dr. rich mackenzie, nrem 665, 10/9/08 · outwelling hypothesis organic matter from salt...

65
Fish Habitat Value of Coastal Wetlands Dr. Rich MacKenzie, NREM 665, 10/9/08

Upload: phamcong

Post on 30-Nov-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Fish Habitat Value of Coastal Wetlands

Dr. Rich MacKenzie, NREM 665, 10/9/08

Outwelling Hypothesis

Organic matter from salt marshOrganic matter from salt marshTeal 1962, Haines 1976, Haines 1977, Odum 2000

Coastal Ocean

Trophic transfer

Adult resident nekton

Coastal Ocean

Subtidalh l

Intertidalchannels

Intertidalpuddles

Open

channels

Open Estuary

Kneib 1997 2000

Trophic transfer

Coastal Ocean

Subtidalh l

Intertidalchannels

Intertidalpuddles

Open

channels

Open Estuary

Kneib 1997, 2000

Trophic transfer“Ontogenetic shift”

Adult residentnekton

g

Young resident nekton

Juvenile residentnekton

Coastal Ocean

Subtidalh l

Intertidalchannels

Intertidalpuddles

Open

channels

Open Estuary

Kneib 1997, 2000

Trophic transfer

Coastal Ocean

Subtidalh l

Intertidalchannels

Intertidalpuddles

Open

channels

Open Estuary

Kneib 1997, 2000

100

Food

80

100

uts

w/

60

80

Flood tide

chog

G

40

Ebb tide

Mum

mic

20

1 cm

% M

05/28 6/11 6/25 7/9 7/23

modified from Allen et al. 1994

Growth rates of mummichogswere significantly higher in fishwere significantly higher in fish

with access to marsh surface

d) 0.4

row

th ra

te G

(g/d

0.1

0.2

0.3

Inst

anta

neou

s g

-0.2

-0.1

0.0

Unrestricted Restricted0.2

Weisberg and Lotrich 1982

Trophic transferTransient marine nekton

(juvenile and adults)(juvenile and adults)

Coastal Ocean

Subtidalh l

Intertidalchannels

Intertidalpuddles

Open

channels

Open Estuary

Kneib 1997, 2000, Deegan and Garritt 1997, Deegan et al 2000,

Micropogonias undulatus

Mummichogs represented 8-43% of the diets of Atlantic croakerAtlantic croaker

Morone saxitilis

Mummichogs represented 9-23% of the diets of t i d bstriped bass

(Tupper and Able 2000, Nemerson 2001)

South Atlantic Salt Marsh

1

2

“Higher”marsh

Spartina alternifloralow marsh

Mudflat

Tida

l Ht (

m)

-1

0

-2

New England Salt Marsh

Spartina patenshigh marsh

S. alternifloralow marsh

Mudflatg low marsh

al H

t (m

)

0

1

2

Tida

-2

-1

salt marsh pools

• 12% of marsh surface is covered with salt marsh poolsp

• 5500 pools/300 haDionne 2006

Fundulus heteroclitus

OBJECTIVEOBJECTIVE

determine the habitat value of Spartina patens marsh surfacefor resident mummichogs:) f1) resident fish production

2) stable isotope (15N, 13C)

“POOL ONLY”OO O

“POOL PLUS MARSH”“POOL PLUS MARSH”Vegetated area = 3x surface area of pool

“CONTROL”

Pictures of weighing and measuringPictures of weighing and measuring

P = Ginst * B Chapman 1978

Webhannet Marsh2003

0.8Total Production ns a

0.4

0.6

0.2

n (g

m-2

d-1

)

Control PoolMars PoolOnly0.0

Moody Marsh2003ar

y Pr

oduc

tion

0 8

Seco

nda

0.6

0.8Total Production ns b

0.2

0.4

MacKenzie and Dionne In pressControl PoolMars PoolOnly0.0

0.2

Stable Stable isotopes 101isotopes 101pp

C b (13C/12C) Nit (15N/14N) S lf (34S/32S)Carbon (13C/12C), Nitrogen (15N/14N), Sulfur (34S/32S)

δX = [(Rsample/Rstandard)-1] x 1,000p

X = 13C, 15N, 34Sd i t f il ‰expressed in terms of per mil, ‰

Salt Marsh Food Web

8

)

6

PhytoplanktonS. patens

δ 15

N (‰

)

4

0

2

δ 13C (‰)

-35 -30 -25 -20 -15 -100

Two food sources: phytoplankton and S. patens marsh grass

Salt Marsh Food Web

8

)

6

PhytoplanktonS. patensFish

δ 15

N (‰

)

4

0

2

δ 13C (‰)

-35 -30 -25 -20 -15 -100

If a fish only feeds on phytoplankton, the Carbon signature for the fish will be similar to Carbon signature of phytoplankton

Salt Marsh Food Web

8

)

6

PhytoplanktonS. patensFish

δ 15

N (‰

)

4

0

2

δ 13C (‰)

-35 -30 -25 -20 -15 -100

If a fish only feeds on S. patens, the C signature of the fish will be similar to the C signature of the S. patens

Salt Marsh Food Web

8

)

6

PhytoplanktonS. patensFish

δ 15

N (‰

)

4

0

2

δ 13C (‰)

-35 -30 -25 -20 -15 -100

If a fish feeds equally on phytoplankton and S. patens, the C signatureof the fish will be between the C signatures of the phytoplankton and the S. patens

Salt Marsh Food Web

8

)

6

PhytoplanktonS. patensFishPredatory Fish

δ 15

N (‰

)

4

0

2

δ 13C (‰)

-35 -30 -25 -20 -15 -100

connected to estuarine surface waters 5-10% of time

K15NO3 additions- 5% background levels of NO3

200260

Mummichog200250

CPOM

EPI

MummichogN

(‰)

30

40FPOM

δ 15

N

20

30

10BMA

PATENS

13C (‰)

-18 -17 -16 -15 -14 -13 -12 -11 -100

δ 13C (‰)

Phillips and Gregg 2003

on

20020.8

1.0CPOMFPOMBenthic MicroalgaeEpiphytic AlgaeS

t Con

trib

utio

0

0.6

S. patens

Perc

ent

0.2

0.4

Control Pool-Plus-Marsh0.0

MacKenzie and Dionne In review

20020.8

1.0CPOMFPOMBenthic MicroalgaeEpiphytic AlgaeS t

0 4

0.6

S. patens

butio

n 0.2

0.4

2003rcen

t Con

tri

0.8CPOMFPOM

Control Pool-Plus-Marsh0.0

Per

0.6

Benthic MicroalgaeEpiphytic AlgaeS. patens

0.2

0.4

Control Pool-Plus-Marsh Pool-Only0.0

2

2003

6/2 6/16 6/30 7/14 7/28 8/11 8/25ve

l (m

)

1

2an

Sea

Le

0

1

ve to

Mea

1

0

eigh

t rel

ati

2

-1

Tide

he

3

-22002 height (m)2003 height (m)Average marsh elevation (m)

2002

6/3 6/17 7/1 7/15 7/29 8/12 8/26 -3

CONCLUSIONS1. The importance of the salt marsh surface as habitat

for Fundulus heteroclitus (mummichog) varies betweenfor Fundulus heteroclitus (mummichog) varies between years and is related to tidal cycles.

2. Secondary production and stable isotopes revealedthat food sources in salt marsh pools can supportmummichog communities residing within them.g g

Mangrove Ecosystemsg y

Mangrove Distribution in 2005Mangrove Distribution in 2005

25-30o N

25-30o S

Globally: 15,200,000 – 17,000,000 haOceania: 1,972,000 haMi i 13 349 hMicronesia: 13,349 ha Oahu: 147 ha

Bruguiera gymnorrhiza

Five major families of mangrove trees:AvicenniaceaeCombretaceaePalmaePalmaeRhizophoraceaeSonneratiaceae

Distribution of mangrove species in the Indo Pacific region

020Indo West Pacific (IWP)

P A C I F I C O C E A N

EQUATOR

5

10

5

10 2030

30Palau

Pohnpei

Kosrae

I N D I AN O C E A N

102030

30 205

4010

CORAL�SEA 5

100

World spp ~70 total 58 IWP & 12 AEP

Moreton

0

NB: Curved lines represent species number boundaries

World spp 70 total, 58 IWP & 12 AEP

NC Duke et al. 1998

Tree species richness w/in mangrove forests in Micronesia ranges from 19-11

Sonneratia alba

Rhizophora spp. p pp

Mangroves in the Caribbean

Coral reefShallow coral reef

Mumby et al. 2004Coral reefShallow coral reef

Mangrove outwellingAbove ground NPP14 838 kg C/ha/yr14,838 kg C/ha/yr

Litter export to creeks

2,738 kg C/ha/yr

Litterfall3,438 kg C/ha/yr

resident fish

Consumption Faeces462 C/ /

transient fish

pby crabs

700 kg C/ha/yr462 kg C/ha/yr

Microbial pool DOMp???? ????

Modified from Robertson et al. 1992

Perisesarma messa

Uca sp.

Japan

Hawaii

GuamPhilippines CNMI

Palau

YapChuuk Pohnpei Marshall

IslandsKosrae

NewCaledonia

TahitiAmericanSamoa

Fiji

cut prop root

mangrove trees

p p

floatsTid d fi hTide and fishmove into mangrove

Tide movesout of mangrove, fish migrate into

seaward end of net

Glass FishGlass Fish

Cardinal FishCardinal Fish

Utwe-Walung Marine Park14

16al

Fis

h

12

14C

ardi

na

8

10

F i

Cardinal Fish

mbe

r of

4

6FringeInterior

Num

2

4

Fi h L th ( )20 30 40 50 60

0

Fish Length (mm)Significantly smaller fish ( p < 0.01) were collected from the mangrove interior (avg length = 34.2 ± 1.3 mm ) vs. fringe (avg length = 40.0 ± 1.0 mm).

MANGROVE FOOD WEB

14Mangrove Leaves

)

10

12Mangrove LeavesAlgae in mudAlgae on rocks/rootsSeagrass

δ 15

N (‰

)

6

8

0

2

4

δ 13C (‰)

-35 -30 -25 -20 -15 -10 -50

mangroves Seagrass

MANGROVE FOOD WEB

14Mangrove Leaves

Periophthalmus sp. (mudskipper) Kuhlia sp. (flagtail)

)

10

12Mangrove LeavesBenthic microalgaeEpiphytic algaeEnhalus seagrassMudskipperShrimpFlagtail

live in mangroves

δ 15

N (‰

)

6

8Flagtail

Macrobrachium lar shrimp

0

2

4Macrobrachium lar shrimp

δ 13C (‰)

-35 -30 -25 -20 -15 -10 -50

MANGROVE FOOD WEBBlacktail snapper

14Mangrove Leaves

)

10

12Mangrove LeavesBenthic microalgaeEpiphytic algaeEnhalus seagrassMudskipperShrimpFl t il

δ 15

N (‰

)

6

8FlagtailBlacktail SnapperEmperor Fish

0

2

4

Emperor Fish

δ 13C (‰)

-35 -30 -25 -20 -15 -10 -50

Mangrove outwellingAbove ground NPP14 838 kg C/ha/yr14,838 kg C/ha/yr

Litter export to creeks

2,738 kg C/ha/yr

Litterfall3,438 kg C/ha/yr

Consumption pby crabs

700 kg C/ha/yr

Modified from Robertson et al. 1992

“…ecological systems of small islands and the functions that they perform, will besensitive to the rate and magnitude of climate change and sea level raise, especiallywhere exacerbated by human activities.” (IPCC, 2007)

Low Zone IntermediateZone High ZoneZone g

High

Low Intermediate

g

High Zone

IMPACTS OF INCREASED FLOODINGON LEAF RESIDENCE TIMEHigh Zone

Intermediate ZonePlaced 9, colored leaves in each of the 3 zones righteach of the 3 zones right before high tide. Returned after 2 consecutive tides to

h f l

Low Zone

measure how far leavesmoved.

) 1400

4 ho

urs

1200 Low ZoneIntermediate ZoneHi h Z

d (c

m/2

4

800

1000High Zone

vele

led

600

800P < 0.05

ance

tra

400 ns

Dis

ta

0

200 ? ?

2007July August

IMPACTS OF INCREASED FLOODING ON LEAF CONSUMPTION BY CRABSLEAF CONSUMPTION BY CRABS

Tethered 5 leaves in each of the three zones.

DAY 0 DAY 2

Photographed leaves on day 0, 1, and 2. Loss rate was g p ydetermined from change in surface area of leaf using ImageJ photoanalysis package.

110g 90

100

mai

ning

80

90

ent R

em

60

70

High Zone

Perc

e

50Intermediate ZoneLow Zone

30

40 P < 0.05

20078/13 8/14 8/15 8/16 8/17

WNERR Benthic TeamEric Brazer

Jim Dochtermann Cara Ellis

Mike “Bronco” HaasMike “Bronco” HaasJeremy MillerScott OrringerLexi Weintraub

Liz Wilson

Nicole Cormier

Palau Mangrove TeamCarmen PippitJ CNicole Cormier Jesse CruzLilah Xavier

Caitlin Kryss