dual enantioselectivity: inducing a single chiral ligand to reverse a reaction’s...

45
Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

Upload: loraine-nichols

Post on 04-Jan-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

Dual Enantioselectivity:Inducing a Single Chiral Ligand to

Reverse a Reaction’s Enantioselectivity

James HrovatStahl Research Group

February 15, 2007

Page 2: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

2

Determining Enantioselectivity

Asymmetric ReactionsNecessity of chemistry

Natural Product SynthesisPharmaceutical SynthesisMethodology Studies

Requirements:Substrate GeneralizationReadily Available Chiral SourcesMild Reaction Conditions

N

N

O

O

OHO

OO

N

N

IrinotecanPfizer: Camptosar(CPT-11)

http://www.pfizeroncology.com/products/camptosar.aspx

Page 3: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

3

Reaction Optimizations

EnantioselectivityEnantioselectivityEnantioselectivityEnantioselectivity

SubstrateSubstrateModificationModificationSubstrateSubstrate

ModificationModification

StericsElectronics

Functionality

LigandLigandModificationModification

LigandLigandModificationModification

StericsElectronics

FunctionalitySize

ReactionReactionConditionsConditionsReactionReaction

ConditionsConditions

SolventAdditives

TemperatureMetal Salts

Page 4: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

4

Substrate Modification

StericsMaximize/Minimize Interactions

Electronics Electron rich vs. Electron poor

FunctionalityHydrogen bonding

O NC OTMS

N

TMS

OMe

OTBS

O

N

TMS

OMe OTBS

TMSO CN

"Chiral Catalyst"

"Chiral Catalyst"

Yield: 85%ee: 92%

Yield: 34%ee: 18%

Shibasaki, M.; Hamashima, Y.; Kanai, M. J. Am. Chem. Soc., 2000, 122, 7412-7413Shibasaki, M., et al. J. Am. Chem. Soc. 2001, 123, 9908-9909

Advantages: Customizing the Reaction for

Selectivity

Limitations: Modifying the Substrate is Not

Optimal

Page 5: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

5

Ligand Modification

StericsMaximize/Minimize Interactions

ElectronicsElectron-Rich vs. Electron-Poor

FunctionalityHydrogen BondingChelation Properties

SizeMetallocycle Formation

Advantages:Customizing for Enantioselectivity

Limitations:ExpensiveTime Consuming

Fe

O OH

0.25 %[Rh(cod)Cl]21.3 eq. H2SiPh, Et2O25°C, 15-20 hrs.

0.5% QuantativeYieldee: 91%

NO

Ph

PhPh2P

Uemera, S.; Nishibayashi, Y.; Segawa, K.; Ohe, K. Organometallics 1995, 14, 5486-5487

Page 6: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

6

Reaction Modification

Solvent ChangesTemperature ModificationsAddition of Additives

Non-Chiral Reagents

Inorganic/Organic Bases

Molecular Sieves

Metal SaltsCatalyst Precursors

Advantages:Cost EffectiveImmediate Modifications

Limitations:How Much Screening Is Necessary?Is It Enough??

Page 7: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

7

Drastic Effect by Minor Changes

O

NPh

Ph OH

OH

''Fresh'' Condition:LiAlH4 (1.56 eq.)Et2O, - 65°C, 12 h

3.6 eq.

82%yield100%conversion68%ee

Mosher, H.S.; Yamaguchi, S. J. Org. Chem. 1973, 38, 1870-1877

O

NPh

Ph OH

OH

"Aged"Condition:LiAlH4 (1.56 eq.)Et2O, 20°C, 24 h

3.6 eq.

40%yield40%Conversion66%ee

“Aged”: Refluxing for 10 minutes and standing for 24 hours

Page 8: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

8

Enantioselectivity Focus

EnantioselectivityEnantioselectivityEnantioselectivityEnantioselectivity

SubstrateSubstrateModificationModificationSubstrateSubstrate

ModificationModification

StericsElectronics

Functionality

LigandLigandModificationModification

LigandLigandModificationModification

StericsElectronics

FunctionalitySize

ReactionReactionConditionsConditionsReactionReaction

ConditionsConditions

SolventAdditives

TemperatureMetal Salts

Page 9: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

9

Reaction Scope

Cycloadditions:[4+2] Diels-Alder[4+2] Hetero Diels-Alder1,3-Dipolar Cycloaddition[4+1] Cycloaddition

Michael AdditionsAldol ReactionsEne ReactionsHydrogenation of AlkenesHydroformylation

Alkylation of AldehydesAllylationsHeck CouplingSuzuki CouplingElimination Reactions SilylationsHydrocyanationHenry Reactions

Sibi, M.; Liu, M. Curr. Org. Chem., 2001, 5, 719-755Zanoni, G.; Frnzini, M.; Giannini, E.; Castronovo, F.; Vidari, G. Chem. Soc. Rev. 2003, 3, 115-129Kim, Y.H. Acc. Chem. Res. 2001, 37, 2922-2959

Page 10: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

10

Today’s Scope

[4+2] Diels-AlderYtterbium Salt and BINOL

1,3-Dipolar Cycloadditions of NitronesMagnesium Salt and Phenyl BOX

Carbonyl TransformationsZn-Ynone Aldol

Zn-Alkyl Addition

Synthesis of (20S)-Camptothein RetronGlucose Derived LigandReversal of Original Optimized Enantioselectivity

Page 11: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

11Kobayashi, S.; Hachiya, I.; Ishitani, H.; Araki, M. Tetrahedron Lett. 1993, 34, 4535-4538Kobayashi, S.; Ishintani, H.; J. Am. Chem. Soc. 1994, 116, 4083-4084

Ln Catalyzed Diels-Alder

M(OTf)3 Lu Yb Tm Er

Yield (%)

60 77 46 24

endo (%)

89 89 86 83

ee (%)93 93 75 69

NO

O O

20 mol%[M-BINOL]4Å, CH2Cl2,0°C, 20 h

O NO

O

O NOO

Si Product Re Product

Page 12: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

12Kobayashi, S.; Hachiya, I.; Ishitani, H.; Araki, M. Tetrahedron Lett. 1993, 34, 4535-4538Kobayashi, S.; Ishintani, H.; J. Am. Chem. Soc. 1994, 116, 4083-4084

Ln Catalyzed Diels-Alder

M(OTf)3 Lu Yb Tm Er

Yield (%) 30 88 72 59

endo (%) 89 89 92 91

ee (%) 51 70 74 74

NO

O O

20 mol%[M-BINOL]4Å, CH2Cl2,0°C, 20 h

O NO

O

O NOO

Si Product Re Product

Page 13: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

13

Additive binds the Si site leaving only the Re site available for substrate binding

Si site

Kobayashi, S.; Hachiya, I.; Ishitani, H.; Araki, M. Tetrahedron Lett. 1993, 34, 4535-4538Kobayashi, S.; Ishintani, H.; J. Am. Chem. Soc. 1994, 116, 4083-4084

Re site

OOH

H

Yb(OTf)3

N

N

OO

Ph

OOH

Ph

Page 14: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

14

Recalling the Modifications

Additive effectsTertiary amine was necessary for good enantioselectivity Second additive was able to block more reactive siteReaction was forced to less reactive site of the catalyst

What did not change:SubstrateReagentMetal saltSolventTemperature

Page 15: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

15

1,3-Dipolar Cycloadditions

O N

O ONO

H

N

O

N

O

Ph Ph NO

Z

NO

Z

Si site Re Site

10-11%

10 mol%MgX2, CH2Cl21.5 eq. Nitrone

Catalyst

Temp (°C)

Time (h)

Yield (%)

endo/exo

ee (%)

Re/Si

Mg(ClO4)

2 -15 15 >98 95:5 48 Re

Mg(OTf)2 -15 20 >98 97:3 86 Re

MgI2 -78 to 20 20 >95 100:0 48 SiDesimoni, G.; Gaita, G.; Mortoni, A., Righetti, P. Tetrahedron Lett. 1999, 40, 2001-2004Jørgensen, K.A.; Gothelf, K.V.; Hazell, R.G. J. Org. Chem. 1998, 63, 5483-5488

Page 16: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

16

Catalyst

Additive Temp (°C)

Time (h)

Yield

(%)

endo/exo

ee (%)(endo)

Re/Si

Mg(ClO4)

2

4Å M.S. -15 15 >98 70:30 70 Si

Mg(ClO4)

2

-15 15 >98 95:5 48 Re

Mg(ClO4)

2

H2O (2 eq.)

-15 48 >98 96:4 45 Re

Mg(OTf)2 -15 20 >98 97:3 86 Re

MgI2 4Å M.S. -78 to 20 20 >95 73:27 82 Re

MgI2 -78 to 20 20 >95 100:0 48 Si

MgI2 H2O

(40%)-78 to 20 20 >95 90:10 36 Si

MgI2 H2O

(18%) 4Å M.S.

-78 to 20 20 >95 95:5 36 Re

Desimoni, G.; Gaita, G.; Mortoni, A., Righetti, P. Tetrahedron Lett. 1999, 40, 2001-2004Jørgensen, K.A.; Gothelf, K.V.; Hazell, R.G. J. Org. Chem. 1998, 63, 5483-5488

O N

O ONO

H

N

O

N

O

Ph Ph NO

Z

NO

Z

Si site Re Site

10-11%

10 mol%MgX2, CH2Cl21.5 eq. Nitrone

Page 17: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

17

DRe face

BSi face

CRe face

O N

O O

Ligand

Dark Blue: Oxizolidinone Green: α,β-Unsaturated Purple: Ligand Top Face: ReBottom Face: Si

Desimoni, G.; Gaita, G.; Mortoni, A., Righetti, P. Tetrahedron Lett. 1999, 40, 2001-2004Jørgensen, K.A.; Gothelf, K.V.; Hazell, R.G. J. Org. Chem. 1998, 63, 5483-5488Jørgensen, K.A.; Gothelf, K.V.; Hazell, R.G. J. Org. Chem. 1996, 61, 346-355

ASi face

endo-Re: calculated as the lowest TS

Page 18: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

18

Mapping Out Selectivity

O N

O ON

O

H

MgI2/MSGoodee

NOPh

PhO

XN

OPh

PhO

X

Mg(OTf)2Goodee

MgI2Poor ee

Mg(ClO4)2/MSModerateee

(3S,4R) (3R,4S)

Desimoni, G.; Gaita, G.; Mortoni, A., Righetti, P. Tetrahedron Lett. 1999, 40, 2001-2004Jørgensen, K.A.; Gothelf, K.V.; Hazell, R.G. J. Org. Chem. 1998, 63, 5483-5488Ohta, T. et al. J. Organomet. Chem. 2000, 603, 6-12Jørgensen, K.A; Gothelf, K.V. Chem. Commun. 2000, 1449-1458

Similar Effects have been seen in Cu2+, Zn2+, and Sc3+ catalyzed reactions

Molecular Sieves are more than just drying reagents

Page 19: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

19

Recalling the Modifications

Counter ion of metal salt has a strong influence on enantioselectivity

Coordination influence geometryMolecular sieves influence enantioselectivityBinding at the surface forces geometric constraints on the catalystSubstrate binding is affected by cis binding of molecular sieves

Multiple ways to the same product enantiomer

What did not change:SubstrateReagentSolventChiral LigandMetal

Page 20: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

20

EtO OEt

O O

SiEt3

(R)EtO OEt

OH O

SiEt3

OH NN

HO PhOHPhPh Ph

5 mol%Zn(Et)24Å, THF

10%

Trost, B.M.; Fettes, A.; Shireman, B.T.; J. Am. Chem. Soc. 2004, 126, 2660-2661

Temp. (°C)

Time (h)Yield (%)

ee (%)

0 7.5 63 84

25 2.5 65 99

Ynone Aldol

Page 21: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

21

SolventTemp. (°C)

Time (h)Yield (%)

ee (%)

R/S

Toluene 0 4 63 44 R

THF 0 7.25 61 83 R

Toluene -25 4 27 72 S

THF -25 2 - 69 S

Trost, B.M.; Fettes, A.; Shireman, B. J. Am. Chem. Soc. 2004, 126, 2660-2661Trost, B.M.; Weiss, A., Wangelin, A. J. Am. Chem. Soc. 2006, 128, 8-9

Binding Preference

Proposed Active Catalyst: Alkynylation of Aryl Aldehydes

NN

OPh

OPhPh Ph

O

Zn Zn

ZnR

R

RO

1R

H

O

R1 HNN

OPh

OPhPh Ph

O

Zn Zn

ZnR

R

R

Re-site leads to major product

Page 22: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

22

Rxn Cond.:Standard Reaction Conditions5 mol% [Zn]2.5 mol% Chiral Ligand

Modified Rxn. Cond.:5 mol% [Zn]2.5 mol% Chiral Ligand,2.5 mol% Aldol Product

0 0.75 1.25 3 6 10.75

-80

-40

0

40

80

ee (

%)

Time (h)

0

20

40

60

80

100

0 2 4 6 8 10 12Time (h)

Yie

ld (

%)

Trost, B.M.; Fettes, A.; Shireman, B. J. Am. Chem. Soc. 2004, 126, 2660-2661

Probing the Reaction

Unmodified Rxn

Modified Rxn

Page 23: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

23

Regeneration of Catalyst

NN

OPhO

PhPh Ph

O

Zn Zn

ZnO

R

RR1RH

NN

OPhO

PhPh Ph

O

Zn Zn

ZnR

R

RZnR2

Zn(R)(Prod)

R=Enol

Regeneration of initial catalyst does not occurNew insitu catalyst is generated

Incorporates alkoxide product into structure

Trost, B.M.; Fettes, A.; Shireman, B. J. Am. Chem. Soc. 2004, 126, 2660-2661Trost, B.M.; Weiss, A., Wangelin, A. J. Am. Chem. Soc. 2006, 128, 8-9

Page 24: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

24

Recalling the Modifications

Product is incorporated into new insitu catalyst

Temperature EffectRaising temperature increases eeLowering temperature reversed ee

Solvent Optimization

What did not change:Catalyst PrecursorChiral Ligand SubstrateReagent

Page 25: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

25

N

N

O

tBu

N

N

(R)

OH

tBu

Ph

MeHO

NMe2

HO

NBu2

Zn(iPr)2 (2 eq.),

DMNE (20%), hexanes,0°C, 16 hrs.

N

N

O

tBu

N

N

(S)

OH

tBu

Zn(iPr)2 (2 eq.),

DMNE (0.5%), DBAE (20%)hexanes, 0°C, 16 hrs.

Yield=98%ee =98.8%

Yield=95%ee =94.8%

(1S,2R)-N,N-dimethylnorephedrine[DMNE]

N,N-dibutylaminoethanol[DBAE]

Alkyl Addition to Aldehydes

Soai, K.; Lutz, F.; Igarashi, T.; Kawasaki, T. J. Am. Chem. Soc. 2005, 127, 12206-12207

Page 26: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

26

N

N

OZniPr

tBu

Stage1 Stage2Zn(iPr)2

Ph

MeHO

NMe2

HO

NBu2

Aldehyde AldehydeZn(iPr)2

Ph

MeiPrZnO

NMe2

iPrZnO

NBu2

What is the role of the achiral ligand?Does the product have a role in the system?

Two stage system to measure source of enatioselectivity of the reactionStage 1: Measure the selectivity of the initial catalystStage 2: Probe catalyst components

Stage

Zn(iPr)4

(mmol)

Aldehyde

(mmol)

Ligand

(mmol)

1 1 .5 0.1

2 1.25 .62 -

Determining the Catalyst

Soai, K.; Lutz, F.; Igarashi, T.; Kawasaki, T. J. Am. Chem. Soc. 2005, 127, 12206-12207

Page 27: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

27

Regeneration of Catalyst

NN

OPhO

PhPh Ph

O

Zn Zn

ZnO

R

RR1RH

NN

OPhO

PhPh Ph

O

Zn Zn

ZnR

R

RZnR2

Zn(R)(Prod)

R=Enol

Regeneration of initial catalyst does not occurNew insitu catalyst is generated

Incorporates alkoxide product into structure

Trost, B.M.; Fettes, A.; Shireman, B. J. Am. Chem. Soc. 2004, 126, 2660-2661Trost, B.M.; Weiss, A., Wangelin, A. J. Am. Chem. Soc. 2006, 128, 8-9

Page 28: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

28

20 18 16 14 12 10 8 6 2

-100

-50

0

50

100

Ob

serv

ed

ee

Chiral Ligand (mol%)Achiral LIgand (20%-Chiral%)

Stage 1Stage 2

Stage 1 Catalyst: Zn(OiPr)4, Chiral Ligand, Achiral LigandStage 2 Catalyst: Zn(OiPr)4, Chiral Ligand, Achiral Ligand, Aldol Product

Ligand Ratio Effects

Soai, K.; Lutz, F.; Igarashi, T.; Kawasaki, T. J. Am. Chem. Soc. 2005, 127, 12206-12207

Page 29: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

29Soai, K.; Lutz, F.; Igarashi, T.; Kawasaki, T. J. Am. Chem. Soc. 2005, 127, 12206-12207Blackmond, D.G.; Buono, F.G. J. Am. Chem. Soc., 2003 125, 8978-8979Blackmond, D.G.; Buono, F.G., Iwamura, H. Angew. Chem. Int. Ed. 2003, 43, 2900-2103

Simplified Catalytic Structures

Structure of insitu catalyst is currently unknown

[Zn]2LACLC

Substrate[Zn] [Zn]3LACLC(Sub)

IntialActiveCatalyst

CatalystRestingState

[Zn]x(LAC)y(LC)z(Prod)x-y-z

LAC: Achiral LigandLC: Chiral Ligand

AutoCatalyst

Auto Catalytic Nature of the System takes over enantioselectivity

Page 30: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

30

Recalling the Modifications

Reactive insitu catalyst is generated Product incorporation into new catalyst

Achiral ligand reverses intial enantioselectivityAt a specific ratio of chiral:achiral ligand, selectivity reverses

What did not change:SubstrateCatalyst PrecursorChiral LigandSolventTemperature

Soai, K. et. al. J. Am. Chem. Soc. 1998, 120, 12157-12158

Enantioselectivity of 38-85% ee has been observed with 1 mol% chiral initiator (0.1% ee)

Page 31: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

31

Cyanosilylation of Ketones

O NC OTMS

HO

O

O

BnO

Ph2(O)P

10 mol%CatalystCH2Cl2

10%

Shibasaki, M.; Hamashima, Y.; Kanai, M. J. Am. Chem. Soc. 2000, 122, 7412-7413

Catalyst

Temp. (°C)

Temp (h)Yield (%)

ee (%)

R/S

Et2AlCl 20 48 0 - -

Yb(OiPr)3 20 2 90 18 S

Zr(OiBu)4 20 36 52 14 R

Ti(OiPr)4 20 48 78 35 R

Ti(OiPr)4 -20 36 44 73 R

Page 32: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

32

Solvent Screen

O NC OTMS10 mol%Ti(OiPr)4

HO

O

O

BnO

Ph2(O)P

10%

SolventConc. (M)

Temp. (°C)

Time (h)Yield (%)

ee (%)

CH2Cl2 0.65 -20 36 44 73

Toluene 0.65 -20 36 40 70

THF 0.65 -20 36 58 83

THF 3 -30 36 85 92

Shibasaki, M.; Hamashima, Y.; Kanai, M. J. Am. Chem. Soc. 2000, 122, 7412-7413

Page 33: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

33

Applying Methodology

Main Goal: Synthetic Application of Methodology

Camptothecin: Potent Antitumor AgentIsolated from Camptotheca acuminata

Wall and Wani (1966)

Pfizer: Camptosar 1st Quarter 2006: $212 million (worldwide)

(20R)-Camptothecin10-200 Times Less Active

N

N

O

O

OHO

N

N

O

O

OHO

OO

N

N

(20S)-Camptothecin

IrinotecanPfitzer: Camptosar (CPT-11)

Wall, M.E.; Wani, W.C.; Natschke, S.M.; Nicholas, A.W. J. Med. Chem. 1996, 29, 1553-1555http://www.pfizer.com/pfizer/download/news/2006q1_earnfin4.pdf

Page 34: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

34

N

N

O

O

OHO

N

X

O

O

OHO

HN

X

O

O

(20S)-camptothecin

CN

OHO

N

R

OMe

ON

R

OMe

Curran, D.P.; Josien, H.; Ko, S.B.; Bom, D. Chem. Eur. J. 1998, 4, 67-83

(20S)-Camptothecin Retroanalysis

Page 35: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

35

1) K3Fe(CN)6 (3 eq.), K2CO3 (3 eq.)CH3SO2NH2 (2 eq.), (DHQD)2- PYR (2.5 mol%)OsO4 (0.5 mol%), 1:1 tBuOH/H2O, 0ºC, 12 hrs.

2) I2 (9 eq.), CaCO3 (2 eq.),10:1 MeOH/H2O, 32 hrs., 20ºC

Yield: 85%ee: 94%

N

N

O

O

OHO

N

X

O

O

OHO

HN

TMS

O

O

(20S)-camptothecin

CN

OHO

N

TMS

OMe

ON

R

OMe

Curran, D.P.; Josien, H.; Ko, S.B.; Bom, D. Chem. Eur. J. 1998, 4, 67-83

(20S)-Camptothecin Retroanalysis

Page 36: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

36

HN

X

O

O

OHO

N

R

OMe

O

Curran Retrons:

N

X

OMe

OTBS

O

N

X

OMe

OTBSCN

TMSO

N

X

OMe

O

HOO

Shibasaki Retrons:

Curran, D.P.; Josien, H.; Ko, S.B.; Bom, D. Chem. Eur. J. 1998, 4, 67-83Shibasaki, M. et al. J. Am. Chem. Soc. 2001, 123, 9908-9909

Comparing Retrons

Page 37: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

37

OOAc

OAcAcO

OPh2(O)P

OHO

HO

11StepsOverall Yield: 44%

$2.70/g.

Problems:Reaction Optimized for

(R)-Cyanosilylation ProductLigand Synthesis Uses

D-Glucose Precursor L-Glucose is Needed

Ligand SynthesisHigh-Yielding ReactionsStraight-Forward

A Few Hurdles

O NCOTMS

N

TMS

OMe

OTBS

O

N

TMS

OMe

OTBS

NC OTMS

(R)

(S)

D-Glucose: $0.16/g.L-Glucose: $62.50/g

Page 38: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

38

OOH

OHHO

OH

OH

OPh2(O)P

OHO

HO

14Steps

Problems:Reaction Optimized For the

(R)-Cyanosilylation ProductLigand Synthesis Uses

D-Glucose Precursor L-Glucose is Needed

Ligand SynthesisHigh-Yielding ReactionsStraight-Forward

A Few Hurdles

O NCOTMS

N

TMS

OMe

OTBS

O

N

TMS

OMe

OTBS

NC OTMS

(R)

(S)

D-Glucose: $0.16/g.L-Glucose: $62.50/g

Page 39: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

39Shibasaki, M. et al. J. Am. Chem. Soc. 2001, 123, 9908-9909Shibasaki, M.; Hamashima, Y.; Kanai, M. J. Am. Chem. Soc. 2000, 122, 7412-7413

O NCOTMS

HO

O

O

BnO

Ph2(O)P

xmol%Ti(OiPr)4

Reversing Selectivity

MetalSolve

ntTemp (°C)

Ligand/Metal Ratio

Time (h)

Yield (%)

ee (%)

R/S

Ti(OiPr)4 (10%) THF -30 1:1 36 85 92 R

Yb(OiPr)3 (10%) CH2Cl2 20 1:1 2 90 18 S

Sm(OiPr)3 (5%) THF -40 1.8:1 2 85 82 S

Gd(OiPr)3 (5%) THF -40 1.8:1 2 - 89 S

Gd(OiPr)3 (5%) THF -40 2:1 2 92 92 S

Page 40: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

40

Metal Solvent

Temp (°C)

Ligand/Metal Ratio

Time (h)

Yield (%)

ee (%)

R/S

Ti(OiPr)4

(10%)THF -30 1:1 144 34 18 R

Sm(OiPr)3

(5%)THF -40 1:1 - - 20 S

Sm(OiPr)3

(5%)THF -40 1.8:1 24 92 72 S

Sm(OiPr)3

(5%)MeCN -40 1.8:1 18 98 84 S

N

TMS

OMe

OTBS

O

N

TMS

OMe

OTBSCN

TMSO

Shibasaki, M. et al. J. Am. Chem. Soc. 2001, 123, 9908-9909

Switching Enantioselectivity

Page 41: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

41

Retron Synthesis

Shibasaki, M. et al. J. Am. Chem. Soc. 2001, 123, 9908-9909Curran, D.P.; Josien, H.; Ko, S.B.; Bom, D. Chem. Eur. J. 1998, 4, 67-83

N

TMS I

OMe

OR

N

TMS I

OMe

OR'

HN

I

O

O

O

HN

I

O

O

O

Curran's Synthesis:

Shibasaki's Sythesis:

5 StepsYield: 13%ee: 94%

RecoveredS.M.:Yield: 36%ee: 94%

4StepsYield: 60%ee: 84%

Recrystallization:Yield: 30%ee: >99%

R=Crotyl

R' =TBS

HN

X

O

O

OHO

N

R

OMe

O

Page 42: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

42

Recalling the Modifications

Variation of metal salt [Ti] and [Sm] have different mechanisms for cyano deliveryReverses enantioselectivity

Needed new optimizations for different mechanismNew metal to ligand ratio Solvent variationTemperature variations

What did not change:SubstrateReagentChiral Ligand

Page 43: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

43

Overview

ReversingEnantioselectivity

Blocking Reactive SiteGeometric ConstraintsGeneration of New Catalytic Complex

Decrease Temp:Increase ee

Increase Temp:Increase ee

Changing of Mechanism

Counter Ion Effects

Additive Effects

Variation of Metal Salt

Reaction Parameters

Page 44: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

44

Why it matters

Optimization for all asymmetric reactionsFocusing on reaction conditions instead of ligand and substrate

Reaction characteristicsAutocatalysisMechanistic pathway

Expands the scope of a chiral ligandLong ligand synthesisExpensive starting materialsCommercial availability of chiral ligands

Page 45: Dual Enantioselectivity: Inducing a Single Chiral Ligand to Reverse a Reaction’s Enantioselectivity James Hrovat Stahl Research Group February 15, 2007

45

Practice Talk Attendees:

Jamie EllisDr. Tetsuya HamadaDr. Justin HoerterLauren Huffman Megan Jacobson Amanda King

Acknowledgements:

Shannon Stahl

Stahl Group

Akiko K Hrovat

Dr. Vasily KotovDr. Guosheng LiuDavid MichaelisBrian PoppMichelle RogersChris Scarborough

Nickeisha Stephenson

Xuan YeLani McCartneyJoel BroussardEmily Blamer