0.34%

n-butyl 2-D brickwork XX XX XX no PV effect

cyclopentyl sandwich 0.84 V 4.04 mA/cm2 0.45 1.53%ethyl 1-D slipped 0.74 V 1.20 mA/cm2 0.20 0.22%

iso-propyl double sandwich 0.72 V 1.86

mA/cm2 0.31 0.41%

n-propyl 1-D cruciform 0.72 V 1.10 mA/cm2 0.27 0.18%

iso-butyl sandwich 0.90 V 3.34 mA/cm2 0.48 1.28%

cyclopentyl 1-D slipped 0.80 V 3.06 mA/cm2 0.36 0.88%

iso-propyl double sandwich 0.64 V 2.28

mA/cm2 0.33 0.48%

iso-butyl ??? 0.64 V 0.90 mA/cm2 0.28 0.14%

cyclopentyl ??? 0.70 V 2.60 mA/cm2 0.32 0.59%

iso-propyl ??? 0.60 V 0.55 mA/cm2 0.35 0.12%

n-propyl sandwich 0.76 V 1.83 mA/cm2 0.53 0.83%

cyclopentyl ??? 0.72 V 2.07 mA/cm2 0.45 0.87%

iso-propyl ??? 0.70 V 0.94 mA/cm2 0.37 0.24%

cyclopentyl 1-D Herringbone 0.96 V 2.51 mA/cm2 0.43 1.03%

Shu, Lim, Li, Purushothaman, Hallani, Kim, Parkin, Malliaras, Anthony Chemical Sciences 2, 363 – 366 (2011)

Page 29: Dr. John Anthony Professor University of Kentucky

stability

contribution to photocurrent

Page 30: Dr. John Anthony Professor University of Kentucky

• Correlation between single-crystal packing and device performance is only valid if that form is seen in the active layer films.

GIXD studies by both the Loo group and Amassian group support this assumption - generally, no other crystalline form observed in P3HT / small molecule acceptor blends.

• What is it about the “sandwich herringbone” packing that leads to better performance (typically resulting from higher Jsc)? Can we explain the exceptions?

What can we learn from the performance of this big group of compounds?

Page 31: Dr. John Anthony Professor University of Kentucky

Prof. Aram Amassian, Dr. Ruipeng Li

a

a

a

c/a = 2.2

c/a = 2.25

c/a = 3.1

c

c

c

Packing motif

Unit cellThin film texture

<001> is dominantMosaicity of

<001> crystallitesπ-π*

in films

Low mosaicity confines transport to the plane of the substrate

Texture and mosaicity – low JSC

Page 32: Dr. John Anthony Professor University of Kentucky

Prof. Aram Amassian, Dr. Ruipeng Li

Texture and mosaicity – high JSC

Motif Unit cellThin film texture<001> dominant

Mosaicity of <001> crystallites

π-π* in films

Increased mosaicity allows transport out of the plane of the substrate

<001>

<001>

<001>

a

c

a

c

a

c

c/a = 1.04

c/a = 1.15

c/a = 1.05

<101>

1D herringbone

Page 33: Dr. John Anthony Professor University of Kentucky

Prof. Aram Amassian, Dr. Ruipeng Li

Mosaicity of charge transport direction

ac

ac

ac

c/a = 2.2

c/a = 2.25

c/a = 3.1

a

c

a

c

a

ac

c/a = 1.04

c/a = 1.15

c/a = 1.05

FWHM = 2.4°

FWHM = 3.4°

FWHM = 3.5°

<001>

<001>

<001>

<001>

FWHM = 7.5°

<001>

FWHM = 14.1°

<001>

FWHM = 26.2°

<101>

FWHM = 21.6°

c

c/a

Page 34: Dr. John Anthony Professor University of Kentucky

Structure R Packing Voc Jsc FF PCEn-propyl double sandwich c/a = 2.05 0.84 V 0.75 mA/cm2 0.40 0.25%

iso-propyl 1-D slipped c/a = 1.85 0.80 V 1.27 mA/cm2 0.34 0.34%

n-butyl 2-D brickwork c/a = 2.8 XX XX XX no PV effect

cyclopentyl sandwich c/a = 0.96 0.84 V 4.04 mA/cm2 0.45 1.52%

ethyl 1-D slipped c/a = 3.7 0.74 V 1.20 mA/cm2 0.20 0.22%

iso-propyl double sandwich c/a = 3.77 0.72 V 1.86 mA/cm2 0.31 0.41%

n-propyl 1-D cruciform c/a = 3.1 0.72 V 1.10 mA/cm2 0.27 0.18%

iso-butylsandwich c/a =

1.050.90 V 3.34 mA/cm2 0.48 1.28%

cyclopentyl 1-D slipped c/a = 1.2 0.80 V 3.06 mA/cm2 0.36 0.88%

iso-propyl double sandwich c/a = 3.8 0.64 V 2.28

mA/cm2 0.33 0.48%

iso-butyl ??? 0.64 V 0.90 mA/cm2 0.28 0.14%

cyclopentyl ??? 0.70 V 2.60 mA/cm2 0.32 0.59%

iso-propyl ??? 0.60 V 0.55 mA/cm2 0.35 0.12%

n-propyl sandwich c/a = 2.1 0.76 V 1.83

mA/cm2 0.53 0.83%

cyclopentyl ??? 0.72 V 2.07 mA/cm2 0.45 0.87%

iso-propyl ??? 0.70 V 0.94 mA/cm2 0.37 0.24%

cyclopentyl 1-D Herringbone c/a - 0.97 0.96 V 2.51

mA/cm2 0.43 1.03%

Page 35: Dr. John Anthony Professor University of Kentucky

Generality?

We have evaluated c/a for the other OPV acceptors we have investigated.

In each case, as c/a 1.0, Jsc is maximized (note - Jsc not necessarily high, just the best in the series)

Page 36: Dr. John Anthony Professor University of Kentucky

sandwich herringbone for OPVs

Voc = 0.92 V, Jsc = 1.87 mA/cm2, FF=0.37, PCE=0.64%

As acceptor, 1:1 blend of TSBS FADT with P3HT

Prof. George Malliaras, Yee-Fun Lim

c/a = 1.2

Page 37: Dr. John Anthony Professor University of Kentucky

One more thing . . .Charge transfer from P3HT to acceptor (vs. acceptor crystal structure)

Cyano TCPS PentaceneSandwich herringbone

TIPS pentacene2-D π-stack

Page 38: Dr. John Anthony Professor University of Kentucky

Conclusion

• Fullerene replacements within 50% of current benchmark in P3HT blends

• Design rules to carry forward to next-gen materials - unit cell isotropy - appropriate tuning of LUMO energy - significant exposed π-surface in crystals

Page 39: Dr. John Anthony Professor University of Kentucky

New renewable energy research center:Batteries, Biofuels and Photovoltaics

Page 40: Dr. John Anthony Professor University of Kentucky

Crystallography: Dr. Sean Parkin

Alumni:David EatonDr. Zhong LiSankar SubramanianSue OdomGenay Jones

Ying ShuDr. Marcia PayneRawad HallaniMatt Bruzek

The OPV Group:

Many thanks to our collaborators!Prof. George Malliaras / Yee-Fun Lim & Matt LloydProf. Lynn Loo / Stephanie LeeProf. Aram Amassian / Ruipeng Li

Page 41: Dr. John Anthony Professor University of Kentucky

Dr. John AnthonyProfessorUniversity of Kentucky