driverless metro train shuttle between the stations using labview

9
@ IJTSRD | Available Online @ www ISSN No: 245 Inte R Driverless M Sta Manoj Kuma PG Scholar (C&I), Assistant Professor, ABSTRACT The aim of this paper is to illustrate an im the existing technology used in metro trai This train is equipped with a controlle Object sensor that enables the automatic s train from one station to another st atio presents the development process of a p driverless train implemented using a RA controller. Simulation for the system's ci with LabVIEW software. The hardwa interfaced with actuators and sensors fo purposes using LabVIEW. A hardware IR sensor, RASPBERRI PI are asse prototype train. A LabVIEW CODE programming the controller. A Smoke s interfaced to detect any smoke or gas p train. Keywords: IR sensor, Raspberry PI, MPU train. I. INTRODUCTION: A lot of advancement has been made transport. A huge transformation has occ with the early steam operated engines recent bullet train. Many development transport has utilized the existing infrastr the existing metro system is being mo equipped with automatic train control and in order to make them more efficien automated concepts have been adopted, recorded implementation was the London Victoria line, opened in 1967. The Unm Operation (UTO), which is featured by degree of automation, is not a very recent w.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 56 - 6470 | www.ijtsrd.com | Volum ernational Journal of Trend in Sc Research and Development (IJT International Open Access Journ Metro Train Shuttle between th ations using LabVIEW ar M 1 , Hemavathi.R 2 , H. Prasanna Kumar 3 , Dept. of EE, UVCE, Bangalore, Karnataka, Ind Dept. of EE, UVCE, Bangalore, Karnataka, Ind mprovement in in movements. er and an IR stopping of the on. This paper prototype for a ASPBERRY PI ircuits is done are circuit is or automation comprised of embled in a is used for sensor is also present in the U_6050, Metro e in Railroad curred starting s to the most ts in railroad ructure, where odernized and d safety system nt. Driverless , and the first n under ground manned Train y the highest t development with the first UTO lines date fully driverless system was on in Singapore, while the 75 Km metro line in the world. Ther research intended to enhance system functions and perform In modern days metro train tr the most economical and transportation system. It help cities and provides a high spee to the public. The unmanned allows a highly secure and hig transportation. The protot microcontroller to control the controls passenger counting a signal including automatic o doors. The train runs between It also provides a facility of co of two trains being on the s between two stations is also p between two stations withou provides a reset switch to the an emergency braking system of emergency. The main ide allow automatic metro train sy unmanned and is precise and Counting of passengers happe detection by IR and photo diod Now-a-days driverless metro most of the developed countri and Japan etc. These trains are which controls the train. The t specific path. Every station on c 2017 Page: 917 me - 2 | Issue 1 cientific TSRD) nal he dia 1 dia 2,3 e from 1981. However a nly implement ed in 2003 m Dubai line is the longest re has been a continuous e the overall automation mance of the Metro trains. ransportation has become safe way of public ps to connect two major ed transportation services d metro train (Driverless) gh performance means of type makes use of train movements. It also and generates a warning opening and closing of n two predefined stations. ollision avoidance in case same track. The distance predefined. The train runs ut human intervention. It e passenger which acts as m to stop the train in case ea of the approach is to ystem which is completely errorless in its operati on. ens by using bidirectional de arrangement. trains which are used in ies like Germany, France, e equipped with the CPU train is programmed for a n the path is defined and

Upload: ijtsrd

Post on 12-Aug-2019

7 views

Category:

Education


0 download

DESCRIPTION

The aim of this paper is to illustrate an improvement in the existing technology used in metro train movements. This train is equipped with a controller and an IR Object sensor that enables the automatic stopping of the train from one station to another station. This paper presents the development process of a prototype for a driverless train implemented using a RASPBERRY PI controller. Simulation for the systems circuits is done with LabVIEW software. The hardware circuit is interfaced with actuators and sensors for automation purposes using LabVIEW. A hardware comprised of IR sensor, RASPBERRI PI areassembled in a prototype train. A LabVIEW CODE is used for programming the controller. A Smoke sensor is also interfaced to detect any smoke or gas present in the train. Manoj Kumar M | Hemavathi.R | H. Prasanna Kumar "Driverless Metro Train Shuttle between the Stations using LabVIEW" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-1 , December 2017, URL: https://www.ijtsrd.com/papers/ijtsrd7088.pdf Paper URL: http://www.ijtsrd.com/engineering/automotive-engineering/7088/driverless-metro-train-shuttle-between-the-stations-using-labview/manoj-kumar-m

TRANSCRIPT

Page 1: Driverless Metro Train Shuttle between the Stations using LabVIEW

@ IJTSRD | Available Online @ www.ijtsrd.com

ISSN No: 2456

InternationalResearch

Driverless MetroStations u

Manoj Kumar M

PG Scholar (C&I), Dept. of EE, UVCE, Bangalore, Karnataka, IndiaAssistant Professor, Dept. of EE, UVCE, Bangalore, Karnataka, India

ABSTRACT

The aim of this paper is to illustrate an improvement in the existing technology used in metro train movements. This train is equipped with a controller and an IR Object sensor that enables the automatic stopping of the train from one station to another station. This paper presents the development process of a prototype for a driverless train implemented using a RASPBERRY PI controller. Simulation for the system's circuits is done with LabVIEW software. The hardware circuit is interfaced with actuators and sensors for automation purposes using LabVIEW. A hardware comprised of IR sensor, RASPBERRI PI are assembled in a prototype train. A LabVIEW CODE is used for programming the controller. A Smoke sensor is also interfaced to detect any smoke or gas present train.

Keywords: IR sensor, Raspberry PI, MPU_6050, Metro train.

I. INTRODUCTION:

A lot of advancement has been made in Railroad transport. A huge transformation has occurred starting with the early steam operated engines to the most recent bullet train. Many developments in railroad transport has utilized the existing infrastructure, wthe existing metro system is being modernized and equipped with automatic train control and safety system in order to make them more efficient. Driverless automated concepts have been adopted, and the first recorded implementation was the London underVictoria line, opened in 1967. The Unmanned Train Operation (UTO), which is featured by the highest degree of automation, is not a very recent development

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017

ISSN No: 2456 - 6470 | www.ijtsrd.com | Volume

International Journal of Trend in Scientific Research and Development (IJTSRD)

International Open Access Journal

Driverless Metro Train Shuttle between the Stations using LabVIEW

Manoj Kumar M1, Hemavathi.R2, H. Prasanna Kumar3

PG Scholar (C&I), Dept. of EE, UVCE, Bangalore, Karnataka, IndiaAssistant Professor, Dept. of EE, UVCE, Bangalore, Karnataka, India

The aim of this paper is to illustrate an improvement in the existing technology used in metro train movements. This train is equipped with a controller and an IR Object sensor that enables the automatic stopping of the

ation. This paper presents the development process of a prototype for a driverless train implemented using a RASPBERRY PI controller. Simulation for the system's circuits is done with LabVIEW software. The hardware circuit is

sensors for automation A hardware comprised of

assembled in a prototype train. A LabVIEW CODE is used for programming the controller. A Smoke sensor is also interfaced to detect any smoke or gas present in the

IR sensor, Raspberry PI, MPU_6050, Metro

A lot of advancement has been made in Railroad transport. A huge transformation has occurred starting with the early steam operated engines to the most recent bullet train. Many developments in railroad transport has utilized the existing infrastructure, where the existing metro system is being modernized and equipped with automatic train control and safety system in order to make them more efficient. Driverless automated concepts have been adopted, and the first recorded implementation was the London underground Victoria line, opened in 1967. The Unmanned Train Operation (UTO), which is featured by the highest degree of automation, is not a very recent development

with the first UTO lines date from 1981. However a fully driverless system was only implementin Singapore, while the 75 Km Dubai line is the longest metro line in the world. There has been a continuous research intended to enhance the overall automation system functions and performance of the Metro trains. In modern days metro train trthe most economical and safe way of public transportation system. It helps to connect two major cities and provides a high speed transportation services to the public. The unmanned metro train (Driverless) allows a highly secure and high performance means of transportation. The prototype makes use of microcontroller to control the train movements. It also controls passenger counting and generates a warning signal including automatic opening and closing of doors. The train runs between two predefined stations. It also provides a facility of collision avoidance in case of two trains being on the same track. The distance between two stations is also predefined. The train runs between two stations without human intervention. It provides a reset switch to the passenger which acts as an emergency braking system to stop the train in case of emergency. The main idea of the approach is to allow automatic metro train system which is completely unmanned and is precise and errorless in its operatiCounting of passengers happens by using bidirectional detection by IR and photo diode arrangement.

Now-a-days driverless metro trains which are used in most of the developed countries like Germany, France, and Japan etc. These trains are equipped with which controls the train. The train is programmed for a specific path. Every station on the path is defined and

Dec 2017 Page: 917

| www.ijtsrd.com | Volume - 2 | Issue – 1

Scientific (IJTSRD)

International Open Access Journal

Train Shuttle between the

PG Scholar (C&I), Dept. of EE, UVCE, Bangalore, Karnataka, India1

Assistant Professor, Dept. of EE, UVCE, Bangalore, Karnataka, India2,3

with the first UTO lines date from 1981. However a fully driverless system was only implemented in 2003 in Singapore, while the 75 Km Dubai line is the longest metro line in the world. There has been a continuous research intended to enhance the overall automation system functions and performance of the Metro trains. In modern days metro train transportation has become the most economical and safe way of public transportation system. It helps to connect two major cities and provides a high speed transportation services to the public. The unmanned metro train (Driverless)

high performance means of transportation. The prototype makes use of microcontroller to control the train movements. It also controls passenger counting and generates a warning signal including automatic opening and closing of

n two predefined stations. It also provides a facility of collision avoidance in case of two trains being on the same track. The distance between two stations is also predefined. The train runs between two stations without human intervention. It

reset switch to the passenger which acts as an emergency braking system to stop the train in case of emergency. The main idea of the approach is to allow automatic metro train system which is completely unmanned and is precise and errorless in its operation. Counting of passengers happens by using bidirectional detection by IR and photo diode arrangement.

days driverless metro trains which are used in most of the developed countries like Germany, France, and Japan etc. These trains are equipped with the CPU which controls the train. The train is programmed for a specific path. Every station on the path is defined and

Page 2: Driverless Metro Train Shuttle between the Stations using LabVIEW

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 918

also the stoppage timing of the train and distance between the two stations is predefined. Modern technologies are being integrated in almost all aspects of our life including transportation, where a lot of advancement has been made. Railroad transport, for instance, has undergone a huge transformation, starting with the early steam operated engines to the most recent bullet train.

In the proposed system, the train is equipped with a controller and a IR Object sensor that enables the automatic stopping of the train from one station to another station. The hardware circuit is interfaced with actuators and sensors for automation purposes using LabVIEW. The hardware is assembled in a prototype train. The LabVIEW CODE is used for programming the controller. A Smoke sensor is also interfaced to detect any smoke or gas in the train to avoid

unnecessary accidents. The speed of the train is controlled by applying PID Controller using arduino Uno and LabVIEW with the sensor accelerometer as a feedback.

II. METHODOLOGY

The proposed system includes DC Motors, Stepper motor, various sensors like IR sensor and smoke sensor, Raspberry Pi controller, Buzzer and seven segment display. In the proposed system speed control is automated using PID controller and LabVIEW. The presence of smoke (if any) is detected by the smoke sensor and an alert is given by a Buzzer. The station or obstacle is recognised by IR object sensor and the train is stopped An alert is made for three times before the door opens, the door remains open for 20 seconds and then the alert is made for three times and the door closes.

Figure 1: Block diagram

1. HARDWARE REQUIREMENTS

A. RASPERRY PI:

The Raspberry Pi 3 Model B is the third generation Raspberry Pi. This powerful credit-card sized single board computer can be used for many applications and supersedes the original Raspberry Pi Model B+ and Raspberry Pi 2 Model B.

Here, Raspberry Pi is used as a controller, using this various sensors, motors, buzzer and seven segment display are interfaced using LabVIEW.

B. Seven segment display:

Here seven segment display is used to display the time in seconds from 19 to 0 meanwhile the doors remain open till the count become zero.

C. Buzzer:

A buzzer or beeper is an audio signalling device, which may be mechanical, electromechanical, or piezoelectric. Typical uses of buzzers and beepers include alarm devices, timers and confirmation of user input such as a mouse click or keystroke.

Page 3: Driverless Metro Train Shuttle between the Stations using LabVIEW

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 919

Here Buzzer is used to make sound before opening and closing the door. The buzzer will alarms three times as programmed.

D. Stepper Motor:

Stepper motor is a special type of electric motor that moves in precisely defined increments of rotor position (Steps). The size of the increment is measured in degrees and can vary depending on the application. Due to precise control, stepper motors are commonly used in medical, satellites, robotic and control applications.

Here, Stepper motor is used for opening and closing the doors.

E. DC Motor:

A DC motor is a class of rotary electrical machines that converts direct current electrical energy into mechanical energy. Nearly all types of DC motors have some internal mechanism, either electromechanical or electronic; to periodically change the direction of current flow in part of the motor.

F. IR Object Sensor:

This Medium Range Infrared sensor offers simple, user friendly and fast obstacle detection using infrared; it is non-contact detection. The implementations of modulated IR signal immune the sensor to the interferences caused by the normal light of a light bulb or the sun light. The sensing distance can be adjusted manually.

IR Object Sensor is used for automatic stopping of the train in this project.

G. L293D Motor Driver Circuit:

L293D is a typical Motor driver or Motor Driver IC which allows DC motor to drive on either direction. L293D is a 16-pin IC which can control a set of two DC motors simultaneously in any direction. It means that you can control two DC motor with a single L293D IC. It works on the concept of H-bridge. H-bridge is a circuit which allows the voltage to be flown in either direction.

H. MPU-6050 Motion Tracking:

The MPU-6050 sensor contains a MEMS accelerometer and a MEMS gyro in a single chip. It is very accurate, as it contains 16-bits analog to digital conversion hardware for each channel. Therefore it captures the x, y, and z channel at the same time.

The sensor uses the I2C-bus to interface with the Arduino. Accelerometer function is to measure the tilt angle of x, y, z axis. The difference between actual tilt with reference is the error given to the input of PID controller, the output of the PID controller is scaled to PWM input ranging from 0 to 1 for controlling the motors.

I. Smoke Sensor:

A smoke sensor is a device that senses smoke, typically as an indicator of fire. as part of a fire alarm system, while household detectors, known as smoke alarms. The smoke sensor is sensitive to smoke and to the flammable gases LPG, Butane, Propane, Methane, Alcohol and Hydrogen.

2. SOFTWARE REQUIREMENTS

LabVIEW

LabVIEW programs are called virtual instruments, or VIs, because their appearance and operation imitate physical instruments, such as oscilloscopes and millimetres. LabVIEW contains a comprehensive set of tools for acquiring, analysing, displaying, and storing data. In LabVIEW, you build a user interface, or front panel, with controls and indicators. Controls are knobs, push buttons, dials, and other input mechanisms. Indicators are graphs, LEDs, and other output displays. We can use LabVIEW to communicate with hardware such as data acquisition, vision, and motion control devices, as well as GPIB, PXI, VXI, RS232, and RS485 instruments

.

Figure 2: LabVIEW Front Panel

Page 4: Driverless Metro Train Shuttle between the Stations using LabVIEW

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 920

Figure 3: LabVIEW Block diagram

III. IMPLEMENTATION

Figure 4: Hardware Model

The proposed system includes DC Motors, Stepper motor, various sensors, Raspberry Pi controller, Buzzer, seven segment display. In the proposed system speed control is automated using PID controller. The Arduino Uno and MPU 6050 is used along with LabVIEW blocks are used for applying the PID controller for accleration of the train. The raspberry pi is connected to the PC through an Ethernet Cable. Platform used in this research is a Wild thumper, The four wheels of diameter 10cm, two of four on either side and is used to build the vehicle platform. The vehicle dimensions are 17 inches 12 inches 6.5 inches as shown in the Fig 7.1 Platform has four wheels four motors with steel gear boxes integrated inside the motors itself . The chassis top has 4 mm holes punched every 10 mm far throughout the chassis for mounting sensors modules and other hardware. The power supply to Arduino is given from PC .The DC 5V regulated power supply to the rasppberry pi and 12V to motors are given. Seven segment display is used to display the time in seconds from19 to 0 meanwhile the doors remain open till the count become zero. Buzzer is used to make sound before opening and closing the door. The buzzer will

alarms three times as programmed. And when the smoke is detected the buzzer should give an alert. Stepper motor is used for opening and closing the doors.IR Object Sensor is used for automatic stopping of the train in this project.L293D is a typical Motor driver or Motor Driver IC which allows DC motor to drive on either direction. Accelerometer function is to measure the tilt angle of x, y, z axis. The difference between actual tilt with reference is the error given to the input of PID controller, the output of the PID controller is scaled to PWM input ranging from 0 to 1 for controlling the motors. A smoke sensor is a device that senses smoke, typically as an indicator of fire. As part of a fire alarm system, while household detectors, known as smoke alarms. The smoke sensor is sensitive to smoke and to the flammable gases LPG, Butane, Propane, Methane, Alcohol and Hydrogen. LabVIEW programs are called virtual instruments, or VIs, because their appearance and operation imitate physical instruments, such as oscilloscopes and millimetres. LabVIEW contains a comprehensive set of tools for acquiring, analysing, displaying, and storing data.

Page 5: Driverless Metro Train Shuttle between the Stations using LabVIEW

International Journal of Trend in Scientific Research and

@ IJTSRD | Available Online @ www.ijtsrd.com

LabVIEW code for PID Control

The VI Block diagram for PID controller is as shown in figure 5

Figure 5

Figure 6: VI Block diagram for seven segment display.

The VI Block diagram for Seven Segment display is as shown in figure 6. The seven segment code designed to count for 20 seconds. After opening the doors the seven segment display starts the count from 19 to 0.

When the counter reaches zero the code for alfor stepper motor makes the door close after three alarms.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017

The VI Block diagram for PID controller is as shown in figure 5

Figure 5: VI Block Diagram for PID controller

VI Block diagram for seven segment display.

The VI Block diagram for Seven Segment display is as shown in figure 6. The seven segment code designed to count for 20 seconds. After opening the doors the seven segment display starts the count from 19 to 0.

When the counter reaches zero the code for alarm will be enabled and the buzzer alarms for three times .The code for stepper motor makes the door close after three alarms.

Development (IJTSRD) ISSN: 2456-6470

Dec 2017 Page: 921

The VI Block diagram for Seven Segment display is as shown in figure 6. The seven segment code designed to count for 20 seconds. After opening the doors the seven segment display starts the count from 19 to 0.

arm will be enabled and the buzzer alarms for three times .The code

Page 6: Driverless Metro Train Shuttle between the Stations using LabVIEW

International Journal of Trend in Scientific Research and

@ IJTSRD | Available Online @ www.ijtsrd.com

Figure 7:

The VI Block diagram for stepper motor is as shown in figure 7. The stepper makes clockwise rotation for 10 steps in the clockwise direction and doors are closed. IV. RESULTS AND DISCUSSION

IR Sensor

IR Sensor

OFF

ON

OFF

ON

The IR Sensor is fixed at the front face of the train. The train keeps sensor goes high once the station is detected, this high signal is processed and the train gets stopped in the station.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017

Figure 7: VI Block diagram for stepper motor

The VI Block diagram for stepper motor is as shown in igure 7. The stepper makes clockwise rotation for 10

steps in the clockwise direction and doors are closed.

After when the conditions are satisfied the stepper motor will make 10 steps to close the door.

Station Status of Train

Not Arrived Running

Arrived at Station 1 Stop

Not Arrived Running

Arrived at Station 2 Stop

Table 1: IR sensor Results

The IR Sensor is fixed at the front face of the train. The train keeps running towards the station in its path. IR sensor goes high once the station is detected, this high signal is processed and the train gets stopped in the station.

Figure 8: IR sensor output

Development (IJTSRD) ISSN: 2456-6470

Dec 2017 Page: 922

After when the conditions are satisfied the stepper motor will make 10 steps to close the door.

running towards the station in its path. IR sensor goes high once the station is detected, this high signal is processed and the train gets stopped in the station.

Page 7: Driverless Metro Train Shuttle between the Stations using LabVIEW

International Journal of Trend in Scientific Research and

@ IJTSRD | Available Online @ www.ijtsrd.com

The IR sensor will be triggered on as soon as it detects the black colour.

Smoke sensor response

The below figure shows the output response of the smoke sensor it slowly increases in presence of smoke from 0.5v to nearly 4.5v and it also shows the level of the smoke in terms of voltage in

Figure 9:

Scenario Status of Smoke sensor

No Smoke OFF

Smoke Beyond threshold ON

Table 2:

A smoke sensor is placed inside the train the buzzer beeps and the Front Panel of LabVIEW displays “Smoke level” and the doors open. The status and response of smoke sensor is verified in the above table.

Sequence of operation on metro train

Status of Train

Buzzer Stepper motor

Running OFF OFF

Stop Turns on

(beeps for 3 times)

ON

Table 3:

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017

s soon as it detects the black colour.

The below figure shows the output response of the smoke sensor it slowly increases in presence of smoke from 0.5v to nearly 4.5v and it also shows the level of the smoke in terms of voltage in the front panel

Figure 9: Smoke sensor response

Status of Smoke

Buzzer LabVIEW Display

OFF No Smoke

Beyond threshold – ON Smoke Detected

Table 2: Smoke Sensor Results

A smoke sensor is placed inside the train compartment. Whenever it detects smoke, the sensor will output high, the buzzer beeps and the Front Panel of LabVIEW displays “Smoke level” and the doors open. The status and response of smoke sensor is verified in the above table.

Door Status

Seven Segment Display

Buzzer Stepper motor

Closed OFF OFF OFF

Opened for 20 seconds

ON

(Counts from 19 to 0)

Turns on

(beeps for 3 times)

ON

Table 3: Opening and Closing of Doors

Development (IJTSRD) ISSN: 2456-6470

Dec 2017 Page: 923

The below figure shows the output response of the smoke sensor it slowly increases in presence of smoke from the front panel

LabVIEW Display

No Smoke

Smoke Detected

compartment. Whenever it detects smoke, the sensor will output high, the buzzer beeps and the Front Panel of LabVIEW displays “Smoke level” and the doors open. The status and

Stepper motor

Door Status

OFF Closed

ON Closed

Page 8: Driverless Metro Train Shuttle between the Stations using LabVIEW

International Journal of Trend in Scientific Research and

@ IJTSRD | Available Online @ www.ijtsrd.com

When the train is running Buzzer, stepper motor, seven segment display will be in the OFF condition and doors are closed. When the train stops the buzzer beeps for three times, the doors are opened and it will remain for 20 seconds. The count is displayed on the seven segment display. After 20 seconds buzzer beeps for three times and then doors are closed. The train starts moving towstations.

Front panel PID response of real time model

The below figure shows the PID response for real time implementation. The response for tuning is shown in the below figure. Also the speed of the train is displayed in analog meter on the front panel.

Figure 8.3 Front panel of PID response and the speed of vehicle.

V. CONCLUSION AND FUTURE SCOPE

In the present project, Driverless Metro Train Shuttle between two station using LabVIEW has been successfully implemented. Real time monitoring and controlling of the proposed model is successfully done as expected. With the help of MPU6050 accelerometer, the speed of the metro train is modulated using PID and Station detection between shuttles is achieved with the help of IR Sensor automatically without presence of driver. If smoke is detected by the Smoke sensor (MQ2), then the train stops and the doors will open automatically along with alarm sound as an alert for the passengers.

In future, new features like seats not occupied information can be displayed or announcement is made to the passengers in the train. In case if any failure in the automatic system then with the help of Team Viewer the operator at the station can access the control of the system manually.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017

When the train is running Buzzer, stepper motor, seven segment display will be in the OFF condition and doors train stops the buzzer beeps for three times, the doors are opened and it will remain for 20

seconds. The count is displayed on the seven segment display. After 20 seconds buzzer beeps for three times and then doors are closed. The train starts moving towards the next station. The process will be repeated for the next

Front panel PID response of real time model

The below figure shows the PID response for real time implementation. The response for tuning is shown in the d of the train is displayed in analog meter on the front panel.

Front panel of PID response and the speed of vehicle.

CONCLUSION AND FUTURE SCOPE

In the present project, Driverless Metro Train Shuttle station using LabVIEW has been

successfully implemented. Real time monitoring and controlling of the proposed model is successfully done as expected. With the help of MPU6050 accelerometer, the speed of the metro train is modulated using PID and

tection between shuttles is achieved with the help of IR Sensor automatically without presence of driver. If smoke is detected by the Smoke sensor

then the train stops and the doors will open automatically along with alarm sound as an alert for the

In future, new features like seats not occupied information can be displayed or announcement is made to the passengers in the train. In case if any failure in the automatic system then with the help of Team

n access the control

REFERENCES

1. B.W.C. Cooke. "Proposed New London Underground". The Railway Magazine (London) 101 (648): 279–281. April 1955.

2. E. Fischer. "Justifying automation". RailwayTechnology.com. 23 August 2011.

3. S. Cappaert-Blondelle. Metro Automation Facts, Figures and Trends.The International Association of Public Transport (UITP).Technical report. Belgium. 2012.

4. J.M. Erbina and C. Soulasa. Twenty Years of Experiences with Driverless Metros in France. VWT 19 proceedings. Dresden. 2003.

5. Transportation system division. The Dubai Metro, the World’s Longest Fully Automated Metro Network.Mitsubishi Heavy Industries Technical Review Vol. 49.No. 2 .June 2012.

6. Performance of Metro trains http://www.metrotrains.com.au/metro

7. P. PhaniKumar, Manoranjan and ParidaManshaSwami “Performance Evaluation of Multimodal Transportation Systems”.

Development (IJTSRD) ISSN: 2456-6470

Dec 2017 Page: 924

When the train is running Buzzer, stepper motor, seven segment display will be in the OFF condition and doors train stops the buzzer beeps for three times, the doors are opened and it will remain for 20

seconds. The count is displayed on the seven segment display. After 20 seconds buzzer beeps for three times and ards the next station. The process will be repeated for the next

The below figure shows the PID response for real time implementation. The response for tuning is shown in the

Front panel of PID response and the speed of vehicle.

B.W.C. Cooke. "Proposed New London Underground". The Railway Magazine (London)

281. April 1955.

E. Fischer. "Justifying automation". Railway-Technology.com. 23 August 2011.

Blondelle. Metro Automation Facts, Figures and Trends.The International Association of Public Transport (UITP).Technical report. Belgium.

J.M. Erbina and C. Soulasa. Twenty Years of Experiences with Driverless Metros in France.

. Dresden. 2003.

Transportation system division. The Dubai Metro, the World’s Longest Fully Automated Metro Network.Mitsubishi Heavy Industries Technical Review Vol. 49.No. 2 .June 2012.

Performance of Metro trains http://www.metrotrains.com.au/metro-performance

P. PhaniKumar, Manoranjan and Parida “Performance Evaluation of

Multimodal Transportation Systems”.

Page 9: Driverless Metro Train Shuttle between the Stations using LabVIEW

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 925

8. S. HAN, S. LEE, W.KIM. Development of On-board Train Automatic Control System for Korean Standard EMU. Processing's of the ISIE 2001 conference. 2001. Pusan, KOREA.

9. H. Jun, and S. Choi. Development of a Multi-train Operation Simulator with Interactive Human Computer Interfaces. International Conference on Hybrid Information Technology (ICHIT'06). 2006. Cheju Island, Korea.

10. M. P. Georgescu. Driverless CBTC – specific requirements for CBTC systems to overcome operation challenges. WIT Transactions on the Built Environment, Vol 88. 2008. pp. 401-409.

11. H. Yun, and K. Lee. Development of the Train Control System Data Transmission Technology Using a Wi-Fi Mesh. Proceeding if the ICTC 2011. Seoul. Sept 2011. Pp. 406-410.

12. M. Siemiatycki. Message in a Metro: Building Urban Rail Infrastructure and Image in Delhi, India. International Journal of Urban and Regional Research, vol. 30, pp. 289-92.

13. https://en.wikipedia.org/wiki/Automatic_train_operation

14. https://en.wikipedia.org/wiki/List_of_automated_urban_metro_subway_systems