dso poster

1
RESULTS AND DISCUSSION (CONT’D) LASER ABSORBING MATERIALS Leong Feng Ping Angela 1 , Ke Meicong 1 , Yang Qian Asarelah 1 and Koh Yaw Koon 2 1 NUS High School of MathemaKcs and Science, 20 ClemenK Avenue 1 Singapore 129957 2 DSO NaKonal Laboratories, 20 Science Park Drive Singapore 118230 PURPOSE The solgel process has been used to produce silica glass doped with samarium (Sm 3+ ) ions as the base material. The Sm 3+ ion shows great absorpKon around 1064 nm as the difference in energy level between its orbitals corresponds to the energy of light with a wavelength of 1064 nm. We aimed to determine the op8mum thickness and hea8ng protocol for samariumdoped glass to achieve maximum absorp8on efficiency at a wavelength of 1070nm. CONCLUSION HeaKng increases absorpKon efficiency at 1070 nm for all three thicknesses. HeaKng appears to reverse the relaKonship between thickness of the film and absorpKon efficiency, such that thinner films display higher absorpKon efficiencies. A thinner layer of silica gel could be used to achieve higher laser absorp8on, simply by hea8ng during the solidifying process. This allows huge cost savings when scaled up for use in the field. RESULTS AND DISCUSSION FUTURE WORK Verify the relaKonship between film thickness and absorpKon efficiency with a larger range of thicknesses, and analyse the transmibance/absorbance spectrum in greater detail Test a wider range of hea8ng protocols, to opKmise heaKng protocols for specific wavelengths and for other laserabsorbing materials OpKmise absorpKon efficiency by adjusKng both gel thickness and samarium concentraKon: electrostaKc repulsion exists between the Sm 3+ ions within the silica, thus the op8mal concentra8on of samarium is the tradeoff between the maximum absorpKon density of Sm 3+ and minimum repulsion between the Sm 3+ ions. Study the use of samariumdoped silica gel for the absorp8on of lasers emiNed at other wavelengths, as the greatest drop in transmibance occurs at 1400 . ACKNOWLEDGEMENTS This work was supported by the Young Defence ScienKsts Programme (YDSP), Ministry of Defence, Singapore. We would like to Dr Koh Yaw Koon from Defence Science OrganisaKon (DSO), for guiding us through the experiments, instrucKng me in the background knowledge, and clarifying my doubts, as well as Mr. Chiam SherYi for his guidance during the ediKng of the report, and aiding with administraKve details. *All images and graphs are selftaken and selfdrawn unless otherwise stated. REFERENCES 1. Fu Wei. 1997. Jamming of laserguided weaponry. Na;onal Air Intelligence Center NAICID(RS)T059096. 2. VLOC: Subsidiary of II – VI Incorporated. YAG: YSrium Aluminum Garnet Laser Materials. 3. Robert S. Afzal, Anthony W. Yu, John J. Zayhowski, T. Y. Fan. 1997. Singlemode highpeakpower passively Q switched diodepumped Nd: YAG laser. Op;cs LeSers, Vol. 22, Issue 17, pp. 13141316 (1997) 4. James V. Baer. 1980. Tripled Nd: YAG Pumped Tm 3+ laser oscillator. United States Patent 4386428 (1983). 5. Gang Qian and Zhi Yuan Wang. 2010. NearInfrared Organic Compounds and Emerging Applica;ons. Chem. Asian J. 2010, 5, 1006 – 1029. 6. Wentao T. Lu, Savatore Savo, B. Didier F. Casse, and Srinivas Sridhar. 2009. Slow microwave waveguide made of nega;ve permeability metamaterials. Microwave and Op;cal Technology LeSers, Vol. 51, No. 11, November 2009 7. Zhi Yuan Wang, Jidong Zhang, Xianguo Wu, Maria Birau, Guomin Yu, Hongan Yu, Yinghua Qi, Pierre Desjardins, Xiansheng Meng, Jian Ping Gao, Erin Todd, Naiheng Song, Yaowen Bai, Andrew M. R. Beaudin, and Gaetan LeClair. 2004. Nearinfrared absorbing organic materials. Pure Appl. Chem., Vol. 76, Nos. 7–8, pp. 1435–1443, 2004. 8. American Dye Source, Inc. 2001. Near Infrared Absorber ADS1065A. hSp://www.adsdyes.com/products/ pdf/nirdyes/ADS1065A_DATA.pdf 9. J. Yang, X. Hu, X. Li, Z. Liu, Z. Liang, X. Jiang, and J. Zi, Phys. Rev. B 80, 125103 (2009). 10. Shelby, R. A.; Smith D.R; Shultz S. (2001). "Experimental Verifica;on of a Nega;ve Index of Refrac;on". Science 292 (5514): 77–79. Bibcode2001Sci...292...77S. doi:10.1126/science. 1058847. PMID 11292865. 11. Kosmas L. Tsakmakidis, Allan D. Boardman and Ortwin Hess. 2007. ‘Trapped rainbow storage of light in metamaterials. Nature 450, 397401 (15 November 2007). doi:10.1038/nature06285 12. Salvatore Savo, B. D. F. Casse, Wentao Lu, and Srinivas Sridhar. 2011. Observa;on of slowlight in a metamaterials waveguide at microwave frequencies. Applied Physics LeSers 98, 171907 (2011) 13. W. T. Lu, Y. J. Huang and S. Sridhar. 2012. Slow light using nega;ve metamaterials. SPIE doi:10.1117/12.893097 14. E. E. Narimanov, H. Li, Yu. A. Barnakov, T. U. Tumkur and M. A. Noginov. 2010. Darker than black: radia;on absorbing metamaterial. Applied Physics B 100, 215218 (2010). 15. Yanxia Cui, Kin Hung Fung, Jun Xu, Hyungjin Ma, Yi Jin, Sailing He, and Nicholas X. Fang. 2012. Ultrabroadband Light Absorp;on by a Sawtooth Anisotropic Metamaterial Slab. Nano LeSers 12, 1443 (2012) INTRODUCTION The ubiquity of laserguided devices in the military has compelled the evoluKon of laser concealment and laserjamming techniques. Passive laserabsorbing materials can be divided into organic materials and inorganic materials, of which organic materials are more versa8le, but are unstable under UV light and involve complicated synthesis methods. The inorganic metamaterial is of a parKcular interest because it passively interferes with electromagneKc (EM) waves and is able to absorb at various wavelengths, but much research has focused on broadband absorp8on and on the paNerning of base materials. However, the most common laser in military use – the Nd:YAG laser – is emibed at a specific wavelength of 1064 nm. EXPERIMENTAL RelaKve transmibance in arbituary unit (A.U.) of samariumdoped silica gel of different thickness under different heaKng protocol 100 μm 200 μm 300 μm Airdried 89.426 A.U. 88.818 A.U. 88.301 A.U. Ovendried 85.017 A.U. 86.301 A.U. 87.148 A.U. % increase due to heaKng 5.186% 2.917% 1.323% Sm 3+ Samarium ions integrate into the spaces within the silicate lamce Spectrophotometer Results (1a) (1b) RelaKve transmibance in arbituary unit (A.U.) against wavelength (nm) of samples of different thickness when (a) airdried and (b) overdried RelaKve transmibance in arbituary unit (A.U.) against wavelength (nm) of airdried and oven dried samples of different thickness (a) 100 μm (b) 200 μm (c) 300 μm (2b) (2a) (2c) Absorp8on efficiency of airdried samples increases with increasing thickness The thicker the silica gel, the longer the EM wave takes to propagate through the gel, increasing the likelihood of the photons being absorbed by the electrons of the Sm 3+ ions. Absorp8on efficiency of overdried samples decreases with increasing thickness HeaKng the silica sol increases the kineKc energy of Sm 3+ ions and atoms of the silicate lamce, causing Sm 3+ ions to break and migrate to other locaKons within the lamce while forming new bonds HeaKng may alter the structure of the Sm 3+ doped silica gel such that its opKcal properKes are changed. At all wavelengths, ovendried silica gels absorb a higher percentage of EM wave than airdried silica gels of the same thickness. Airdried samples show a sharp drop in transmibance a local peak of the absorbance spectrum – just aner 1070nm. The heaKng protocol shins the peak of the absorpKon spectrum towards shorter wavelengths and towards 1070 nm, but the peak becomes less pronounced. Maximum absorpKon of waves with wavelength 1070 nm is achieved at a thickness of 300 μm. The increase in absorpKon efficiency imparted by furnace heaKng decreases with increasing thickness. IncorporaKon of samarium ions Image taken from: hbp :// upload.wikimedia.org/ wikipedia/commons/thumb/ 4/4b/Silica.svg/220px Silica.svg.png with NH 4 OH (Literature) sKrring without NH 4 OH(Ours) sKrring Casting & Gelation: Preparation of Sm 2 O 3 sol: Dry at room temperature for 24 hours. Heated in a furnace at an increase of 5 o C/ min and held at 650 o C for 15 mins before cooling to room temperature. Dry at room temperature for 24 hours. Characterization Both the heated and unheated samples were characterized using a UVVISNIR spectrophotometer (UV3600, Shimadzu) at the near infrared region (900nm – 1200nm). Mica is a silicate mineral chemically inert and stable when exposed to electricity, light, moisture, and extreme temperatures. Optical and chemical properties of mica unlikely to be affected by contact with the silica gel or heating process. white precipitate homogeneous Mechanism FormaKon of silicate Image taken from: The Sol-Gel Preparation of Silica Gels A. M. Buckley and M. Greenblatt Journal of Chemical Education 1994 71 (7), 599 Monday, March 11, 13

Upload: angela-leong

Post on 20-Jan-2017

57 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DSO Poster

RESULTS  AND  DISCUSSION  (CONT’D)

LASER  ABSORBING  MATERIALSLeong  Feng  Ping  Angela1,  Ke  Meicong1,  Yang  Qian  Asarelah1  and  Koh  Yaw  Koon2

1NUS  High  School  of  MathemaKcs  and  Science,  20  ClemenK  Avenue  1  Singapore  1299572DSO  NaKonal  Laboratories,  20  Science  Park  Drive  Singapore  118230

PURPOSEThe  sol-­‐gel  process  has  been  used  to  produce  silica  glass  doped  with  samarium  (Sm3+)  ions  as  the  base  material.  The  Sm3+  ion  shows  great  absorpKon  around  1064  nm  as  the  difference  in  energy  level  between  its  orbitals  corresponds  to  the  energy  of  light  with  a  wavelength  of  1064  nm.  We  aimed  to  determine  the  op8mum  thickness  and  hea8ng  protocol  for  samarium-­‐doped  glass  to  achieve  maximum  absorp8on  efficiency  at  a  wavelength  of  1070nm.

CONCLUSION• HeaKng  increases  absorpKon  efficiency  at  1070  nm  for  all  three  thicknesses.• HeaKng   appears   to   reverse   the   relaKonship   between   thickness   of   the   film   and   absorpKon  efficiency,  such  that  thinner  films  display  higher  absorpKon  efficiencies.

A  thinner  layer  of  silica  gel  could  be  used  to  achieve  higher  laser  absorp8on,  simply    by  hea8ng  during  the  solidifying  process.  This  allows  huge  cost  savings  when  

scaled  up  for  use  in  the  field.  

RESULTS  AND  DISCUSSION

FUTURE  WORK• Verify  the  relaKonship  between  film  thickness  and  absorpKon  efficiency  with  a   larger  range  of  thicknesses,  and  analyse  the  transmibance/absorbance  spectrum  in  greater  detail• Test  a  wider  range  of  hea8ng  protocols,  to  opKmise  heaKng  protocols  for  specific  wavelengths  and  for  other  laser-­‐absorbing  materials• OpKmise   absorpKon   efficiency   by   adjusKng   both   gel   thickness   and   samarium   concentraKon:  electrostaKc   repulsion   exists   between   the   Sm3+   ions   within   the   silica,   thus   the   op8mal  concentra8on  of  samarium   is  the  trade-­‐off  between  the  maximum  absorpKon  density  of  Sm3+  and  minimum  repulsion  between  the  Sm3+  ions.  • Study   the   use   of   samarium-­‐doped   silica   gel   for   the   absorp8on   of   lasers   emiNed   at   other  wavelengths,  as  the  greatest  drop  in  transmibance  occurs  at  1400  .

ACKNOWLEDGEMENTSThis  work  was  supported  by  the  Young  Defence  ScienKsts  Programme  (YDSP),  Ministry  of  Defence,  Singapore.  We  would  like  to  Dr  Koh  Yaw  Koon  from  Defence  Science  OrganisaKon  (DSO),  for  guiding  us  through  the  experiments,  instrucKng  me  in  the  background  knowledge,  and  clarifying  my  doubts,  as  well  as  Mr.  Chiam  Sher-­‐Yi  for  his  guidance  during  the  ediKng  of  the  report,  and  aiding  with  administraKve  details.

*All  images  and  graphs  are  self-­‐taken  and  self-­‐drawn  unless  otherwise  stated.

REFERENCESREFERENCESREFERENCES

1. Fu  Wei.  1997.  Jamming  of  laser-­‐guided  weaponry.  Na;onal  Air  Intelligence  Center  NAIC-­‐ID(RS)T-­‐0590-­‐96.2. VLOC:  Subsidiary  of  II  –  VI  Incorporated.  YAG:  YSrium  Aluminum  Garnet  Laser  Materials.  3. Robert  S.  Afzal,  Anthony  W.  Yu,  John  J.  Zayhowski,  T.  Y.  Fan.  1997.  Single-­‐mode  high-­‐peak-­‐power  passively  Q-­‐

switched  diode-­‐pumped  Nd:  YAG  laser.  Op;cs  LeSers,  Vol.  22,  Issue  17,  pp.  1314-­‐1316  (1997)4. James  V.  Baer.  1980.  Tripled  Nd:  YAG  Pumped  Tm3+  laser  oscillator.  United  States  Patent  4386428  (1983).5. Gang  Qian  and  Zhi  Yuan  Wang.  2010.  Near-­‐Infrared  Organic  Compounds  and  Emerging  Applica;ons.  Chem.  Asian  J.  

2010,  5,  1006  –  1029.6. Wentao  T.  Lu,  Savatore  Savo,  B.  Didier  F.  Casse,  and  Srinivas  Sridhar.  2009.  Slow  microwave  waveguide  made  of  

nega;ve  permeability  metamaterials.  Microwave  and  Op;cal  Technology  LeSers,  Vol.  51,  No.  11,  November  2009

7. Zhi  Yuan  Wang,  Jidong  Zhang,  Xianguo  Wu,  Maria  Birau,  Guomin  Yu,  Hongan  Yu,  Yinghua  Qi,  Pierre  Desjardins,  Xiansheng  Meng,  Jian  Ping  Gao,  Erin  Todd,  Naiheng  Song,  Yaowen  Bai,  Andrew  M.  R.  Beaudin,  and  Gaetan  LeClair.  2004.  Near-­‐infrared  absorbing  organic  materials.  Pure  Appl.  Chem.,  Vol.  76,  Nos.  7–8,  pp.  1435–1443,  2004.

8. American  Dye  Source,  Inc.  2001.  Near  Infrared  Absorber  ADS1065A.  hSp://www.adsdyes.com/products/pdf/nirdyes/ADS1065A_DATA.pdf

9. J.  Yang,  X.  Hu,  X.  Li,  Z.  Liu,  Z.  Liang,  X.  Jiang,  and  J.  Zi,  Phys.  Rev.  B  80,  125103  (2009).10.  Shelby,  R.  A.;  Smith  D.R;  Shultz  S.  (2001).  "Experimental  Verifica;on  of  a  Nega;ve  Index  of  

Refrac;on".  Science  292  (5514):  77–79.  Bibcode2001Sci...292...77S.  doi:10.1126/science.1058847.  PMID  11292865.

11. Kosmas  L.  Tsakmakidis,  Allan  D.  Boardman  and  Ortwin  Hess.  2007.  ‘Trapped  rainbow  storage  of  light  in  metamaterials.  Nature  450,  397-­‐401  (15  November  2007).  doi:10.1038/nature06285

12. Salvatore  Savo,  B.  D.  F.  Casse,  Wentao  Lu,  and  Srinivas  Sridhar.  2011.  Observa;on  of  slow-­‐light  in  a  metamaterials  waveguide  at  microwave  frequencies.  Applied  Physics  LeSers  98,  171907  (2011)

13. W.  T.  Lu,  Y.  J.  Huang  and  S.  Sridhar.  2012.  Slow  light  using  nega;ve  metamaterials.  SPIE  doi:10.1117/12.89309714. E.  E.  Narimanov,  H.  Li,  Yu.  A.  Barnakov,  T.  U.  Tumkur  and  M.  A.  Noginov.  2010.  Darker  than  black:  radia;on-­‐

absorbing  metamaterial.  Applied  Physics  B  100,  215-­‐218  (2010).15. Yanxia  Cui,  Kin  Hung  Fung,  Jun  Xu,  Hyungjin  Ma,  Yi  Jin,  Sailing  He,  and  Nicholas  X.  Fang.  2012.  Ultra-­‐broadband  

Light  Absorp;on  by  a  Sawtooth  Anisotropic  Metamaterial  Slab.  Nano  LeSers  12,  1443  (2012)

INTRODUCTIONThe   ubiquity   of   laser-­‐guided   devices   in   the   military   has   compelled   the   evoluKon   of   laser  concealment  and  laser-­‐jamming  techniques.  Passive  laser-­‐absorbing  materials  can  be  divided  into  organic  materials  and  inorganic  materials,  of  which  organic  materials  are  more  versa8le,  but  are  unstable   under   UV   light   and   involve   complicated   synthesis   methods.   The   inorganic  metamaterial  is  of  a  parKcular  interest  because  it  passively  interferes  with  electromagneKc  (EM)  waves   and   is   able   to   absorb   at   various   wavelengths,   but   much   research   has   focused   on  broadband   absorp8on   and  on   the   paNerning   of   base  materials.   However,   the  most   common  laser  in  military  use  –  the  Nd:YAG  laser  –  is  emibed  at  a  specific  wavelength  of  1064  nm.

EXPERIMENTAL  

RelaKve  transmibance  in  arbituary  unit  (A.U.)  of  samarium-­‐doped  silica  gel    of  different  thickness  under  different  heaKng  protocol

100  μm 200  μm 300  μm

Air-­‐dried 89.426  A.U. 88.818  A.U. 88.301  A.U.

Oven-­‐dried 85.017  A.U. 86.301  A.U. 87.148  A.U.

%  increase  due  to  heaKng

5.186% 2.917% 1.323%

Sm3+

Samarium  ions  integrate  into  the  spaces  within  the  silicate  lamce

Spectrophotometer  Results

(1a) (1b)

RelaKve  transmibance  in  arbituary  unit  (A.U.)  against  wavelength  (nm)  of  samples  of  different  thickness  when  (a)  air-­‐dried  and  (b)  over-­‐dried

RelaKve  transmibance  in  arbituary  unit  (A.U.)  against  wavelength  (nm)  of  air-­‐dried  and  oven-­‐dried  samples  of  different  thickness  (a)  100  μm  (b)  200  μm  (c)  300  μm

(2b)(2a)

(2c)

Absorp8on  efficiency  of  air-­‐dried  samples  increases  with  increasing  thickness

The   thicker   the   silica   gel,   the   longer   the   EM  wave   takes   to   propagate   through   the   gel,  increasing  the   likelihood  of  the  photons  being  absorbed  by  the  electrons  of  the  Sm3+  ions.  

Absorp8on  efficiency  of  over-­‐dried  samples  decreases  with  increasing  thickness

HeaKng   the   silica   sol   increases   the   kineKc  energy   of   Sm3+   ions   and  atoms   of   the   silicate  lamce,  causing  Sm3+  ions  to  break  and  migrate  to   other   locaKons   within   the   lamce   while  forming  new  bonds     HeaKng  may  alter  the  structure  of  the  Sm3+-­‐doped  silica  gel  such  that    its  opKcal  properKes  are  changed.

• At   all   wavelengths,   oven-­‐dried   silica   gels  absorb  a  higher  percentage  of  EM  wave  than  air-­‐dried  silica  gels  of  the  same  thickness.  • Air-­‐dried   samples   show   a   sharp   drop   in  transmibance   –   a   local   peak   of   the  absorbance  spectrum  –  just  aner  1070nm.• The   heaKng   protocol   shins   the   peak   of   the  absorpKon   spectrum   towards   shorter  wavelengths   and   towards   1070   nm,   but   the  peak  becomes  less  pronounced.

• Maximum   absorpKon   of  waves   with   wavelength  1070   nm   is   achieved   at   a  thickness  of  300  μm.• The   increase   in   absorpKon  efficiency   imparted   by  furnace   heaKng   decreases  with  increasing  thickness.

②  IncorporaKon  of  samarium  ions

Image  taken  from:  hbp://upload.wikimedia.org/wikipedia/commons/thumb/4/4b/Silica.svg/220px-­‐Silica.svg.png  

with  NH4OH  (

Literature)

                             sKrri

ngwithout  NH4OH(Ours)                      sKrring

Casting & Gelation:

Preparation of Sm2O3 sol:

Dry  at  room  temperature  for  24  hours.Heated  in  a  furnace  at  an  increase  of  5oC/min  and  held  at  650oC  for  15  mins  before  cooling  to  room  temperature.

Dry  at  room  temperature  for  24  hours.

CharacterizationBoth   the   heated   and   unheated  samples  were  characterized  using  a  UV-­‐VIS-­‐NIR   spectrophotometer  (UV3600,   Shimadzu)   at   the   near  infrared  region  (900nm  –  1200nm).  

Mica is a silicate mineral chemically inert and stable when exposed to electricity, light, moisture, and extreme temperatures.Optical and chemical properties of mica unlikely to be affected by contact with the silica gel or heating process.

white  precipitate

homogeneous  

Mechanism

①FormaKon  of  silicate  

Image  taken  from:  The Sol-Gel Preparation of Silica GelsA. M. Buckley and M. GreenblattJournal of Chemical Education 1994 71 (7), 599

Monday, March 11, 13