draft...draft 1 1 the theoretical foundations for size spectrum models of fish 2 communities 3 ken...

48
Draft The theoretical foundations for size spectrum models of fish communities Journal: Canadian Journal of Fisheries and Aquatic Sciences Manuscript ID cjfas-2015-0230.R2 Manuscript Type: Review Date Submitted by the Author: 16-Nov-2015 Complete List of Authors: Andersen, Ken; Technical University of Denmark, National Institute of Aquatic Resources Jacobsen, Nis S; Technical University of Denmark, AQUA Farnsworth, Keith; Queens University, Institute of Global Food Security Keyword: MARINE < Environment/Habitat, COMMUNITIES < General, ECOSYSTEMS < General, MODELS < General https://mc06.manuscriptcentral.com/cjfas-pubs Canadian Journal of Fisheries and Aquatic Sciences

Upload: others

Post on 23-Aug-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

The theoretical foundations for size spectrum models of fish

communities

Journal: Canadian Journal of Fisheries and Aquatic Sciences

Manuscript ID cjfas-2015-0230.R2

Manuscript Type: Review

Date Submitted by the Author: 16-Nov-2015

Complete List of Authors: Andersen, Ken; Technical University of Denmark, National Institute of Aquatic Resources Jacobsen, Nis S; Technical University of Denmark, AQUA Farnsworth, Keith; Queens University, Institute of Global Food Security

Keyword: MARINE < Environment/Habitat, COMMUNITIES < General, ECOSYSTEMS < General, MODELS < General

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 2: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

1

Thetheoreticalfoundationsforsizespectrummodelsoffish1

communities2

KenH.Andersen1,NisS.Jacobsen1andK.D.Farnsworth23

4

1CenterforOceanLife,NationalInstituteofAquaticResources(DTU-Aqua),Technical5

UniversityofDenmark,CharlottenlundCastle,DK-2920,Charlottenlund,Denmark6

2InstituteofGlobalFoodSecurity,QueensUniversityBelfast,97LisburnRoad,Belfast7

BT97BL,NorthernIreland,UK8

9

Abstract10

Sizespectrummodelshaveemergedfrom40yearsofbasicresearchonhowbodysize11

determinesindividualphysiologyandstructuresmarinecommunities.Theyarebased12

oncommonlyacceptedassumptionsandhavealowparameterset,whichmakethem13

easytodeployforstrategicecosystemorientedimpactassessmentoffisheries.We14

describethefundamentalconceptsinsize-basedmodelsaboutfoodencounterandthe15

bioenergeticsbudgetofindividuals.Withinthegeneralframeworkthreemodeltypes16

haveemergedthatdiffersintheirdegreeofcomplexity:thefood-web,thetrait-based17

andthecommunitymodel.Wedemonstratethedifferencesbetweenthemodels18

throughexamplesoftheirresponsetofishingandtheirdynamicbehavior.Wereview19

implementationsofsizespectrummodelsanddescribeimportantvariationsconcerning20

thefunctionalresponse,whethergrowthisfood-dependentorfixed,andthedensity-21

dependenceimposedonthesystem.Finallywediscusschallengesandpromising22

directions.23

24

Keywords:Ecosystemapproach,food-web,ecosystembasedfisheriesmanagement 25

Page 1 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 3: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

2

Introduction26

MarinecommunitymodelsrangefromtheoriginalLotka-Volterradifferentialequations27

toextremelycomplicatedend-to-endsimulations(Plagányi2007;Fultonetal.2011).In28

themiddleoftherangewefindsizespectrummodels.Sizespectrummodelsusebody29

sizeofindividualstorepresenttheentirefishcommunityasasizedistribution.The30

relianceofbodysizesimplifythedescriptionofpredator-preyinteractions,individual31

physiologyandvulnerabilitytofishinggear.Thispaperhighlightsoneoftheimportant32

advantagesofthesizespectrumapproach:awell-foundedandunifyingmechanistic33

basisallowingforgreatexplanatorypowerandparsimonioususeofdata.34

35

Size spectrum models are relevant to fisheries science in the context oftheecosystem36

approachtofisheriesmanagement(Pikitchetal.2004).Whilesingle-speciesstock37

assessmentsandimpactassessmentwillcontinuetobeimportantmanagementtools,38

theyneedtobesupplementedbystrategicimpactassessmentsatthelevelofthe39

ecosystem.Suchimpactassessmentsassistthedevelopmentandimplementationof40

strategiclong-termmanagementgoalsfortheecosystem,e.g.,howshouldfishing41

pressurebedistributedovertheentireecosystem?Howdowebalanceexploitationof42

competingfisheriessuchasforagefisheriesandconsumerfisheries?Howdowe43

maximizetheyield(ofbiomassorwealth)oftheentireecosystemwhileminimizingrisk44

offailureorimpoverishcomponentsofthesystemunderenvironmentalchange?To45

answerthesequestions,weneedtoquantitativelyunderstandtherelationshipbetween46

fishingpractice(what,whenandhowmuch)andtheabundanceofspeciesandsizesof47

organismsthroughoutthecommunity.48

49

Sizespectrummodelsareespeciallysuitedtothesequestionsbecausetheyresolvethe50

mostimportaspectsoffishlifehistoryandtrophicecology.Akeycharacteristicoffishis51

thatindividualsgrowthroughseveralordersofmagnitudeinbodysizethroughtheir52

Page 2 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 4: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

3

life.This,combinedwiththestrongrelationshipbetweenbody-sizeandtrophicniche53

(Barnesetal.2008;Gilljametal.2011),meansthatindividualschangetheirtrophic54

nichethroughoutontogeny(WernerandGilliam1984).Suchontogenetictrophicniche55

shiftsmakesitdifficulttoapplytheconventionalfood-webapproach,whereeach56

speciesisdescribedbyasinglemetric(abundanceorbiomass)andaspecifictrophic57

level,tofishcommunities.Therelationbetweenbodysizeandtrophicnichehas58

promptedthehypothesisthatindividualbodysize(ratherthanspeciesidentity)isthe59

primarydeterminantofcommunitystructure(Jenningsetal.2001).60

61

Sizespectrummodelsarebaseduponthelongtraditioninecologyofrecognizingbody62

sizeasacentraltraittodescribeindividuals(Elton1927;Haldane1928;Andersenetal.63

2016a)becauseitcorrelatesstronglywith:metabolism(Kleiber1932;Winberg1956,64

Brownetal.2004),predator-preyrelations(Ursin1973;Barnesetal.2008),encounter65

rates(Acuñaetal.2011),functionalresponses(Ralletal.2012),reproductiveeffort,and66

othervitalrates(Peters1983).Forapplicationtofisheries,bodysizefurthermoreisan67

excellentdescriptorofmesh-sizeregulationsandcharacterizesthevalueofacatch68

(Andersenetal.2015).Finally,distributionsofabundancevs.sizeshowaremarkable69

regularity(SheldonandPrakash1972;Sheldonetal.1977;BoudreauandDickie1992)70

anddeviationsfromthisregularityhasbeenusedtocharacterizeecosystemlevel71

impactoffishing(RiceandGislason1996;Daanetal.2005).Thesizespectrum72

modelingparadigmpromisesa“charminglysimple”(Popeetal.2006)setoftoolswitha73

lowtointermediatecomplexitythatcanbereadilydeployedforagivensystemand74

providequantitativeinformationabouttheecosystemimpactoffishing(Collieetal.75

2014).Thismakesitpossibletoapplythemodelsinsituationswheremorecomplexbut76

alsodata-demandingend-to-endmodelscannotbeemployedeitherbecauseoflackof77

dataormanpowertocalibrateandrunthem.78

79

Page 3 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 5: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

4

Thevarioustypesofsizespectrummodelcanbeviewedasdifferentdevelopmentsof80

thesamecoreconcepts.Wereviewthecommonbasicconceptsbehindsizespectrum81

modelsfocusingonmodelsthatdescribeanentirefishcommunity.Amongthemwe82

recognizethreebroadclassesofdecreasinglevelsofcomplexity.Mostcomplexarethe83

‘food-web’models,socalledbecausetheyexplicitlyrepresentindividualpopulations84

withspecies-specificenergybudgetparametersandpreypreferences,thereby85

quantifyinganetworkoftrophicinteractionsasanexplicitfood-web.Theseare86

simplifiedintothe‘trait-based’modelsbyreducingdifferencesamongthepopulations87

toasinglecontinuousvariablerepresentingatrait(usuallymaturationsize)and88

simplifyingpreyselectiontoafixedpredator-preybodysizeratio.Furthersimplification89

producesthe’community’sizespectrummodels,socalledbecausetheyignore90

differencesamongpopulationstherebyrepresentingthecommunityasasingle91

populationofinteractingindividualsthatdifferonlyintheirbody-size.Weexplainhow92

thesimplermodelscanbederivedfromthemorecomplex,startingfromthefood-web93

andendingwiththecommunitymodel.Furtherwedevelopanalytical“equilibrium”94

solutionstothemodels.Weillustratethemodels’behavior,inparticulartheirresponse95

tofishing,andfinallydiscusschallengesandopenissuesforfurtherdevelopment.96

Conceptsunderlyingsizespectrummodels97

Sizespectrummodelsarefoundedonthreecommonconcepts:First,biomass(and98

equivalentenergy)isconserved,enablingaccountancyofenergyflowsatthe99

communitylevelbasedonindividuallevelprocesses.Second,trophicinteractionsare100

themaindeterminantofcommunitystructureandtheseareforemostdeterminedby101

predator-preysizeratios.Third,theenergybudgetofanindividualisallometrically102

linkedtobodysize,sothatbodysizecanbeusedasakeyidentifieroforganismsand103

theirinteractionswiththecommunity.Thethreemainecologicalprocessesforany104

organismaregrowth,reproductionandmortalityandallthreecanbelinkedtobody105

Page 4 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 6: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

5

sizeinthismodelingframework.Thissimplificationhasgreatstrategicvalueasit106

enablesecologicalmeasuressuchasproductionrateandsizestructure(whichare107

importantforecosystembasedfisheriesmanagement)tobederivedfromrelatively108

littleandaccessibledataaboutphysiologyandlifehistoryinvariants.Theequationsfor109

themodelsusedintheexamplestofollowareprovidedinTable1andparametersin110

Table2.111

112

Thesizespectrum113

Thesizespectrumrepresentsabundanceorbiomassofindividualsasafunctionoftheir114

bodysize.Inthiscontext‘bodysize’usuallymeansbodymassbecauseitisthenatural115

metrictoformulateanenergybudget.116

117

Threesizespectrumrepresentationsarecommonintheliterature(SprulesandBarth,118

thisissue;AndersenandBeyer2006;Rossberg2012):theabundancedensityspectrum,119

thebiomassdensityspectrumandthe“Sheldon”biomassspectrum.Theabundance120

densityspectrum𝑁(𝑤)representsthenumberofindividualsinthebodymassrange121

from𝑤%to𝑤&as 𝑁 𝑤 d𝑤)*)+

,andhereitisreferredtoasthesizespectrumforbrevity.122

Itcanbeconstructedfromobservationsbydividingthetotalnumberofindividualsina123

sizeclassbythewidthofthesizeclassandthereforehasdimensionsofnumbersper124

mass(oftenreferredtoasthe“normalizedsizespectrum”;SprulesandBarth,this125

issue).Thebiomassdensityspectrumisconstructedfromtheabundancedensity126

spectrumbymultiplyingwithbodymass𝑁 𝑤 𝑤(dimensionsbiomasspermass).The127

“Sheldon”biomassspectrum(SheldonandParsons1967)isthebiomassin128

logarithmicallywideclasses,i.e.,thebiomassintherange𝑤to𝑐𝑤where𝑐isaconstant129

largerthanonedeterminingthewidthofthesizeclass.Forexample,the“octave”bin130

usedbySheldonimplies𝑐 = 2,andnormallog10baseimplies𝑐 = 10.Ifweassumethat131

theabundancedensityspectrumfollowsapower-law𝑁 𝑤 = 𝜅𝑤3withintheclassthen132

Page 5 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 7: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

6

thebiomassspectrumcanbefoundas:133

134

𝐵567 𝑤 = 𝑁 𝜔 𝜔d𝜔9)

)= 𝜅

𝑐&:3 − 12 + 𝜆

𝑤&:3 ∝ 𝑤&𝑁 𝑤 ,135

136

where𝜔isadummyvariablefortheintegration.Alltermsexcept𝑤&:3areindependent137

ofsize,hencethebiomassspectrumisproportionaltothenumberdensityspectrum138

multipliedbythebodymasssquared.Formathematicalanalysesthedensityspectraare139

convenientbecauseintegralsoverthesegivetheabundanceandbiomass.For140

presentationpurposestheSheldonbiomassrepresentation𝑤&𝑁(𝑤)isconvenient141

because,atthecommunitylevel,itshowshowthebiomassofpreyisdistributedwith142

size(assumingthatthesizerangeofpreferredpreyisconstant),andonaspecieslevelit143

isproportionaltothecohortbiomass.144

145

Conservationequation146

Thesizespectrumiscalculatedbyconsideringabalancebetweenmortalityandgrowth147

atallbodysizes 𝑤 .Individualsflowintosizeclassesviasomaticgrowthwhilstsome148

arelosttonaturalandfisheriesmortality.ThisbalanceisformalizedbytheMcKendric-149

vonFoersterequation(seeSilvertandPlatt(1978)foraderivation):150

151

𝜕𝑁A 𝑤𝜕𝑡

+𝜕𝑔A 𝑤 𝑁A 𝑤

𝜕𝑤= −𝜇A 𝑤 𝑁A 𝑤 ,(1)152

153

where𝑔A 𝑤 isthegrowthrate(masspertime)and𝜇A 𝑤 themortality(pertime),and154

𝑁A 𝑤 isthesizespectrumofspecies𝑖.Thuseq.(1)scalesfromindividual-level155

processesofgrowthandmortalitytothepopulation-levelsizespectrum.Recruitment156

fromthepopulationflowsintothesizespectrumatthesmallestbodysize(typicallythe157

eggsize)𝑤F.Thisisrepresentedasaboundarycondition:158

Page 6 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 8: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

7

159

𝑔A 𝑤F 𝑁A 𝑤F = 𝑅A,(2)160

161

where𝑅A istherecruitment(numberofrecruitsoreggspertime).Theabovetwo162

equationsaremathematicalformalizationsofamassbalance,andcanbethoughtofas163

thesize-basedversionofclassicsurvivoranalysisusedinage-basedmodels.164

165

Thefollowingoutlinesthecentralassumptionsinthemodelsabouthowgrowth𝑔A ,166

mortality𝜇Aandreproduction(recruitment)𝑅A,arecalculated.Withthepartial167

exceptionofrecruitmenttheseareallcalculatedfromindividuallevelprocessesof168

predator-preyencounterandabioenergeticbudget(Figure1).169

170

TheAndersen-Ursinencountermodel171

Thekeyprocessinthemodelsispredator-preyencountersbetweenindividuals172

governedbyaformalizationofthegeneralrule,biggerfisheatsmallerfish(Andersen173

andUrsin1977).Individualspreferpreyacertainfractionsmallerthanthemselves(M1,174

Table1)(Ursin1973).Theclearancerate(dimensionstime-1)isanincreasingfunction175

ofbodysize(largerfishclearalargervolumeofwaterforpreypertimethansmallfish)176

(M2).Thecombinationofpreference,clearancerateandpreyabundancespecifiesthe177

foodencounterrate(M3,biomasspertime).Intakeuponencounter(“satiation”)is178

representedwithatypeIIfunctionalresponse(M5)asthe“feedinglevel”𝑓A 𝑤 ,i.e.,the179

ratiobetweenconsumptionandmaximumconsumption(M4)(dimensionlessnumber180

between0and1).181

182

Individualenergybudget183

Theenergybudgetdescribeshowconsumedfoodisusedformaintenance,activity,184

growthandreproduction.Consumedfoodisassimilatedandfirstusedforstandard185

Page 7 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 9: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

8

metabolism,widelyrecognizedtobeanallometricfunctionofbodymass:𝑘J𝑤K.Juvenile186

individualsusetheremainingavailableenergyforgrowth,whilematureindividuals187

apportiontheenergybetweengrowthandreproduction(M6-M8).Theexact188

specificationofallocationofenergybetweengrowthandreproductionisnotcrucial.189

Theoneusedhereensuresthatwhenthefeedinglevelisconstant,size-at-agecurves190

resemblesavonBertalanffycurveandthegonado-somaticisindependentofbodysize191

(Hartvigetal.2011).192

193

Reproductionandrecruitment194

Reproductionandrecruitmentrepresentthereproductiveoutputfromtheentire195

population.Thereproductiveoutput𝑅L.A (numberspertime;M9)isdiscountedbya196

reproductiveefficiencyεtorepresentlossesduetoeggmortalityandspawningeffort,197

andusedtocalculatetherecruitment𝑅A .Withinthiscontext,recruitmentreferstothe198

rateofproductionofnewindividualsfromthefertilizedeggstage,butitcouldbedone199

atalaterstageifproperlydiscounted(AndersenandBeyer2015).Ideallythe200

recruitmentisequaltothereproductiveoutput,butmanymodelsapplyastock201

recruitmentrelationship(M10).Thedensitydependenceimposedbythestock202

recruitmentrelationshipavoidsthecompetitiveexclusionbetweenspeciesthat203

otherwisetendstooccur(HartvigandAndersen2013).Thestock-recruitment204

relationshipcontainstwoessentialparameters:the“slope”parameterthatspecifies205

recruitmentatlowpopulationsizesandthemaximumrecruitmentthatspecifiesthe206

populationcarryingcapacity.Theslopeparameterisgivendirectlybytheegg207

productionofthepopulation(AndersenandBeyer2015),butthemaximumrecruitment208

hastobespecifiedseparately.Thisparameterrepresentsalleffectsonthepopulation209

thatarenotexplicitlyrepresentedinthemodel,suchaslimitationsduetojuvenile210

habitatsizethatisknowntolimitsomemarinepopulations(RijnsdorpandLeeuwen211

Page 8 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 10: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

9

1992).Themaximumrecruitmentandpossiblytherecruitmentefficiencyarekey212

parametersforcalibratingamodeltodatafromrealfishstocks(seediscussion).213

214

Mortality215

Threecategoriesofmortalityarerecognized.First,predationmortality(M13)emerges216

fromthetrophicdynamicswithinthesystem;second,intrinsicorbackgroundmortality217

(M12)isusuallyrepresentedasanallometricfunctionofasymptoticsize(Brownetal.218

2004),thoughstarvationmortalitycanbeexplicitlyadded(e.g.,Hartvigetal.2011);219

third,exogenoussourcesofmortality(especiallyfishing)areoftenadded.220

221

Resource222

Theresourcespectrum𝑁N 𝑤 representsfoodotherthanfish.Theresourceisneeded223

forthesmallestindividualswhoarenotyetlargeenoughtobepiscivorousbutitcan224

representanykindoffood:asinglesize-groupofsmallzooplanktonpreyspecies,asize225

spectrumofzooplanktonprey(asinFig.1),orasizedistributionincludinglargerprey,226

e.g.benthicproduction.Theresourcecanbeconstant,inwhichcasethegrowthrateof227

smallfishisfixed,oritcanbemodeleddynamically,e.g.,asasemi-chemostat(M14).The228

semi-chemostatformulationisconvenientbecauseitleadstoaverystabledynamicsof229

theresource.Usinglogisticgrowthresultsinamorepronounceddynamicalresponseof230

theresourcewhichtranslateintostrongerdynamicsofthefishpartofthemodel(de231

Roosetal.2008).232

Modelstypes233

Wenowbrieflydescribehowthesecommonconceptsareusedtocreatesizespectrum234

modelsatthreelevelsofcomplexityanddemonstrateanapproximateanalytical235

solutionfortheequilibrium.236

237

Page 9 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 11: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

10

Food-webmodel238

Inthefood-webmodel,theprocessesM1–M15areinstantiatedwithallparameters239

fromTable2beingspeciesspecific(eitherrepresentingidentifiedspeciesor240

hypotheticalonesmatchingrelevantcriteria),butinpracticesomeparametersare241

usuallycross-speciesconstants,suchastheexponents𝑛, 𝑝and𝑞.Populations,thus242

identifiedasdifferentspecies,interactthroughpredator-preyrelationswithinteraction243

strengthsspecifiedbyaninteractionmatrix,whichrepresentsacombinationofspecies-244

specificpreferencesandencounterprobabilities.Thismatrixcouldbepopulatedwith245

empiricalinteractioncoefficientsderivedfromstomachcontentanalyses,spatial246

overlap(Blanchardetal.2014),oritmayrepresenthypotheticaldistributions--random247

anduniform(everythingeatseverythingelse)interactionnetworksarepopular248

hypotheses.Afullyspecifiedfood-webmodelhas14parametersforeachspecies,plus249

aninteractionmatrix,soforkspeciesthetotalisupto3 + 14𝑘 + 𝑘&parameters.250

251

Trait-basedmodel252

Thetrait-basedmodelrepresentsdifferencesamongspeciesonlybythegoverningtrait253

ofasymptoticsize(Popeetal.2006).Thisassumesthatthemostimportanttraitisthe254

asymptoticsize(or,equivalently,sizeatmaturation),whichembodiesatrade-off255

betweenreproductiveoutputandasymptoticsize.Thetrait-basedmodelis256

conceptuallyderivedfromthefood-webmodelbyassumingthatallparametersinTable257

2arecross-speciesconstantsandbyusingtheoreticalargumentstodetermine𝑅TUVasa258

functionof𝑊(appendixA).Feedinginteractionaresolelydeterminedbyindividual259

size.Thesolutionisthetraitsizespectrum𝑁(𝑤,𝑊)(dimensionsnumberspermassper260

asymptoticmass)describingthejointdistributionofindividualandasymptoticsizes261

(AndersenandBeyer2006).Innumericalimplementationstheasymptoticsizeaxisis262

discretized,typicallyintologarithmic‘bins’groupingspeciesinasymptoticsizeclasses.263

Inpractice,theresultsofthetrait-basedmodelareeffectivelyindependentofthe264

Page 10 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 12: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

11

numberofsimulatedasymptoticsizeclassesoncethisnumberisgreaterthan10.The265

trait-basedmodelisspecifiedwiththe18parametersinTable2.266

267

Communitymodel268

Thecommunitymodelignoresalldifferencesbetweenspeciesandonlyconsiders269

differencesinsize(BenoîtandRochet2004).Itcanbederivedfromthetrait-basedand270

food-webmodelsbyintegratingoveralltrait-classesorsummingoverspecies(Zhanget271

al.2012):272

273

𝑁9 𝑤 = 𝑁 𝑤,𝑊 d𝑊∞

)= 𝑁A(𝑤)

AX%

.274

275

Theintegralonlyrunsfrom𝑤becauseasymptoticsizegroupswith𝑤 < 𝑊doesnot276

contributetothecommunityspectrumatsize𝑤.Thecommunitymodelonlyresolves277

the‘communityspectrum’𝑁9(𝑤).Substantialconsequencesarisebecausethismodelis278

unabletorepresentmaturation,reproductionandrecruitment.Theenergybudget(M6-279

M8)issimplifiedsuchthatgrowthissolelyavailableenergymultipliedbyan“average280

growthefficiency”derivedfromequilibriumtheory(M7b;AppendixA).Because281

energeticlossestoreproductionarenotexplicitlyaccountedfor,themodelwillnot282

reproducevonBertalanffygrowth.Further,mostimplementationsintheliteratureuse283

justalinearfunctionalresponse,ignorestandardmetabolismanduseafixedresource284

(Table3),however,thesesimplificationsarenotsignificantforthecommunitymodel.In285

itsmostcomprehensiveform,thecommunitymodelrequiresonly11parameters(less286

withoutthefunctionalresponseandwithfixedresource).287

288

Equilibriumsolutions289

Page 11 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 13: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

12

Analyticalsolutionstothetrait-basedmodelcanbederivedundertheassumptionthat290

thefeedinglevelisconstant𝑓 𝑤 = 𝑓Fandthatthespectrumisinfinitelylong,i.e.𝑤F =291

0andmax 𝑊 =∞(AndersenandBeyer2006;Hartvigetal.2011).Thisresultsinan292

‘equilibriumcommunityspectrum’:293

294

𝑁9 𝑤 =1𝛷

𝑓F1 − 𝑓F

ℎ𝛾𝑤`a&ab(3)295

296

with𝛷 = 2𝜋𝜎𝛽ba`exp[ 𝑞 − 𝑛 &𝜎&/2)].Thescalingexponent𝑛 − 2 − 𝑞 ≈ −2.05isin297

accordancewithobservations(BoudreauandDickie1992).Theequilibriumsolutionfor298

eachspeciesspectrumis:299

𝑁 𝑤,𝑊 ∝ 𝜅𝑊&`abam:n𝑤a`an 1 −𝑤𝑊

%a` n/(%a`)

(4)300

301

withthe“physiologicalmortality”𝑎givenin(M17).Thisresultisusedtocalculate302

expectedscalingsolutionstopredationmortality,thescalingofmaximumrecruitment303

withasymptoticsizeusedinthetrait-basedmodels,andtheaveragegrowthefficiency304

inthecommunitymodel(AppendixA).Notethatthesolutionineq.(4)doesnotfulfill305

theboundarycondition(M9);thetotalreproductiveoutputcalculatedfrom(4)willlead306

toalife-timereproductiveoutputlargerthan1andincreasingwithasymptoticsize307

(discussedinHartvigetal.2011andRossberg2012).Thisdiscrepancyhastobe308

resolvedbydensity-dependenteffectswithineachpopulationnotaccountedforin(4),309

andithasbeenusedtorelatetheslopeparameterinstock-recruitmentsrelationshipto310

asymptoticsize(AndersenandBeyer2015).Inthedynamicalmodelstheemergent311

physiologicalmortalitydependsonasymptoticsize,withsmallerspecieshavinga312

smaller𝑎thanlarger(Hartvigetal.2011),inaccordancewithempiricalmeasurements313

ofhowmortalitydependsonasymptoticsize(Gislasonetal.2010).Eventhough(4)is314

Page 12 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 14: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

13

notanexactsolutionoftheentiremodel,itisstillausefulapproximation,as315

demonstratedbyitsabilitytoresolvespeciesdiversity(Reumanetal.2014).316

317

Theequilibriumresultsallrelyonthemetabolicassumptioninherentinthefunctional318

responsewhereconsumptionisproportionalto𝑤`.Ifafunctionalresponseisnotused319

thesolutionfortheexponentofthecommunityspectrumwilldifferfromeq.(3).In320

particularitwillnotdependonthemetabolicexponent𝑛,butratheronthepreferred321

predator-preymassratio𝛽(BenoîtandRochet2004;Dattaetal.2010;Rossberg2012).322

Suchsolutionswillresultinconsumptionratesthatdonotfollowmetabolicscaling.323

324

Parameters325

Parametersareeitherdeterminedfromknowledgeaboutthespecificspecies(forthe326

food-webmodel),orfromcross-speciesinvestigationsoflife-historyinvariants(Table327

2;seeHartvigetal.(2011),AppE.foradetaileddiscussion).Therelativelysmallsetof328

parameterfacilitatesformalinvestigationsofmodelbehaviorundervaryingparameter329

values(Thorpeetal.2015;Zhangetal.2015).330

331

Implementation332

Sizespectrummodelsmaybesimulatedwith“Mizer”,areferenceimplementationinR333

(Scottetal.2014),orwiththematlabcode(seeonlinesupplementary).Forthefood-334

webmodelwehaveusedtheparameterizationfortheNorthSea(Blanchardetal.2014),335

whichuses𝑛 = 2/3asiscustomaryinthefisheriesliterature.Forthetrait-basedand336

communitymodelswehaveused𝑛 = 3/4toconformwith“metabolic”theory(Westet337

al.2001).Theresultsarequalitativelysensitivetothevalueof𝑛aslongasitischanged338

inalltherelationshipsinTable1.Thecommunitymodelhasbeenimplementedasa339

trait-basedmodelwithasingletraitgrouphavingaverylargeasymptoticsize.Asthe340

individualsinthetraitgroupmaturetheirgrowthratedeclines(Fig.2d).Inthiswaythe341

Page 13 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 15: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

14

averagegrowthinthecommunitymodelcorrespondstotheaveragegrowthinatrait-342

basedmodel.Ourimplementationavoidstheneedforanadditionalsenescentmortality343

forthelargestindividualsasiscommonpractice(Lawetal.2009;RochetandBenoît344

2012).345

346

Allsimulationsaresetupwith100logarithmicallyspacedgridpointsonthemassaxis,347

withthefirstgridpointsettoeggsizew0.Eachsimulationwasrunwithatimestepof348

0.25yearuntilconvergence(AppendixB).349

Examplesimulations350

Allthreemodelspredictsizespectra,growthratesandmortality(Figure2).Inthe351

absenceoffishingandtoppredatorsthelargestsizegroups(𝑤 > 10kg)are352

superabundant,i.e.,thatpartofthespectrumisgreaterthanpredictedbythe353

equilibriumsolution.Thisismostpronouncedinthefood-webmodel,andcouldbe354

changedbyincreasingthebackgroundmortality𝑍F.Thesuperabundanceresultsin355

higherpredationmortalityonmedium-sizedindividuals,whichtriggersatrophic356

cascadeandassociatedchangesingrowthandmortalityofsmallerindividuals357

(AndersenandPedersen2010).358

359

Responsestofishing360

Thebehaviorofthemodelsisillustratedbyexaminingtheresponseofthetime-361

averagedsolutiontofishingandtheirdynamicalbehavior.Fishingusingsize-selective362

gearisrepresentedbyaddingafishingmortalitythatdependsonbodysize,and363

possiblyalsoasymptoticsizeorspecies.Weillustratefishingthroughtwoscenarios:a)364

community-widefishingonallspecieswithatrawl-typeselectivitypatternhaving50%365

selectivityat0.05𝑊,andb)abottom-upperturbationwhereforagefisheryisremoved366

fromscenario(a)simulatedbysettingfishingmortalityzeroonallspecieswith𝑊 <367

Page 14 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 16: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

15

200ginthefood-webandtrait-basedmodelsandonindividualswith𝑤 < 200ginthe368

communitymodel(Figure3).Inscenario(a)(communitywidefishing)thereductionof369

largeindividualsinducesatrophiccascadethroughoutthecommunityseenasawavein370

thesizespectrum.Whenforagefishingisremoved(b),thefood-webandtrait-based371

modelspredictanincreaseofforagefishbutrelativelymodesteffectsontherestofthe372

community.Theforagefishhaveahigherbiomassthanintheunfishedsituationdueto373

thepartialreleasefrompredationbyhighertrophiclevelscausedbyfishing.The374

responseofthecommunitymodelisdifferent:itpredictsadeclineinthesize-range375

wherefishingisremoved,whiletheeffectsontherestofthecommunityareweak,asin376

theothermodels.Thisdifferenceinthecommunitymodelsstemsfromitsinabilityto377

representfishing(or,inthiscase,absenceoffishing)onspecificspeciesorlifehistories,378

butonlyonbodysizes.Thisresultemphasizestheimportanceofrepresenting379

individualpopulationsinfisheriesapplications.Thetwoscenariosillustratesthe380

relativeimportanceofmortalityandgrowthtomediatetrophiccascades:inscenario(a)381

thetrophiccascadeismainlymediatedbychangesinpredationmortality,whichleads382

toastrongcascade.Inscenario(b)increasesinforagefishabundancehastwoeffects383

withoppositeconsequences:1)itincreasesgrowthratesoflargerindividuals,but2)it384

alsoincreasescompetitionbetweenjuvenileindividualsoflargerspeciesandforagefish385

leadingtodecreasedgrowthrates.Theendresultisamodesttrophiccascade(Houleet386

al.2013;Jacobsenetal.2015).Theimportanceofcompetitionbetweenforagefishand387

juvenilepredatoryfishinrealecosystemscouldbeanalyzedbycomparingstomach388

contentsofforagefishandjuvenilepredatoryfish.Insummary:thefood-webandtrait-389

basedmodelspredictsimilarresponsetoselectivefishing,whilethecommunitymodel390

failstoresolveeffectsondifferentpopulations.391

392

Dynamicsolutions393

Page 15 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 17: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

16

Thecommunitymodelalsodiffersfromthefood-webandtrait-basedmodelin394

dynamicalbehavior,i.e.,howthesolutionvariesovertime.Allmodelstendtobe395

unstable(oscillateovertime)ifthetrophicoverlapissmall.Thetrophicoverlapis396

determinedbytheratiobetweenthewidthofthesizepreferencefunction,𝜎,andthe397

predator-preysizeratiolog(𝛽):thesmallerthevalueof𝜎/log(𝛽),thesmallerthe398

trophicoverlap,andthemoreunstablethesolutionbecomes(largeroscillations)(Datta399

etal.2011;Zhangetal.2012)(Figure4).Oscillationsinthetrait-basedmodelsarefairly400

modest,butthecommunitymodelispronetounrealisticallystrongnon-linear401

dynamics:thesolutionvariesbyupto10ordersofmagnitude(Figure4bandd).This402

meansthatsomepartsofthespectrumalternatebetweenbeingcompletelydevoidof403

fishandbeingfullypopulated.Itisthereforeevidentthatthenon-linearpropertiesof404

thecommunitymodelarefundamentallydifferentfromthemodelswithlife-history405

diversity,suchasthetrait-basedmodelsorafood-webmodel.Evenifthecommunity406

modelismadelinearlystablewithahightrophicoverlaporadiffusionterm(Dattaet407

al.,2011),thestrongdynamicalresponsewillstillbepresentifthemodelisperturbed408

awayfromtheequilibrium.Thisshouldbekeptinmindifthemodelisusedtosimulate409

thedynamicalbehaviorofmarineecosystems(Zhangetal.2012;Rossberg2013p.273).410

Challengesandopenissues411

Sizespectrummodelsdistinguishthemselvesfromunstructuredmodelsbyresolving412

individualbodysizeasacontinuousstatevariable(bodysize).Towhatextentdo413

individualbodysizeandspeciesidentitydeterminetheecologicaloutcomesof414

communitydynamics?Thethrustofsizespectrummodelinghasbecomeanemphasis415

ontheformer,whilstunstructuredmodelshaveemphasizedthelatter.Somesize416

spectrummodelsrepresentspeciesinteractions,andsomeattemptshavebeenmadeto417

findacommonunderstandingbetweenthetwoperspectives.Notably,afood-webmodel418

withimplicitrepresentationofintra-speciessizestructurewasobtained(Rossbergand419

Page 16 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 18: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

17

Farnsworth2011)to(indirectly)describeinteractionsamongspeciesofdifferentsizes.420

Theimportanceofexplicitlyresolvingthesize-structureofspecies,orwhereitcan421

safelybeignored,iscontextdependentsorequiresspecificandsystematicexploration422

(Jacobsenetal.2015;Woodworth-Jefcoatsetal.2015).423

424

Animportantdifferencebetweenimplementationsofsizespectrummodelsiswhether425

growthisfixedorfood-dependent(Table3).Fixinggrowthsimplifiesmodelsetupand426

calibration.Itisjustifiedbythemodestvariationsingrowthobservedinmarinespecies.427

Fixinggrowth,however,hasconsequenceswhichshouldbeconsideredwhenthemodel428

iscalibratedandresultsareinterpreted.Amodelwithfixedgrowthwillstillresolve429

trophiccascadesmediatedbymortality,butitwillnotresolvecompetition,whichis430

crucialtodescribethephenomenonofovercompensation(DeRoosandPersson2002)431

andmaybeimportanttounderstandtheresponseofthespectrumto,e.g.fishingon432

‘forage’species(Houleetal.2013;Jacobsenetal.2015).Moreimportantly,without433

food-dependentgrowth,themassbalancingbetweengrowthandpredationmortalityis434

broken.Thisrequiresthatcareistakeninthesetuptoensurethatpredationmortalities435

areinthecorrectrangebyadjustingthe“otherfood”compartment(Thorpeetal.2015).436

Havingtoolowpredationmortalities(asinHalletal.2006;Wormetal.2009;Rochetet437

al.2011)willresultinamodelthatisessentiallyasetofweaklycoupledsingle-species438

modelsthusdefyingthepurposeofamulti-speciesmodel.439

440

Size-basedmodelshavebeencharacterizedas“highlyunrealistic”andbeingbasedon441

“unrealisticandevencontradictoryassumptions”(Froeseetal.2015;Andersenetal.442

2016b).Wehopetohavemadeitclearthatthebasicassumptionsarerealisticand443

internallyconsistent.Nevertheless,whilethesize-basedmodelshavematuredtoa444

degreewheretheycanbeappliedtomakeimpactassessmentsoffishingonmarine445

ecosystems,theystillfacechallengesrelatedtodensity-dependence,life-historytrade-446

Page 17 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 19: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

18

offs,terminationatthelargebodysizesend,calibrationprocedure,andnumerical447

implementation,whichmustbeconfronted:eachwillbebrieflydiscussed.448

449

Densitydependence450

Allfood-webmodelsofrealecosystems,i.e.withspecificspecies,requiresomeformof451

densitydependentregulationoftheabundanceofeachspeciestoavoidcompetitive452

exclusion.Notmuchisknownabouttheexactmechanismoftheregulationandhow453

differentmechanismsaffectmodelresults.Thesizebasedinteractionsandtrait454

differencesamongspeciesinsizespectrummodelsprovideinsufficientniche455

differentiationtoavoidcompetitiveexclusion(HartvigandAndersen2013).Additional456

nichedifferentiationmayberepresentedbyarandomspecies-specificinteraction457

matrix,whichcansupportcoexistence(Hartvig2011;Hartvigetal.2011).Other458

commonlyusedmechanismsare(Table3):stock-recruitmentrelationships;fixed459

recruitment;predator-dependentfunctionalresponses,wherebyintakedependsonthe460

densityofcompetitorsaswellasprey(alsousedinEcosim)(Abrams2014);andprey461

switching(MauryandPoggiale2013),wherebyrarepreyarenotattacked(leadingtoan462

emergenttypeIIIfunctionalresponse).Whichofthesemechanismsisthemostcorrect463

representationofeffectsinrealecosystemiscurrentlyunknown:stock-recruitment464

relationsandfixedrecruitmentareinlinewithstandardpracticeinfisheriesscience,465

buthavelittletheoreticalsupport;predator-dependentfunctionalresponsesandprey466

switchingcertainlyoccurtosomeextent,buttheunderstandingiscurrentlytooweakto467

makegeneralstatementsofthestrengthoftheprocesses.Withinstructuredmodels,468

suchassizespectrummodels,thetypeofdensitydependentregulationmayhavea469

profoundimpactonthesolution,boththesizespectrumoftheindividualspeciesand470

therelativeabundancesofspecies(compareFig.4inMauryandPoggiale(2013)with471

Figure2B).Asanexample,wetestedthepredictionfromthetrait-basedmodelagainst472

empiricalobservationsbycomparingtheasymptoticsizedistributionwithobservations473

Page 18 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 20: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

19

fromthreetrawlsurveysintheNorthSea(Daanetal.2005)(Figure5).Eventhoughthe474

comparisondoesnotrejectthemodeleddistribution,morecomparisonswithsimilar475

datafromothersystemsareneededtobuildconfidenceinthepredictedasymptoticsize476

distributions.477

478

Inadditiontoensuringcoexistenceofspecies,theimposeddensitydependencealsoacts479

asacarryingcapacity.Inthefood-webmodelthecarryingcapacity(𝑅TUV)isfoundby480

calibratingtoobservedbiomasses.Thetrait-basedmodel,however,reliesontheoretical481

resultsfromtheequilibriumtheory.Thattheorycomparesfavorablytothecalibrated482

results(Figure6).Nevertheless,theuseofastock-recruitmentrelationshipis483

unsatisfactoryasitintroducesadominatingexternalregulationonthebiomassof484

species.Thismaybiastheresponsetimeofcommunitysizestructure(Fungetal.2013),485

whichisofinterestinconservation.Further,thestock-recruitmentrelationshipmeans486

thatalargeamountofspawnedbiomassissimplylosttounspecifieddensity-dependent487

processes.Thestock-recruitmentrelationshipthereforebreaksthemass-balancing488

whichiscarefullyobservedintheotherprocessesinthemodel(Perssonetal.2014).489

Sincethereisnogenerallyacceptedsolutiontotheproblemofmaintainingcoexistence,490

resultsshouldbeinterpretedinlightoftheassumptionsusedtorepresentdensity491

dependentregulation.Itmustbeemphasizedthatthisproblemiscommontoallfood-492

webmodelsandnotuniquetosizespectrummodels.493

494

Traitsandtrade-offs495

Thetrait-basedmodelassumesthatthemostimportanttraitistheasymptoticsize.Fish,496

however,varyinothertraitsthanasymptoticsize.Thequestionsarethen:whichother497

trait(s)shouldbeincludedinamodeltorepresentobservedvariation?Andhowcan498

suitabletrade-offsbeformulatedandparameterized?Anobvioustraitisactivity.499

Increasedactivitycauseshigherpreyencounterrates(highervalueoftheclearancerate500

Page 19 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 21: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

20

constant,𝛾).Ontheotherhand,higheractivityresultsinincreasedmetabolicratesand501

increasedvulnerabilityduetohigherexposuretopredators.Itispossiblethatinclusion502

ofanactivitytraitwouldmakeitpossibletodistinguishsedentaryfromactivespecies503

withthesameasymptoticsize,suchasanglerfishandscombroids.Suchatraitmaynot504

solvetheproblemofcompetitiveexclusionbecauseitdoesnotleadtosufficientniche505

differentiation.Atraitwhichwouldleadtonichedifferentiationcouldberelatedto506

habitat(Hartvig2011;Zhangetal.2013),i.e.,pelagicvs.benthic(Blanchardetal.2011).507

Inbothcasesmoretheoreticalinvestigationsareneededbutalsoempiricalworkto508

establishandparameterizethetrade-offs.509

510

Closureofthespectrumatlargebodysizes511

Anoverlookedissueisthetermination(closure)ofthemodelspectrumatthelargest512

bodysizes.Closureisusuallyachieved(ratherarbitrarily)bychoosingamaximumbody513

sizeandenforcingsomebackgroundmortalitytokillofthelargestindividuals.514

However,thesizeofthismortalityclearlyinfluencestheresults,inparticularintheun-515

fishedsituation.Inthesimulationspresentedhere(Figure2),thisbackgroundmortality516

isrelativelylow,leadingtothesuperabundanceoflargeindividualscomparedtothe517

equilibriumsolution.However,wedonotknowtherealabundanceofthelargest518

individualsinanunfishedsystem,becausemostsystemsareheavilyperturbed.519

Further,whatisthetheoreticallargestsizeofafish?Whyareteleostfishnotlargerthan520

afewhundredkg?Thereisnophysiologicalmechanisminthemodeltolimitthe521

asymptoticsize,andcurrenttheoreticalunderstandingcanonlyguessatananswerto522

thisquestion(FreedmanandNoakes2002;Andersenetal.2008;Andersenetal.2016a).523

Asatisfactorytheoreticalunderstandingofthefactorslimitingtheuppersizeoffishis524

neededtobolstertheconsistencyofthemodels.525

526

Calibrationtorealsystems527

Page 20 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 22: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

21

Sizebasedmodelscanbecalibratedtorealecosystems,forinstanceonthescaleofa528

continentalshelf(insmallersystemsimmigration/emigrationviolatetheassumed529

populationclosure).Inthetrait-basedmodelscalibrationisachievedbyvaryingsome530

ofthecrucialparameters,suchasthegrowthrateparameterℎandthecarryingcapacity531

oftheresourcetoreproduceobservedaveragegrowthratesofindividualsandeco-532

systemlevelcatchratesofthefishery(Popeetal.2006;Koldingetal.2015).Thenext533

levelofsophisticationistomatchmodeledspeciestoknownspeciescharacteristics534

(Jacobsenetal.2015),andfurthertoincludeaspeciesinteractionmatrix(Halletal.535

2006;Blanchardetal.2014).Inthesecasesthebiomassofeachspecieshastobe536

calibratedbyadjusting𝑅TUV.Anotherimportantparameterthathithertohasbeen537

ignoredisthereproductiveefficiency𝜀.Thisparameterrepresentseggsurvival,which538

islikelytovarysubstantiallybetweenspecies.Introducingyetanothercalibration539

parameter,however,requiresmoredata.Currently,thecalibrationmethodsappliedare540

statisticallysimple.Amoresophisticatedapproachacknowledgesuncertaintyby541

creatinganensembleofplausiblemodels,requiringthemtofulfillgeneralcriteria542

(Thorpeetal.2015).Apossiblefuturedirectioncouldbeintroductionofafullstatistical543

frameworkwheredistributionsofparametervaluesarederivedfromobservationsof544

biomassesandstomachcontentbymaximizingalikelihoodfunction(LewyandVinther545

2004;Spenceetal.2015).Finally,itshouldbekeptinmindthateventhoughamodel546

maybewellcalibratedtocurrentsituationsthereisnoguaranteethatitwillreliably547

predictthefuture.548

549

Numericalsolutionprocedure550

Gainsinaccuracyandspeedofthenumericalsolutionmaybeachievedbymovingto551

moreadvancedmethods.Thestandardmethodisafirst-ordersemi-implicitupwind552

schemethatissimpletoimplement(AppendixB).Thedrawbackofthismethodisthatit553

hasnumericaldiffusivity,isnotveryefficient,possiblyinaccuratefordynamics,andis554

Page 21 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 23: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

22

unabletoresolve“cohortcycles”(deRoosandPersson2001)withdiscontinuitiesinthe555

solutionintheformof“shocks”.Tomoveforward,werecommendlookingintherich556

literaturefromcomputationalfluidmechanicsforinspiration,inparticulartowards557

higherorderfinite-volumetechniqueswithlimiters,whichmaintainspositivityofthe558

solution(Zijlema1996),orspectralmethods(Rossberg2012).Enhancementstothe559

numericalschemecouldbeimplementedtocommonbenefitinthe(openaccess)560

referenceimplementation“Mizer”(Scottetal.2014).561

562

Currentandfutureapplications563

Wehaveshownhowsizespectrummodelscanbeusedtosimulatehowfishingofone564

groupofspeciesaffectstheentiresystemandthatisverydifficulttoachievewith565

alternativemodels.Despiteseveralopenissuesinsize-basedmodeling,asdiscussed566

above,themodelframeworkhasalreadyshownitsuseto:illustratehowfishingdrives567

trophiccascades(AndersenandPedersen2010),simulatetheimpactofrising568

temperatures(Mauryetal.2007;Popeetal.2009),explorethepotentialimpactsof569

climatechangescenariosonfishproduction(Blanchardetal.2012;Woodworth-Jefcoats570

etal.2013;Barangeetal.2014;Lefortetal.2014),describetheindirecteffectof571

ecosystemrecoverystrategies(AndersenandRice2010),quantifytheinteraction572

betweenforageandconsumerfisheryfleets(Engelhardetal.2013;Houleetal.2013)or573

betweenfisheriesandmarinemammals(Houleetal.2015),evaluateecosystemfishing574

strategiesandindicators(Houleetal.2012;Blanchardetal.2014;Jenningsand575

Collingridge2015;Spenceetal.2015;Thorpeetal.2015),evaluatebalancedharvesting576

(Rochetetal.2011;Jacobsenetal.2014;Lawetal.2014)anddescribetheecosystem577

levelyield(Wormetal.2009;Andersenetal.2015).Otherobvioususeswouldbeas578

operatingmodelsinmanagementstrategyevaluations,asthebasisforbio-economic579

evaluationsoffishingontheentirecommunity(Andersenetal.2015),andtofurther580

developingourbasicunderstandingoffishcommunityfunctioning.Inourview,the581

Page 22 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 24: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

23

communitymodelisbestlimitedtotheoreticalworkexaminingthesteady-state582

solutions.Thetrait-basedmodelcanbequicklydeployedindata-poorsituationsand583

makesaflexibletoolforexplorationofcommunity-levelfisheryinteractions.Thefood-584

webtypesofmodelsarewellsuitedtomorespecificfisheriesquestionswhereahigher585

levelofspeciesidentityisneededthanprovidedbythetrait-basedmodel.Besidesthese586

strategicapplications,itistemptingtodeploysizespectrummodelsfortactical587

ecosystembasedmanagement,e.g.,forprovidingadviceonspecificspecies.Weare588

reluctanttoendorsesuchusesbecausewefindthepurelyprocess-orientedframework589

toorigidtoprovideprecisequantitativeinformationonthespecieslevel.Inconclusion:590

thesmallnumberofparameters,thelowcomputationalrequirementsandthesolid591

mechanisticallybasisprovideaframeworkoflowtointermediatecomplexity,highly592

suitedtothestrategicimpactassessmentofpressuressuchasfishingand593

environmentalchangeonmarineecosystems.594

595

Page 23 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 25: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

24

596

Acknowledgements597

WethankJuliaL.BlanchardandAxelRossbergforcommentsonthemanuscript.This598

workwassupportedbytheCentreforOceanLife,aVKRCentreofExcellencesupported599

bytheVillumFoundation.600

601

References602

Abrams, P.A. 2014. Why ratio dependence is (still) a bad model of predation. Biol. 603Rev. 90: 794–814. doi: 10.1111/brv.12134. 604

Acuña, J.L., López-Urutia, Á., and Colin, S. 2011. Faking giants: the evolution of 605high prey clearance rates in jellyfishes. Science 333: 1627–1629. 606

Andersen, K.H., Berge, T., Gonçalves, K.H., Hartvig, M., Heuschele, J., Hylander, S., 607Jacobsen, N.S., Lindemann, C., Martens, C., Neuheimer, A.B., Olsson, A.B., 608Palacz, A., Prowe, F., Sainmont, J., Traving, S.J., Visser, A.W., Wadhwa, N., 609and Kiørboe, T. 2016a. Characteristic sizes of life in the oceans, from bacteria to 610whales. Ann. Rev. Mar. Sci. doi: 10.1146/annurev-marine-122414-034144. 611

Andersen, K.H., and Beyer, J.E. 2006. Asymptotic size determines species abundance 612in the marine size spectrum. Am. Nat. 168: 54–61. 613

Andersen, K.H., and Beyer, J.E. 2015. Size structure, not metabolic scaling rules, 614determines fisheries reference points. Fish Fish. 16(1): 1–22. doi: 61510.1111/faf.12042. 616

Andersen, K.H., Beyer, J.E., Pedersen, M., Andersen, N.G., and Gislason, H. 2008. 617Life-history constraints on the success of the many small eggs reproductive 618strategy. Theor. Popul. Biol. 73(4): 490–7. doi: 10.1016/j.tpb.2008.02.001. 619

Andersen, K.H., Blanchard, J.L., Fulton, E.A., Gislason, H., Jacobsen, N.S., and van 620Kooten, T. 2016b. Assumptions behind size-based ecosystem models are 621realistic. ICES J. Mar. Sci. doi: doi:10.1093/icesjms/fsv211. 622

Andersen, K.H., Brander, K., and Ravn-Jonsen, L. 2015. Trade-offs between 623objectives for ecosystem management of fisheries. Ecol. Appl. 25: 1390–1396. 624

Andersen, K.H., and Pedersen, M. 2010. Damped trophic cascades driven by fishing 625in model marine ecosystems. Proc. R. Soc. London B 277: 795–802. 626

Andersen, K.H., and Rice, J.C. 2010. Direct and indirect community effects of 627rebuilding plans. ICES J. Mar. Sci. 67(9): 1980–1988. 628

Andersen, K.P., and Ursin, E. 1977. A multispecies extension to the Beverton and 629

Page 24 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 26: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

25

Holt theory of fishing, with accounts of phosphorus circulation and primary 630production. Meddelelser fra Danmarks Fisk. og Havundersøgelser 7: 319–435. 631

Barange, M., Merino, G., Blanchard, J.L., Scholtens, J., Harle, J., Allison, E.H., 632Allen, J.I., Holt, J., and Jennings, S. 2014. Impacts of climate change on marine 633ecosystem production in societies dependent on fisheries. Nat. Clim. Chang. 6344(3): 211–216. doi: 10.1038/NCLIMATE2119. 635

Barnes, C., Bethea, D.M., Brodeur, R.D., Spitz, J., Ridoux, V., Pusineri, C., Chase, 636B.C., Hunsicker, M.E., Juanes, F., Kellermann, A., J., L., Ménard, F., Bard, F.-637X., Munk, P., Pinnegar, J.K., Scharf, F.S., Rountree, R.A., Stergiou, K.I., Sassa, 638C., Sabates, A., and Jennings, S. 2008. Predator and prey body sizes in marine 639food webs. Ecology 89(3): 881. 640

Benoît, E., and Rochet, M.-J. 2004. A continuous model of biomass size spectra 641governed by predation and the effects of fishing on them. J. Theor. Biol. 226(1): 6429–21. doi: 10.1016/S0022-5193(03)00290-X. 643

Beverton, R.J.H. 1992. Patterns of reproductive strategy parameters in some marine 644teleost fishes. J. Fish Biol. 41: 137–160. 645

Blanchard, J.L., Andersen, K.H., Scott, F., Hintzen, N.T., Piet, G., and Jennings, S. 6462014. Evaluating targets and trade-offs among fisheries and conservation 647objectives using a multispecies size spectrum model. J. Appl. Ecol. 51(3): 612–648622. doi: 10.1111/1365-2664.12238. 649

Blanchard, J.L., Jennings, S., Holmes, R., Harle, J., Merino, G., Allen, J.I., Holt, J., 650Dulvy, N.K., and Barange, M. 2012. Potential consequences of climate change 651for primary production and fish production in large marine ecosystems. Philos. 652Trans. R. Soc. Lond. B. Biol. Sci. 367(1605): 2979–89. doi: 65310.1098/rstb.2012.0231. 654

Blanchard, J.L., Jennings, S., Law, R., Castle, M.D., McCloghrie, P., Rochet, M.-J., 655and Benoît, E. 2009. How does abundance scale with body size in coupled size-656structured food webs? J. Anim. Ecol. 78(1): 270–80. doi: 10.1111/j.1365-6572656.2008.01466.x. 658

Blanchard, J.L., Law, R., Castle, M.D., and Jennings, S. 2011. Coupled energy 659pathways and the resilience of size-structured food webs. Theor. Ecol. 4(3): 289–660300. doi: 10.1007/s12080-010-0078-9. 661

Boudreau, P.R., and Dickie, L.M. 1992. Biomass spectra of aquatic ecosystems in 662relation to fisheries yield. Can. J. Fish. Aquat. Sci. 49(8): 1528–1538. 663

Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M., and West, G.B. 2004. Toward 664a metabolic theory of ecology. Ecology 85(7): 1771–1789. 665

Collie, J.S., Botsford, L.W., Hastings, A., Kaplan, I.C., Largier, J.L., Livingston, P. a, 666

Page 25 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 27: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

26

Plagányi, É., Rose, K. a, Wells, B.K., and Werner, F.E. 2014. Ecosystem models 667for fisheries management: finding the sweet spot. Fish Fish. doi: 66810.1111/faf.12093. 669

Daan, N., Gislason, H., Pope, J.G., and Rice, J.C. 2005. Changes in the North Sea fish 670community: evidence of indirect effects of fishing? ICES J. Mar. Sci. 62(2): 671177–188. doi: 10.1016/j.icesjms.2004.08.020. 672

Datta, S., Delius, G.W., and Law, R. 2010. A jump-growth model for predator--prey 673dynamics: derivation and application to marine ecosystems. Bull. Math. Biol. 67472(6): 1361–1382. 675

Datta, S., Delius, G.W., Law, R., and Plank, M.J. 2011. A stability analysis of the 676power-law steady state of marine size spectra. J. Math. Biol. 63(4): 779–799. 677

Elton, C. 1927. Animal Ecology. In Animal ecology. doi: 10.1098/rstb.2010.0107. 678

Engelhard, G.H., Peck, M.A., Rindorf, A., Raab, K., Smout, S., Aarts, G., Deurs, M. 679Van, Brunel, T., Hoff, A., Lauerburg, R.A.M., Garthe, S., Andersen, K.H., Scott, 680F., Kooten, T. Van, Beare, D., and Peck, M.A. 2013. Marine Science. 681

Freedman, J.A., and Noakes, D.L.G. 2002. Why are there no really big bony fish? A 682point-of-view on maximum body size in teleosts and elasmobranchs. Rev. Fish 683Biol. Fish. 12: 403–416. 684

Froese, R., Walters, C., Pauly, D., Winker, H., Weyl, O.L.F., Demirel, N., Tsikliras, 685A.C., and Holt, S.J. 2015. A critique of the balanced harvesting approach to 686fishing. ICES J. Mar. Sci. doi: doi:10.1093/icesjms/fsv122. 687

Fulton, E.A., Link, J.S., Kaplan, I.C., Savina-Rolland, M., Johnson, P., Ainsworth, C., 688Horne, P., Gorton, R., Gamble, R.J., Smith, A.D.M., and Smith, D.C. 2011. 689Lessons in modelling and management of marine ecosystems: The Atlantis 690experience. Fish Fish. 12(2): 171–188. doi: 10.1111/j.1467-2979.2011.00412.x. 691

Fung, T., Farnsworth, K.D., Shephard, S., Reid, D.G., and Rossberg, A.G. 2013. Why 692the size structure of marine communities can require decades to recover from 693fishing. Mar. Ecol. Prog. Ser. 484: 155–171. doi: 10.3354/meps10305. 694

Gilljam, D., Thierry, A., Edwards, F.K., Figueroa, D., Ibbotson, A.T., Jones, J.I., 695Lauridsen, R.B., Petchey, O.L., Woodward, G., and Ebenman, B. 2011. Seeing 696Double: Size-Based and Taxonomic Views of Food Web Structure. Adv. Ecol. 697Res. 45: 67–133. doi: 10.1016/B978-0-12-386475-8.00003-4. 698

Gislason, H., Daan, N., Rice, J.C., and Pope, J.G. 2010. Size, growth, temperature and 699the natural mortality of marine fish. Fish Fish. 11(2): 149–158. doi: 70010.1111/j.1467-2979.2009.00350.x. 701

Haldane, J.B.S. 1928. On being the right size. In A treasury of science. Edited by H. 702Shapely, S. Raffort, and H. Wright. Harper, New York. pp. 321–325. 703

Page 26 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 28: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

27

Hall, S.J., Collie, J.S., Duplisea, D.E., Jennings, S., Bravington, M., and Link, J. 7042006. A length-based multispecies model for evaluating community responses to 705fishing. Can. J. Fish. Aquat. Sci. 63(6): 1344–1359. doi: 10.1139/f06-039. 706

Hartvig, M. 2011. Ecological processes yield complex and realistic food webs. In 707Food Web Ecology. Lund University. pp. 73–100. 708

Hartvig, M., and Andersen, K.H. 2013. Coexistence of structured populations with 709size-based prey selection. Theor. Popul. Biol. 89: 24–33. doi: 71010.1016/j.tpb.2013.07.003. 711

Hartvig, M., Andersen, K.H., and Beyer, J.E. 2011. Food web framework for size-712structured populations. J. Theor. Biol. 272(1): 113–122. 713

Houle, J.E., Andersen, K.H., Farnsworth, K.D., and Reid, D.G. 2013. Emerging 714asymmetric interactions between forage and predator fisheries impose 715management trade-offs. J. Fish Biol. 83(4): 890–904. doi: 10.1111/jfb.12163. 716

Houle, J.E., de Castro, F., Cronin, M.A., Farnsworth, K.D., Gosch, K.D., and Reid, 717D.G. 2015. Effects of seal predation on a modeled marine fish community and 718consequences for a commercial fishery. J. Appl. Ecol. doi: 10.1111/1365-7192664.12548. 720

Houle, J.E., Farnsworth, K.D., Rossberg, A.G., and Dave, R. 2012. Assessing the 721sensitivity and specificity of fish community indicators to management action. 722Can. J. Fish. Aquat. Sci. 69(6): 1065–1079. 723

Jacobsen, N.S., Essington, T.E., and Andersen, K.H. 2015. Comparing model 724predictions for ecosystem based management. Can. J. Fish. Aquat. Sci. doi: 72510.1139/cjfas-2014-0561. 726

Jacobsen, N.S., Gislason, H., and Andersen, K.H. 2014. The consequences of 727balanced harvesting of fish communities. Proc. R. Soc. B 281(1775): 20132701. 728doi: 10.1098/rspb.2013.2701. 729

Jennings, S., and Collingridge, K. 2015. Predicting Consumer Biomass, Size-730Structure, Production, Catch Potential, Responses to Fishing and Associated 731Uncertainties in the World’s Marine Ecosystems. PLoS One 10(7): e0133794. 732

Jennings, S., Pinnegar, J.K., Polunin, N.V.C., and Boon, T.W. 2001. Weak cross-733species relationships between body size and trophic level belie powerful size-734based trophic structuring in fish communities. J. Anim. Ecol. 70(6): 934–944. 735

Kleiber, M. 1932. Body size and metabolism. Hilgardia 6: 315–353. 736

Kolding, J., Jacobsen, N.S., Andersen, K.H., and van Zwieten, P. 2015. Maximizing 737fisheries yields while maintaining community structure. Can. J. Fish. Aquat. Sci. 738

Law, R., Plank, M.J., James, A., and Blanchard, J.L. 2009. Size-spectra dynamics 739

Page 27 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 29: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

28

from stochastic predation and growth of individuals. Ecology 90(3): 802–11. 740

Law, R., Plank, M.J., and Kolding, J. 2014. Balanced exploitation and coexistence of 741interacting, size-structured, fish species. Fish Fish. doi: 10.1111/faf.12098. 742

Lefort, S., Aumont, O., Bopp, L., Arsouze, T., Gehlen, M., and Maury, O. 2014. 743Spatial and body-size dependent response of marine pelagic communities to 744projected global climate change. Glob. Chang. Biol. doi: 10.1111/gcb.12679. 745

Lewy, P., and Vinther, M. 2004. A stochastic age-length-structured multispecies 746model applied to North Sea stocks. ICES (CM/FF:20): 33 pp. 747

Maury, O., Faugeras, B., Shin, Y.J., Poggiale, J.C., Ari, T.B., and Marsac, F. 2007a. 748Modeling environmental effects on the size-structured energy flow through 749marine ecosystems. Part 1: The model. Prog. Oceanogr. 74(4): 479–499. 750

Maury, O., and Poggiale, J. 2013. From individuals to populations to communities: A 751dynamic energy budget model of marine ecosystem size-spectrum including life 752history diversity. J. Theor. Biol.: 1–20. doi: 10.1016/j.jtbi.2013.01.018. 753

Maury, O., Shin, Y.J., Faugeras, B., Ben Ari, T., and Marsac, F. 2007b. Modeling 754environmental effects on the size-structured energy flow through marine 755ecosystems. Part 2: Simulations. Prog. Oceanogr. 74(4): 500–514. 756

Neuheimer, A.B., Hartvig, M., Heuschele, J., Hylander, S., Kiørboe, T., Olsson, K., 757Sainmont, J., and Andersen, K.H. 2015. Adult and offspring size in the ocean 758over 17 orders of magnitude follows two life-history strategies. Ecology. 759

Persson, L., van Leeuwen, A., and de Roos, A.M. 2014. The ecological foundation for 760ecosystem-based management of fisheries: mechanistic linkages between the 761individual-, population-, and community-level dynamics. ICES J. Mar. Sci. 76271(8): 2268–2280. doi: 10.1093/icesjms/fst231. 763

Peters, R.H. 1983. The ecological implications of body size. Cambridge University 764Press. 765

Pikitch, E.K., Santora, C., Babcock, E.A., Bakun, A., Bonfil, R., Conover, D.O., 766Dayton, P., Doukakis, P., Fluharty, D., Heneman, B., and others. 2004. 767Ecosystem-based fishery management. Science 305(5682): 346–347. 768

Plagányi, É.E. 2007. Models for an ecosystem approach to fisheries. FAO Fish. Tech. 769Pap. (477): 108 p. 770

Pope, J.G., Falk-Pedersen, J., Jennings, S., Rice, J.C., Gislason, H., and Daan, N. 7712009. Honey, I cooled the cods: Modelling the effect of temperature on the 772structure of Boreal/Arctic fish ecosystems. Deep Sea Res. Part II 56(21-22): 7732097–2107. doi: 10.1016/j.dsr2.2008.11.021. 774

Pope, J.G., Rice, J.C., Daan, N., Jennings, S., and Gislason, H. 2006. Modelling an 775

Page 28 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 30: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

29

exploited marine fish community with 15 parameters–results from a simple size-776based model. ICES J. Mar. Sci. 63(6): 1029–1044. 777

Rall, B.C., Brose, U., Hartvig, M., Kalinkat, G., Schwarzmüller, F., Vucic-Pestic, O., 778and Petchey, O.L. 2012. Universal temperature and body-mass scaling of feeding 779rates. Philos. Trans. R. Soc. B Biol. Sci. 367: 2923–2934. doi: 78010.1098/rstb.2012.0242. 781

Reuman, D.C., Gislason, H., Barnes, C., Mélin, F., and Jennings, S. 2014. The marine 782diversity spectrum. J. Anim. Ecol. 83(4): 963–979. doi: 10.1111/1365-7832656.12194. 784

Rice, J., and Gislason, H. 1996. Patterns of change in the size spectra of numbers and 785diversity of the North Sea fish assemblages, as reflected in surveys and models. 786ICES J. Mar. Sci. 53: 1214–1225. 787

Rijnsdorp, A., and Leeuwen, P. Van. 1992. Density-dependent and independent 788changes in somatic growth of female North Sea plaice Pleuronectes platessa 789between 1930 and 1985 as revealed by back-calculation of otoliths. Mar. Ecol. 790Prog. Ser. 88: 19–32. 791

Rochet, M.-J., and Benoît, E. 2012. Fishing destabilizes the biomass flow in the 792marine size spectrum. Proc. Biol. Sci. 279(1727): 284–92. doi: 79310.1098/rspb.2011.0893. 794

Rochet, M.J., Collie, J.S., Jennings, S., and Hall, S.J. 2011. Does selective fishing 795conserve community biodiversity? Predictions from a length-based multispecies 796model. Can. J. Fish. Aquat. Sci. 68(3): 469–486. 797

de Roos, A.M., and Persson, L. 2001. Physiologically structured models - from 798versatile technique to ecological theory. Oikos 94: 51–71. 799

De Roos, A.M., and Persson, L. 2002. Size-dependent life-history traits promote 800catastrophic collapses of top predators. Proc. Natl. Acad. Sci. U.S.A. 99(20): 80112907–12912. 802

de Roos, A.M., Schellekens, T., van Kooten, T., van de Wolfshaar, K., Claessen, D., 803and Persson, L. 2008. Simplifying a physiologically structured population model 804to a stage-structured biomass model. Theor. Popul. Biol. 73(1): 47–62. doi: 80510.1016/j.tpb.2007.09.004. 806

Rossberg, A.G. 2012. A complete analytic theory for structure and dynamics of 807populations and communities spanning wide ranges in body size. Adv. Ecol. Res. 80846: 429–522. 809

Rossberg, A.G. 2013. Food Webs and Biodiversity: Foundations, Models, Data. 810Wiley. 811

Rossberg, A.G., and Farnsworth, K.D. 2011. Simplification of structured population 812

Page 29 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 31: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

30

dynamics in complex ecological communities. Theor. Ecol. 4: 449–465. doi: 81310.1007/s12080-010-0088-7. 814

Rossberg, A.G., Houle, J.E., and Hyder, K. 2013. Stock–recruitment relations 815controlled by feeding interactions alone. Can. J. Fish. Aquat. Sci. 70: 1447–8161455. doi: 10.1139/cjfas-2012-0531. 817

Scott, F., Blanchard, J.L., and Andersen, K.H. 2014. mizer: an R package for 818multispecies, trait-based and community size spectrum ecological modelling. 819Methods Ecol. Evol. doi: 10.1111/2041-210X.12256. 820

Sheldon, R., and Prakash, A. 1972. The size distribution of particles in the ocean. 821Limnol. Oceanogr. XVII(May): 327–340. 822

Sheldon, R.W., and Parsons, T.R. 1967. A continuous size spectrum for particulate 823matter in the sea. J. Fish. Res. Board. Canada. 24(5): 909–915. 824

Sheldon, R.W., Sutcliffe Jr., W.H., and Paranjape, M.A. 1977. Structure of pelagic 825food chain and relationship between plankton and fish production. J. Fish. Res. 826Board Canada 34: 2344–2353. 827

Silvert, W., and Platt, T. 1978. Energy flux in the pelagic ecosystem: a time-828dependent equation. Limnol. Oceanogr. 23(4): 813–816. 829

Spence, M.A., Blackwell, P.G., and Blanchard, J.L. 2015. Parameter uncertainty of a 830dynamic multi-species size spectrum model. Can. J. Fish. Aquat. Sci. 831

Sprules, W.G., and Barth, L.E. (n.d.). Surfing the biomass size spectrum: some 832remarks on history, theory, and application. Can. J. Fish. Aquat. Sci.: this issue. 833

Thorpe, R.B., Le Quesne, W.J.F., Luxford, F., Collie, J.S., and Jennings, S. 2015. 834Evaluation and management implications of uncertainty in a multispecies size-835structured model of population and community responses to fishing. Methods 836Ecol. Evol. 6(1): 49–58. doi: 10.1111/2041-210X.12292. 837

Ursin, E. 1973. On the prey size preferences of cod and dab. Meddelelser fra 838Danmarks Fisk. og Havundersøgelser 7: 85–98. 839

Werner, E.E., and Gilliam, J.F. 1984. The ontogenetic niche and species interactions 840in size-structured populations. Ann. Rev. Ecol. Syst. 15: 393–425. 841

West, G.B., Brown, J.H., and Enquist, B.J. 2001. A general model for ontogenetic 842growth. Nature 413: 628–631. 843

Winberg, G.G. 1956. Rate of metabolism and food requirements of fishes. J. Fish. 844Res. Board Canada 194: 1–253. 845

Woodworth-Jefcoats, P., Polovina, J., Howell, E., and Blanchard, J. 2015. Two takes 846on the ecosystem impacts of climate change and fishing: comparing a size-based 847and a species-based ecosystem model in the central North Pacific. Prog. 848

Page 30 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 32: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

31

Oceanogr. doi: 10.1016/j.pocean.2015.04.004. 849

Woodworth-Jefcoats, P.A., Polovina, J.J., Dunne, J.P., and Blanchard, J.L. 2013. 850Ecosystem size structure response to 21st century climate projection: Large fish 851abundance decreases in the central North Pacific and increases in the California 852Current. Glob. Chang. Biol. 19(3): 724–733. doi: 10.1111/gcb.12076. 853

Worm, B., Hilborn, R., Baum, J.K., Branch, T.A., Collie, J.S., Costello, C., Fogarty, 854M.J., Fulton, E.A., Hutchings, J.A., Jennings, S., Jensen, O.P., Lotze, H.K., 855Mace, P.M., McClanahan, T.R., Minto, C., Palumbi, S.R., Parma, A.M., Ricard, 856D., Rosenberg, A.A., Watson, R., and Zeller, D. 2009. Rebuilding global 857fisheries. Science 325(5940): 578–85. doi: 10.1126/science.1173146. 858

Zhang, C., Chen, Y., and Ren, Y. 2015. Assessing uncertainty of a multispecies size-859spectrum model resulting from process and observation errors. ICES J. Mar. Sci. 860doi: doi:10.1093/icesjms/fsv086. 861

Zhang, L., Hartvig, M., Knudsen, K., and Andersen, K.H. 2013. Size-based 862predictions of food web patterns. Theor. Ecol. 7(1): 23–33. 863

Zhang, L., Thygesen, U.H., Knudsen, K., and Andersen, K.H. 2012. Trait diversity 864promotes stability of community dynamics. Theor. Ecol. 6(1): 57–69. doi: 86510.1007/s12080-012-0160-6. 866

Zijlema, M. 1996. On the construction of a third-order accurate monotone convection 867scheme with application to turbulent flows in general domains. Int. J. Numer. 868Methods Fluids 22: 619–641. 869

870

871

Page 31 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 33: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

32

872

873

Table1.Governingequationsofthefullfood-webmodel.Subscript“i"referstospeciesnumber.874

Encounterandconsumption

Preysizeselection 𝜙𝑤Lwxy𝑤

= exp − ln𝛽A𝑤Lwxy𝑤

&

/(2𝜎A&) M1

Clearancerate 𝑉A 𝑤 = 𝛾A𝑤bwith𝛾A =𝑓FℎA𝛽A

`ab

1 − 𝑓F 2𝜋𝜅�𝜎A M2

Encounteredfood 𝐸A 𝑤 = 𝑉A(𝑤) 𝜃A��

𝜙𝑤Lwxy𝑤

𝑁� 𝑤Lwxy 𝑤Lwxyd𝑤Lwxy

F

M3

Maximumconsumption

rate

𝐼TUV.A(𝑤) = ℎA𝑤`M4

Feedinglevel 𝑓A 𝑤 =𝐸A(𝑤)

𝐸A 𝑤 + 𝐼TUV.A(𝑤) M5

Growthandreproduction

Maturationfunction 𝜓 𝑤 = 1 +𝑤𝜂A𝑊A

a%F a% 𝑤𝑊A

%a` M6

Somaticgrowth 𝑔A 𝑤 = 𝛼𝑓A 𝑤 𝐼TUV.A − 𝑘A𝑤K (1 − 𝜓 𝑤 ) M7a

𝑔 𝑤 = 𝜖 𝛼𝑓 𝑤 𝐼TUV − 𝑘𝑤K (1 − 𝜓 𝑤 ) M7b

Eggproduction 𝑔� 𝑤 = 𝛼𝑓A 𝑤 𝐼TUV.A − 𝑘A𝑤K 𝜓 𝑤 M8a

𝑔� 𝑤 = 𝜖 𝛼𝑓 𝑤 𝐼TUV − 𝑘𝑤K 𝜓 𝑤 M8b

Boundarycondition

Populationegg

production𝑅L.A =

𝜀2𝑤F

𝑁A 𝑤 𝑔� 𝑤 d𝑤��

)� M9

Recruitment 𝑅A = 𝑅TUV.A𝑅L.A

𝑅TUV.A + 𝑅L.A M10

Boundarycondition 𝑁A 𝑤F 𝑔 𝑤F = 𝑅A M11

Page 32 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 34: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

33

Mortality

Backgroundmortality 𝜇F = 𝑍F𝑊A� M12

Predationmortality 𝜇L.A 𝑤Lwxy = 𝜙𝑤Lwxy𝑤

1 − 𝑓� 𝑤 𝑉� 𝑤 𝜃A�𝑁� 𝑤 d𝑤��

)�� M13

Resourcespectrum

Populationdynamics d𝑁w(𝑤)d𝑡

= 𝑟F𝑤`a% 𝜅(𝑤) − 𝑁w(𝑤) − 𝜇L.� 𝑤 𝑁�(𝑤) M14

Carryingcapacity 𝜅 𝑤 = 𝜅w𝑤a3 M15

Trait-basedmodel

Maximum

recruitment

𝑅TUV.A = 𝜅N𝜅 𝛼𝑓Fℎ𝑤F` − 𝑘J𝑤FK 𝑊A

&`abam:n𝑤Fa`an𝛥𝑊A M16

Physiological

mortality𝑎 =

𝑓Fℎ𝛼𝑓Fℎ − 𝑘J

𝛽&`aba% exp2𝑛 𝑞 − 1 − 𝑞& + 1 𝜎&

2 M17

875

876

877

Page 33 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 35: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

34

878

Table2.Symbolsandvaluesofspecies-independentparametersinthetrait-basedandcommunitymodels.879

880

Symbol Explanation Valueandunita

𝑤 Bodyweight g

𝑊 Asymptoticbodyweight g

𝑁(𝑤) Abundancedensityspectrum numbers/gramb

𝛽 Preferredpredator-preymassratio 100c

𝜎 Widthofsizepreference 1.3d

𝜃 Speciespreference 1

𝑞 Exponentforclearancerate 0.8e

𝑓F Initialfeedinglevel 0.6f

𝛼 Assimilationefficiency 0.6

ℎ Factorformaximumconsumption 20g0.25yr-1g

𝑛 Exponentformaximumconsumption ¾h

𝑘J Factorforstandardmetabolism 2.4g0.25yr-1

𝑝 Exponentforstandardmetabolism ¾h

𝜂 Ratiobetweensizeatmaturationand𝑊 0.25(0.01)i

𝜅N Constantformax.recruitment 1.7g

𝜀 Efficiencyofreproduction 0.1j

𝑤F Eggsize 1mgk

𝑍F Factorforbackgroundmortality 2g0.25yr-1l

𝑧 Exponentforbackgroundmortality -0.25m

𝑟F Resourceproductivity 4g0.25yr-1n

𝑤��� Maximumsizeofresource 1go

𝜅� Resourcecarryingcapacity 1012g-1b,g

Page 34 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 36: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

35

aValuesinparenthesesreferstothecommunitymodel

bTheunitsoftheabundancedensityspectrumcouldalsobeexpressedasaconcentration,i.e.,as

numbers/gram/volumeornumbers/gram/area.Inthatcasetheunitsoftheresourcecarryingcapacity

shouldalsobechangedaccordingly.Further,theunitsoftheclearanceratewouldbecomevolumepertime

orareapertimerespectively.

cUrsin1973;Jenningsetal.2001.

dUrsin(1973)finds𝜎 = 1,buthere𝜎isincreasedtorepresentcross-speciesvariation.Inthefood-web

model𝜎 = 1exceptifspecificknowledgeaboutaspeciesexists.

eAndersenandBeyer,2006.

fAssumesthatfishingeneralarenotsatiated(𝑓F < 1)whilealsohaveasignifantsurplusafterassimilation

andstandardmetabolism,i.e,largerthan𝑘J/(𝛼ℎ) = 0.2.Setting𝑓Finthemiddleoftherange0.2…1gives

0.6.SeealsoHartvigetal.(2011),App.E.

gAdjustedtogivesimilarresultstotheNorthSeamodel(Blanchardetal.2014),despitetheuseofdifferent

exponentfor𝑛;seetextandFigure2.

hSeetext.

iBeverton,1992.

jAndersenandBeyer(2013).NotethatthisdiffersfromtheNorthSeamodel(Blanchardetal.2014),

whereavalueof𝜀 = 1wasused.Thiswill(intheNorthSeamodel)leadtooverestimationsof𝐹T�yfor

individualspecies.

kNeuheimeretal.,2015.

lThisvalueleadstoabackgroundmortalityona10kgindividualof0.2yr-1.Theseindividualswillhave

littlepredationmortalityinthemodel,sobackgroundmortalityisthelargestpart.Seealsodiscussion.

mStandard“metabolic”assumption(Brownetal.2004).

nHartvigetal.,2011.

oSettoincludemesoplankton,suchasshrimps.

881

882

Page 35 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 37: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

36

883

Table3Implementationsofsizespectrummodels.Referencesaregiventowhereaparticular884

modelwasfirstformulatedorcalibratedtospecificsystem,butnottoapplicationsofthemodels.885

Thecolumn“growth”referstothefunctionalresponseusedtocalculategrowthrate.886

Reference Growth Reproduction Resource Densitydependence

Food-webmodels

Halletal.2006,

Rochetetal.2011

Fixed Fixed N.a. Stock-recruitment

Hartvig2011,Hartvig

etal.2011

TypeII Dynamic Dynamic Emergent

Houleetal.2012,

Blanchardetal.2014

TypeII Dynamic Dynamic Stock-recruitment

Rossbergetal.2013 TypeII Dynamic Dynamic Emergent

Trait-basedmodels

Popeetal.2006,2009 Fixed Fixed N.a. Stock-recruitment

relationship

Andersenand

Pedersen2010

TypeII Fixed Dynamic Fixedrecruitment

Houleetal.2013;

Jacobsenetal.2014

TypeII Dynamic Dynamic Stock-recruitment

relationship

MauryandPoggiale

2013

TypeII Dynamic Dynamic Switching

Communitymodels

BenoîtandRochet

2004;Blanchardetal.

2009;Lawetal.2009

(1)

TypeI N.a. Fixed Fixedboundary

condition

Blanchardetal.2011 TypeI& Dynamic Fixed Fixedboundary

Page 36 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 38: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

37

887

(1)NotethatLawetal.(2009)usesaslightlydifferentconservationequationthanthe888

othermodels.889

890

II condition

Mauryetal.2007 TypeII Dynamic Dynamic

Thisarticle TypeII N.a. Dynamic Fixedboundary

condition

Page 37 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 39: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

38

891

892

Figure1.Illustrationofthesizespectrumcalculationofforaspecies(thinblackline)fromtheperspectiveof893

anindividualatagivensize.Allprocessesinsidetheovalaroundthefishareindividuallevelprocesses,with894

darkgreyarrowsrepresentingmassflowsandthelightgreyarrowrepresentingmortalitylosses.Thescaling895

fromindividuallevelprocessesofgrowth,eggproductionandpredationarefacilitatedbytheMcKendric-von896

Foersterequation(eq.1)andtheboundarycondition(M11).Theprocessisiterativewiththesizespectrum897

beingneededtocalculatethepopulation-levelmeasuresofreproductionandrecruitment.Thenumbersrefer898

totheequationsinTable1. 899

EncounterM2andM3

AssimilationM4andM5

RespirationM7

MaturationM6

GrowthM7

Eggprod.M8

ReproductionM9

RecruitmentM10

Sizespectrumeq.1+M11

Suitableprey Predators

Individualsize,w

Biom

assspectrum,B

log(w

)

Offspringsize,w0

Page 38 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 40: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

39

900

Figure2.Solutionsofthecommunitymodel(leftcolumn),thetrait-basedmodel(middlecolumn),theNorth901

Seafood-webmodel(rightcolumn)andtheequilibriumsolution(dashedlines)inanun-fishedsituationasa902

functionofbodymass.Top:Biomasssizespectrainthe“Sheldonscaling”depictingbiomassinlog-spacedsize903

groups,showingcommunityspectrum(thick),backgroundspectrum(thickgrey),speciesspectra(thingrey)904

andthetheoreticaveragespectrumfromtheequilibriumsolution(dashed).Middle:growthrates(solid)905

comparedtothemaximumpossiblegrowthratewhenfedadlibitum(dashed;forthefood-webmodelthisisan906

averageoverallspecies).Bottom:averagepredationmortality,(solid),foreachspecies(grey)andfromthe907

equilibriumsolution(dashed).Notethatinthetrait-basedmodelallasymptoticsizeclassesexperiencethe908

samepredationmortalitysincefeedingisonlybasedonsize.909

910

Community model

108

109

1010

1011

1012

1013Sh

eldo

n sp

ectra

(g)

(a)

10-1101103105

Gro

wth

(g/y

ear)

(d)

10-3 10-1 101 103 1050246

Mor

talit

y (y

ear-1

)

(g)

Trait-based model(b)

(e)

10-3 10-1 101 103 105

Body mass (g)

(h)

Food-web model(c)

(f)

10-3 10-1 101 103 105

(i)

Page 39 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 41: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

40

911

912

Figure3.ResponsetofishingonthecommunityfortheNorthSeafood-webmodel(grey),thetrait-basedmodel913

(solidblack)andthecommunitymodel(dashedblack).Sizespectraareshownrelativetotheunfishedsize914

spectrafromFigure2.a)Responsetofishingallspecieswithatrawl-typeselectivitypattern.Selectiononeach915

speciesstartsat0.05𝑊andthefishingmortalityis0.5yr-1.Inthecommunitymodelallindividualslargerthan916

10garefished.b)Changestothefishedcommunityinpanela)whenforagefishingisremoved,i.e.fishingon917

specieswithanasymptoticsizesmallerthan200g(orindividualssmallerthan200gforthecommunity918

model).919

920

a)

Rel

ativ

e sp

ectra

0.10.20.5

125

10

b)

Body mass (g)10-3 10-1 101 103 105

Rel

ativ

e sp

ectra

0.2

0.512

5

Page 40 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 42: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

41

921

Figure4.Illustrationofthetime-dependentsolutioninthecommunitymodel(twoleft-mostcolumns)andthe922

trait-basedmodel(right-mostcolumn).Toprow:averagebiomassspectra(solid)andrangeofvariation(grey923

patch).Bottomrow:thephase-planebetweenapreyof10gandapredatorwithasizeonepredator-preymass924

larger(𝛽10𝑔)illustratedwithverticaldashedlinesinthetoprow.Leftcolumn:communitymodelwithwidth925

ofsizepreference𝜎 = 1.3.Middlecolumn:communitymodelwith𝜎 = 1.Rightcolumn:trait-basedmodelwith926

𝜎 = 1.OtherparametersasinFigs.2and3,exceptthatthelargestsizeoftheorganismsis1000kg.927

928

10-310-1 101 103 105100102104106108

10101012

Shel

don

spec

trum

(g) (a)

103 105 107 109 101110-210-1100101102103104105106107108

Pred

ator

spe

ctru

m (g

-1) (d)

10-310-1 101 103 105

Body mass (g)

(b)

103 105 107 109 1011

Prey spectrum (g-1)

(d)

10-310-1 101 103 105

(c)

103 105 107 109 1011

(f)

Page 41 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 43: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

42

929

Figure5.Asymptoticweightspectrum(extendedSheldonhypothesis),showingtotalnumbersofindividualsin930

logarithmicallyspacedasymptoticweightgroupsinanunfished(grey)andfishedsituation(black)fromthe931

trait-basedmodel.Thesimulationresultsarecomparedtodatafromthreedifferenttrawlsurveys(Daanetal.932

2005).Itisassumedthatthetrawlsurveysonlyretainindividualslargerthan10cm.933

934

935

Figure6.Maximumrecruitment,𝑅�n� ,fortheNorthSeamodel(circles)andthetrait-basedmodelwithlog-936

spacesasymptoticsizegroups(line)andwithasymptoticsizegroupswiththesameasymptoticsizesasinthe937

NorthSeamodel(crosses).938

939

W1 (g)102 103 104 105

Num

bers

106

107

108

109

1010

1011

1012

W1 (g)101 102 103 104 105

Rm

ax (n

umbe

rs/y

r)

109

1010

1011

1012

1013

1014

1015

Page 42 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 44: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

Appendicesfor:Thetheoreticalfoundationsforsizespectrummodelsoffishcommunities

AppendixA:derivationsofequilibriumsolutions

Thepredationmortalitycanbederivedfromthecommunityspectrum(eq.3)(AndersenandBeyer

2006):

𝜇" = 𝑎𝐴𝑤'(),(𝐴1)

where𝐴 = 𝛼𝑓1ℎ − 𝑘5and𝑎isthephysiologicalmortality(M16).Mortalityscaleswithexponent𝑛 −

1 ≈ −0.25inaccordancewithempiricalobservations(McGurk1986).

Maximumrecruitment

Themaximumrecruitmentinthetrait-basedmodeliscalculatedusingtheequilibriumsolution

𝑁 𝑤1 from(eq.2).Thissolutionprovidesapredictionfortherelativeabundanceofspecies

dependingontheirasymptoticsize.Therecruitmentneededtosupportthisabundanceof

individualsatsize𝑤1isgivenbytheboundarycondition(M11):

𝑅>[email protected] = 𝜅C𝑔(𝑤1)𝑁 𝑤1,𝑊A Δ𝑊A

where𝛥𝑊A = 𝑊A/𝑊A()isthespacingbetweenasymptoticsizegroups,whichisneededtocome

fromthejointsizeandasymptoticsizedistributionin(1)tothesizedistribution(withoutasymptotic

size)neededfortheboundarycondition.Insertingexpressionsforgrowthandabundanceatsize𝑤1

andassumingthat𝑤1 ≪ 𝑊leadstotheapproximationin(M16).Thedimensionlessconstant𝜅C

determinesthestrengthofearly-lifedensitydependentregulationimposedbythestock-

recruitmentrelationshipbysettingtheratiobetween𝑅>?@and𝜅Thisfreeparametereffectively

determinestheratiobetweenpiscivoryandplanktivoryamongthesmallestfish:ahighervalueof𝜅C

Page 43 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 45: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

leadstoamoreabundantfishspectrumcomparedtotheresourcespectrum,andthusahigherthe

levelofpiscivory(Houleetal.2013).Forthesimulationspresentedhere,𝜅C hasbeenmanually

regulatedtoensurethatthepredationmortalityof1gindividualsisontheorderof3year-1(Figure

2).If𝜅C isverylarge,piscivorousmortalityishighandearly-lifedensitydependentregulationis

small,leadingtocompetitiveexclusionbetweenthespeciesgroupsuntilonlytwospeciesareleft,a

smallandalargespecies(HartvigandAndersen2013).

Averagegrowthefficiency

Foranindividualattheasymptoticsizethegrowthrateiszeroandthegrowthefficiencyiszero,

whileajuvenileusesallavailableenergyforgrowth.Theaveragegrowthefficiencyusedinthe

communitymodelrepresentsthedistributionofgrowthefficienciesbetweenindividualswiththe

samesize(Andersenetal.2009).Itcanbecalculatedsimplyfromtheconservationequationat

steadystate:

d𝑔𝑁Kd𝑤

= −𝜇"𝑁K

Insertingthedescriptionofgrowthinthecommunitymodelsas𝑔 𝑤 = 𝛼𝐴𝑤'andthemortality

from(A1)givestheaveragegrowthefficiency:

𝛼 =𝑎

2 + 𝑞 − 2𝑛≈ 0.51

TheentiredistributionofthegrowthefficiencyisderivedinZhangetal.(2012).

Page 44 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 46: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

AppendixB:numericalsolutionprocedure

Thesolutionisdiscretizedonalogarithmicgridstartingwiththefirstgridpoint𝑤)settotheeggsize

𝑤1,andthefollowinggridpointsas𝑤N = 𝐶𝑤N(),for𝑗 > 1.The“expansionfactor”𝐶 > 1

determinesthenumberofgridpoints.Foreachspecies𝑖,thegrowthandmortalityarecalculated

usingtheprevioustime-step’ssolution,𝑔AS.Nand𝜇AS.N,with𝑡beingthetimestep,atallgridpoints𝑗.

Thediscretizationschemeisfirst-orderimplicitforthetimederivativeandfirst-orderupwindforthe

mass-derivative:

𝑁A.NSU) − 𝑁A.NS

𝛥𝑡+𝑔A.NS 𝑁A.NSU) − 𝑔A.N()S 𝑁A.N()SU)

𝛥𝑤N= −𝜇A.NS 𝑁A.NSU)

with𝛥𝑤N = 𝑤N − 𝑤N().Thismayberewrittenbycollectingtermsof𝑁:

𝑁A.N()SU) −𝛥𝑡𝛥𝑤N

𝑔A.N()S + 𝑁A.NSU) 1 +𝛥𝑡𝛥𝑤N

𝑔A.NS + 𝜇A.NS = 𝑁A.NS ,

whichbynamingthetermsinthetwoparentheses𝐴A.N and𝐵A.N becomes:

𝑁A.N()SU) 𝐴A.N + 𝑁A.NSU)𝐵A.N = 𝑁A.NS .

Thismayrewrittenasanexplicitexpressionfor𝑁A.NSU):

𝑁A.NSU) =𝑁A.NS − 𝐴A.N𝑁A.N()SU)

𝐵A.N,

Page 45 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 47: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

whichcanbesolvedasaniterationoncethespectruminthefirstgridcell,𝑁A.)SU),isknown.This

foundusingtheboundaryconditioneq.(2)togive

𝑁A.)SU) = 𝑁A.)S +𝛥𝑡𝛥𝑤)

𝑅A.

Theequilibriumsolutionconvergeswhenmorethan100gridpointsareused(FigureB1).

FigureB1:Influenceofthenumberofgridpointsonthesolutionofthetrait-basedmodelat

equilibrium.A)ThevalueoftheLargeFishIndicator;B)thepredationmortalityofindividuals

withasizeof10g.

0.4

0.42

0.44

0.46

LF

I

0 100 200 300 400

number of grid points

1.8

2

2.2

M2 (

yr-1

)

A

B

Page 46 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences

Page 48: Draft...Draft 1 1 The theoretical foundations for size spectrum models of fish 2 communities 3 Ken H. Andersen1, Nis S. Jacobsen1 and K. D. Farnsworth2 4 5 1Center for Ocean Life,

Draft

ReferencesforAppendices

Andersen,K.H.,andBeyer,J.E.2006.Asymptoticsizedeterminesspeciesabundanceinthemarinesizespectrum.Am.Nat.168:54–61.

Andersen,K.H.,Beyer,J.E.,andLundberg,P.2009.Trophicandindividualefficienciesofsize-structuredcommunities.Proc.Biol.Sci.276(1654):109–14.doi:10.1098/rspb.2008.0951.

Hartvig,M.,andAndersen,K.H.2013.Coexistenceofstructuredpopulationswithsize-basedpreyselection.Theor.Popul.Biol.89:24–33.doi:10.1016/j.tpb.2013.07.003.

Houle,J.E.,Andersen,K.H.,Farnsworth,K.D.,andReid,D.G.2013.Emergingasymmetricinteractionsbetweenforageandpredatorfisheriesimposemanagementtrade-offs.J.FishBiol.83(4):890–904.doi:10.1111/jfb.12163.

McGurk,M.D.1986.Naturalmortalityofmarinepelagicfisheggsandlarvae:roleofspatialpatchiness.Mar.Ecol.Prog.Ser.34:227–242.doi:10.3354/meps034227.

Zhang,L.,Thygesen,U.H.,Knudsen,K.,andAndersen,K.H.2012.Traitdiversitypromotesstabilityofcommunitydynamics.Theor.Ecol.6(1):57–69.doi:10.1007/s12080-012-0160-6.

Page 47 of 47

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences