drone equations

38
宿迁 2015 3 航模提高课程 Drone Colloquia 3.27.2015 Drone and Equations Jun Steed Huang [email protected] 宿迁 2015 3

Upload: jun-steed-huang

Post on 23-Jan-2018

246 views

Category:

Education


6 download

TRANSCRIPT

Page 1: Drone Equations

宿迁 2015年 3月

航模提高课程

Drone Colloquia

3.27.2015

Drone and Equations

Jun Steed Huang

[email protected]

宿迁 2015年 3月

Page 2: Drone Equations

宿迁 2015年 3月

航模提高课程

Slogans

1. Keep‘em Flying ! USA fly club

2. Our machine our plans! Wright bros

3. United we achieve! UK fly club

4. ‘One God! One Aim! One Destiny! Africa f ly club.

5. Suqian fly club :Practical,Innovative,

Cooperative,Dedicative !

Page 3: Drone Equations

宿迁 2015年 3月

Fluid = matter that flows under external forces = liquid or gas.

solid liquid gas

inter-mol forces strongest medium weakest

volume fixed fixed variable

shape fixed variable variable

Examples of fluid motion:

• Tornadoes.

• Airflight: plane supported by pressure on wings.

• Gas from giant star being sucked into a black hole.

• Brake fluid in a car’s braking system.

• Breathing: air into lung & blood stream.

Basic Concept

航模提高课程

Page 4: Drone Equations

宿迁 2015年 3月

Fluid DynamicsMoving fluid is described by its flow velocity v( r, t ).

Streamlines = Lines with tangents everywhere parallel to v( r, t ).

Spacing of streamlines is inversely proportional to the flow speed.

Steady flow : ( ) ( ), t =v r v r

Small particles (e.g., dyes) in fluid

move along streamlines.

e.g., calm river.

Example of unsteady flow: blood in arteries ( pumped by heart ).

Fluid dynamics : Newton’s law + diffusing viscosity Navier-Stokes equations

slow fast

航模提高课程航模提高课程

Page 5: Drone Equations

宿迁 2015年 3月

Sport car

Photo shows smoke particles tracing streamlines in a test of a car’s aerodynamic properties.

Is the flow speed greater

(a) over the top, or

(b) at the back?

航模提高课程

Page 6: Drone Equations

宿迁 2015年 3月

Conservation of Mass: The Continuity Equation

Flow tube : small region with sides tangent, & end faces perpendicular, to streamlines.

flow tubes do not cross streamlines.

航模提高课程

Page 7: Drone Equations

宿迁 2015年 3月

Energy Mass Equations

Same fluid element enters & leaves tube:

( )2 22 1

1

2K m v v∆ = −

Work done by pressure upon its entering tube:

1 1 1 1W p A x= ∆

Work done by pressure upon its leaving tube:2 2 2 2W p A x= − ∆

Work done by gravity during the trip: ( )2 1gW m g y y= − −

W-E theorem: 1 2 gW W W K+ + = ∆ ( ) ( )2 21 1 2 2 2 1 2 1

1

2p V p V m g y y m v v− − − = −

1 1p V=

2 2p V= −

Incompressible fluid: 1 2V V V= =m

Vρ =

21

2p v g y constρ ρ+ + =

Bernoulli’s Eq.

Viscosity & other works neglected

航模提高课程

Page 8: Drone Equations

宿迁 2015年 3月

Applications of Fluid Dynamics

Strategy

Identify a flow tube.

Draw a sketch of the situation, showing the flow tube.

Determine two points on your sketch.

Apply the continuity equation and Bernoulli’s equation.

航模提高课程

Page 9: Drone Equations

宿迁 2015年 3月

Steady flow

Conservation of mass:

1 1 1 1m A v tρ= ∆Mass entering tube:

2 2 2 2m A v tρ= ∆Mass leaving tube:

1 1 1 2 2 2A v A vρ ρ=

A v constρ = ρ= ×v AEquation of continuity for steady flow :

Mass flow rate = [ ρ v A ] = kg / s

Volume flow rate = A v const=Liquid : [ v A ] = m3 / s= ×v A

Liquid : flows faster in constricted area.

Gas with v < vs ound: flows faster in constricted area.

Gas with v > vsound : flows slower in constricted area.

航模提高课程

Page 10: Drone Equations

宿迁 2015年 3月

Bernoulli Effect

A ping-pong ball supported by downward-flowing air.

High-velocity flow is inside the narrow part of the funnel.

Bernoulli Effect: p ↓ v ↑

Example: Prairie dog’s hole

Dirt mound forces wind to accelerate over hole

low pressure above hole

natural ventilation

航模提高课程

Page 11: Drone Equations

宿迁 2015年 3月

Flight Lift

Aerodynamic lift

Top view on a curved ball : spin

Blade pushes down on air

Air pushes up (3rd law) Faster flow, lower P : uplift.

Top view on a straight ball : no spin

航模提高课程

Page 12: Drone Equations

宿迁 2015年 3月

Viscosity Turbulence

Smooth flow becomes turbulent.

Viscosity: friction due to momentum transfer between adjacent

fluid layers or between fluid & wall.

B.C.: v = 0 at wall

• drag on moving object

• provide 3rd law force on propellers.

• stabilize flow.

flow with no viscosity

flow with viscosity

航模提高课程

Page 13: Drone Equations

宿迁 2015年 3月

2D Newton Navier-Stokes

0=∂∂+

∂∂+

∂∂

y

F

x

E

t

U

=

tE

v

uU

ρρρ

+−−+−

−+=

xxyxxt

xy

xx

qvuupE

uv

pu

u

E

τττρ

τρρ

)(

2

+−−+−+

−=

yyyxyt

yy

xy

qvuvpE

pv

uv

v

F

τττρ

τρρ

)(

2

航模提高课程

Page 14: Drone Equations

宿迁 2015年 3月

[ ])(. 2250 vueEt +⋅+= ρ

Approximations

∂∂+

∂∂+

∂∂=

y

v

x

u

x

uxx λµτ 2

∂∂+

∂∂+

∂∂=

y

v

x

u

y

vyy λµτ 2

∂∂+

∂∂==

x

v

y

uyxxy λττ

µλ

λµµ

3

23

2

−=

+=′

yTKq

xTKq

y

x

∂∂−=∂∂−=

航模提高课程

Page 15: Drone Equations

宿迁 2015年 3月

Pure Gas

TRp ρ=

TCe v=

2

23

1 CT

TC

+=µ

K

CP pr

µ=

Gas

Sutherland

航模提高课程

Page 16: Drone Equations

宿迁 2015年 3月

Partial Equations

0=∂∂+

∂∂+

∂∂+

∂∂+

∂∂

y

v

x

u

yv

xu

tρρρρρ

021 2

2

2

2

2

=∂∂

∂+−∂∂−

∂∂+−

∂∂+

∂∂+

∂∂+

∂∂

yx

v

y

u

x

u

x

p

y

uv

x

uu

t

u

ρµλ

ρµ

ρµλ

ρ

021 2

2

2

2

2

=∂∂

∂+−∂∂−

∂∂+−

∂∂+

∂∂+

∂∂+

∂∂

yx

u

x

v

y

v

y

p

y

vv

x

vu

t

v

ρµλ

ρµ

ρµλ

ρ

Φ=

∂∂+

∂∂−

∂∂+

∂∂+

∂∂+

∂∂+

∂∂+

∂∂+

∂∂

vrr C

R

y

p

x

p

PyxP

p

y

v

x

up

y

pv

x

pu

t

p2

2

2

2

2

2

2

2

2 ργµρρ

ργµγ

2222

22

∂∂+

∂∂+

∂∂+

∂∂+

∂∂+

∂∂=Φ

y

v

x

u

y

v

y

u

x

v

x

u λµ

航模提高课程

Page 17: Drone Equations

宿迁 2015年 3月

Parabolic Navier-Stokes

In the flow near the object, the dissipation in the tangential direction is much smaller than that in the normal direction. Therefore, the Navier-Stokes equations can be omitted from all the second derivative terms along the main flow direction to obtain the parabolic Navier -Stokes equations.

航模提高课程

Page 18: Drone Equations

宿迁 2015年 3月

Incompressible Newtonian Fluid

Navier - Stokes Equations for Unsteady Flow of Incompressible Newtonian Fluid

For liquid or low-speed moving gases, an incompressible approximation, Dp / Dt = 0, can be used, and the energy equation can be solved separately from the continuous equation and the equation of motion.

航模提高课程

Page 19: Drone Equations

宿迁 2015年 3月

Adiabatic Approximation

Euler Equations for Compressible Ideal Gas Unsteady Adiabatic Flow

Experiments show that in the large Reynolds number flow, the effect of viscosity only in the thin layer near the object is important, and the effect of viscosity in the main flow region excluding the thin layer is negligible, so that the fluid in the main region can be approximated It is considered to be a viscous ideal fluid.

航模提高课程

Page 20: Drone Equations

宿迁 2015年 3月

Compressible ideal fluid unsteady transonic velocityless spin flow

When the object in the ideal fluid for subcritical flight, the entire flow field will be no spin; even when the object for transonic flight, the shock intensity is not large, the entire flow field can also be regarded as a spinless.

( ) ( ) 0222 2222

2

2

=∂∂−+

∂∂+

∂∂−+

∂∂+

∂∂+

∂∂

y

vav

y

uuv

x

uau

t

vv

t

uu

t

ϕ

ux

=∂∂ϕ

vy

=∂∂ϕ

航模提高课程

Page 21: Drone Equations

宿迁 2015 年 3 月

Small perturbation equations for compressible ideal fluid unsteady transonic velocityless spin flow

If the flow field we study is due to the small perturbations that occur in a homogeneous flow, such as studying a uniform flow around a thin wing, the problem can be further simplified due to the small perturbation assumption.

航模提高课程

Page 22: Drone Equations

宿迁 2015 年 3 月

Compressible ideal turbulence equation for unsteady subsonic or supersonic spinless flow

( ) 01 2 =∂∂+

∂∂− ∞ y

v

x

uMa

0=∂∂−

∂∂

y

u

x

v

航模提高课程

Page 23: Drone Equations

宿迁 2015 年 3 月

First order quasilinear partial differential equations

fx

UA

t

U

ii =

∂∂+

∂∂

[ ]TnUUUU ⋅⋅⋅= 21

[ ]Tnffff ⋅⋅⋅= 21

( ) ( )njiAj ,,, ⋅⋅⋅= 21λ iA

( ) 0=− IA iAi λ

航模提高课程

Page 24: Drone Equations

宿迁 2015 年 3 月

Equation classification

If the n eigenvalues are all complex numbers, the equation is purely elliptic in plane;

If the n eigenvalues are real numbers that are not equal to zero and are not equal to zero, then the equation is purely hyperbolic on the plane;

If the n eigenvalues are all zero, then the equation is parabolic on the plane;

If the n eigenvalue part is a real number, part is a complex number, then the equation is hyperbolic - elliptical, or elliptical in plane;

If the n eigenvalues are all real and part is zero and the part is not zero, then the equation is hyperbolic parabolic or parabolic in plane.

ixt −

航模提高课程

Page 25: Drone Equations

宿迁 2015 年 3 月

Compressible ideal fluid two - dimensional small subsonic or supersonic spin - free small perturbation equation

( ) 01 2 =∂∂+

∂∂− ∞ y

v

x

uMa

0=∂∂−

∂∂

y

u

x

v

0=∂∂+

∂∂

y

UA

x

U

=v

uU

=01

10 βA

21 ∞−= Maβ

0=− IA λ

012 =+ βλ

Subsonic flow, the equation is purely elliptical Supersonic flow, the equation is pure hyperbolic

航模提高课程

Page 26: Drone Equations

宿迁 2015 年 3 月

Euler equation for compressible ideal two - dimensional unsteady adiabatic flow of complete gas

0=∂∂+

∂∂+

∂∂

y

UB

x

UA

t

U

=

p

v

uU

ρ

=

up

u

u

u

A

00

000

100

00

γ

ρρ

=

vp

v

v

v

B

γρ

ρ

00

100

000

00

航模提高课程

Page 27: Drone Equations

宿迁 2015 年 3 月

Euler equation for compressible ideal two - dimensional unsteady adiabatic flow of complete gas

0=∂

∂+∂∂+

∂∂

t

UD

y

UC

x

U

C Eigenvalueu

vC =21,λ

( )22

222

43au

avuauvC

−−+±

=,λ

Subsonic flow, in the (x, y) plane is hyperbolic Supersonic flow, in the (x, y) plane is hyperbolic elliptical

航模提高课程

Page 28: Drone Equations

宿迁 2015 年 3 月

Euler equation for compressible ideal two - dimensional unsteady adiabatic flow of complete gas

0=∂

∂+∂∂+

∂∂

t

UD

y

UC

x

U

D Eigenvalue

In the (x, t) plane is pure hyperbolic Similarly, it is purely hyperbolic in the (y, t) plane

uD 1

21 =,λ

auD

±= 1

43,λ

航模提高课程

Page 29: Drone Equations

宿迁 2015 年 3 月

Navier - Stokes Equations for Two - Dimensional Unsteady Flow of Compressible Viscous Frequent Heat

On any plane containing the time t axis, the Navier-Stokes equation, which is compressible and viscous, which is often non-steady flow of heat completely gas, is a hyperbolic parabolic system and a hyperbolic elliptic equation on the (x, y) plane group.

航模提高课程

Page 30: Drone Equations

宿迁 2015 年 3 月

The Method of Boundary Value Problem for Elliptic Partial Differential Equation

( ) Dyxy

u

x

u ∈=∂∂+

∂∂

,02

2

2

2

( )yxfu ,| =Γ

( )yxfn

u,=Γ

∂∂

( )yxfhun

uk ,=

+

∂∂

Γ

For oval elliptic partial differential equations, it is required to specify the boundary conditions on the entire boundary of the enclosed area

航模提高课程

Page 31: Drone Equations

宿迁 2015年 3月

The Initial Value and Boundary Value Problem of Hyperbolic Partial Differential Equation

( )0=

∂∂+

∂∂

x

u

t

ρρ

01 =

∂∂+

∂∂+

∂∂

x

p

x

uu

t

u

ρ

02 =∂∂+

∂∂+

∂∂

x

ua

x

pu

t

p ρ

audt

dxC +=+ :

audt

dxC −=− :

udt

dxC =:0

航模提高课程

Page 32: Drone Equations

宿迁 2015年 3月

The Initial Value and Boundary Value Problem of Hyperbolic Partial Differential Equation

x

t

A

A’

B

D

C

C’

C-

0 L

t0

C0

C+

C+

C+

C+

C+

C0

C0

C0

C0

C-

C-

C-

C-

The Initial and Boundary Condition of One - dimensional Unsteady Flow Euler Equation

航模提高课程

Page 33: Drone Equations

宿迁 2015年 3月

The Initial Value and Boundary Value Problem of Parabolic Partial Differential Equation

2

2

x

u

t

u

∂∂=

∂∂ α

( ) ( )xfxu =0,

x

t

0 L

The Initial and Boundary Conditions of One - dimensional Heat Conduction Equation

航模提高课程

Page 34: Drone Equations

宿迁 2015年 3月

The Initial Value and Boundary Value Problem of Parabolic Partial Differential Equation

( )tgu =Γ|

( )tgn

u =Γ∂∂

|

( )tghun

uk =Γ

+

∂∂

Parabolic partial differential equations require that the definite condition be specified on all boundaries of the open region.

航模提高课程

Page 35: Drone Equations

宿迁 2015年 3月

The condition of the boundary given

The appropriate conditions of the boundary conditions and its mathematical processing to stabilize the calculation process necessary conditions;

The specific method of boundary processing may affect the calculation accuracy of physical quantities such as friction, heat flow and so on;

In a detailed simulation of some flow problems, boundary processing will have an effect on the internal structure of the flow field.

航模提高课程

Page 36: Drone Equations

宿迁 2015年 3月

Computational Fluid Dynamics

(1) the actual boundary: they are determined by the nature of the physical problem, which is determined. For example, the solid wall in the outflow problem, the inlet and outlet boundaries in the internal flow problem and the solid walls are the actual boundaries.

(2) artificial boundaries: they are for infinite or semi-infinite areas, or people interested in the scope of the area is much smaller than the artificial introduction. For example, in the calculation of the outflow problem, although the actual area extends to infinity, the outer boundary can only be selected at a distance from the solid boundary.

航模提高课程

Page 37: Drone Equations

宿迁 2015年 3月

The number of physical boundary conditions required for suitability

TypeEuler Navier-Stokes

Supersonic inflow 5 5

Subsonic inflow 4 5

Supersonic outflow 0 4

Subsonic outflow 1 4

航模提高课程

Page 38: Drone Equations

宿迁 2015年 3月

航模提高课程

Drone Colloquia

Thank you for watching this presentation!

谢谢姚成,孙晨旭,邹青,黄佳敏,韩学波,沙龙,周嘉宇的协助。

宿迁 2015年 3月