dualities and topological strings...dualities and topological strings strings 2006, beijing - rd, c....

49
Dualities and Topological Strings Strings 2006, Beijing - RD, C. Vafa, E.Verlinde, hep-th/0602087 - work in progress w/ C. Vafa & C. Beasley, L. Hollands Robbert Dijkgraaf University of Amsterdam

Upload: others

Post on 17-Feb-2021

18 views

Category:

Documents


0 download

TRANSCRIPT

  • Dualities andTopological Strings

    Strings 2006, Beijing

    - RD, C. Vafa, E.Verlinde, hep-th/0602087 - work in progress w/ C. Vafa & C. Beasley, L. Hollands

    Robbert DijkgraafUniversity of Amsterdam

  • Topological Strings

    • Toy model (cf topology versus geometry)

    • Exact BPS sector of superstrings• Mathematical experiments to test and

    develop physical intuition

  • Exact Effective Actions

    4CY × 。

    4 4 2 ( ) gg gravd x d F t Wθ∫F-terms for Weyl muliplet in

    4 dim supergravity action

    CY

    top string partition function

    2 2

    0exp ( )gtop g

    gZ F tλ −

    = ∑

    s gravg Fλ =

  • A-model: Gromov-Witten Invariants

    ,( ) g ddt

    gd

    F t GW e−= ∑Exact instanton sum 2 ( , )d H X∈ 「

    # maps∈、genus g

  • M-theory duality

  • Gopakumar-Vafa invariantsAt strong coupling one can integrate out(light) electric charges D0-D2 to obtain theeffective action

    gs →∞

    charges

    ( , ) log det QQ

    F tλ Δ∑:

    3 1CY S time× × ×。

    M-theory limit

    gs

    virtual loopsof M2 branes

  • 5d Black Holes in M-theory4CY time× ×。

    Transversal rotationsSO(4) ≡ SU(2)L × SU(2)R

    M2-branes with charge

    Q ∈ H2(X,Z)M2M2

    Internal spin quantum numbers

    (mL,mR)

  • BPS degeneracies

    M2

    Index of susy ground states (GV-inv)

    NmRQ =XmL

    (−1)mLNmL,mRQ

    4d Quantum Hall system:wave functions lowest Landau level

    Ψ(z1, z2) =Xn1,n2

    an1,n2zn11 z

    n22

    CY

    4 2≅。 」Orbital angular momentum

    (n1, n2)self-dual flux

    rotation

    space

  • GV Partition function

    Gas of 5d charged & spinning black holes

    Z(λ, t) =Yn1,n2Q,m

    ³1− eλ(n1+n2+m)+tQ

    ´−NmQ5d entropy

    NmQ ∼pQ3 −m2

  • 6+1 dim SUSY Gauge Theory

    Witten index counts D-brane bound states

    Z = Tr (−1)F e−βH

    Induced charges: non-trivial gauge bundle

    (P,Q) ≈ ch∗(E)Reduction to moduli space of vacua

    Z ∼ Euler(ME)

  • Donaldson-Thomas InvariantsSingle D6: U(1) gauge theory + singularities

    q = D2 = ch2 ∼ TrF 2

    instanton strings

    k = D0 = ch3 ∼ TrF 3

    Z(λ, t) =Xk,q

    DT (k, q)ekλ+qt

  • Lift to M-theoryD6 → Taub-NUT geometry

    4。

    SO(4)

    angular momentum

    ds2TN = R2

    ·1

    V(dχ+ ~A · d~x)2 + V d~x2

    ¸

    3 1S×。U(1)× SO(3)

    Kaluza-Klein momentum

    [Gaiotto, Strominger,Yin]

  • Bound states with D0-D2

    spinning M2-branes

    R

    q =Xi

    Qi

    k =Xi

    (ni +mi)

    Gauge theory quantum numbers

  • 4 dim limit:

    Bound state of D6-D2

    R→ 0

    3。

    Z(λ, t) =Xk,q

    DT (k, q)ekλ+qt

    Donaldson-Thomas Invariants

  • 5 dim limit:

    4。

    R→∞

    Free gas of M2-branes

    Gopakumar-Vafa Invariants

    Z(λ, t) =Yn1,n2Q,m

    ³1− eλ(n1+n2+m)+tQ

    ´−NmQ

  • Topological String TrialityPeturbative IIA strings

    Gromov-Witten

    M2-branesGopakumar-Vafa

    D2-branesDonaldson-Thomas

    stron

    g-weak 9-11 flip

    Taub-NUT

  • Universal TopologicalWave Function?

  • D-brane charge lattice (B-model)

    3( , )

    X

    H X

    a b∧∫」

    symplecticvector space

    H3(X,Z)

  • Period Map & Quantization

    3( , )

    X

    H X

    a b∧∫」

    moduli space of CY

    Lagrangian cone L=graph (dF0)semi-classical state ψ ~ exp F0

    L

    symplecticvector space

    hol 3-form dz1 dz2 dz3

    Ω

  • Top String Partition Function = Wave Function

    2 2exp ( ), gtop gg

    Z F tλ λ−= Ψ = =∑ h

    Transforms as a wave function underSp(2n,Z) change of canonical basis (A,B)

  • Wave Function of String TheoryCompactify on a 9-space

    X × time

    Ψ ∈ HX

    Flux/charge/brane sectors

    HX =MQ

    HQX

  • Topology Change

    Finite energy transitions

    X → X 0

    Ψ ∈ H

    Universal wave function, components on all geometries

  • Baby UniversesDisconnected spaces

    X → X1 +X2Second quantization

    H → Sym∗H

  • Hawking-Hartle Wave FunctionSum over bounding geometries

    X = ∂B

    Include singularities (branes, black holes)

    Ψ =XB

    |Bi

  • “Entropic Principle”Natural probability density on moduli space of string compactifications

    eS = |Ψ|2

    Depends on massless & massive d.o.f.

    peaked aroundmoduli space

  • string theory on the near horizon geometry of the

    black hole

    AdS/CFT duality

    22

    3AdS S CY× ×

    supersymmetricgauge theory on

    the brane

    superconformalquantum mechanics

  • Hawking-Hartle Wave Function[OSV, Ooguri,E.Verlinde,Vafa]

    2

    BH topZ ψ=

    Euclideantime

    22

    3AdS S CY× ×

    topψ topψ

  • M2

    CY

    Entropic principleM-theory on CY + membrane wrapped around

    Entropy

    F (t) =

    ZX

    1

    6t3S(Q) = −F (t) +Q · t

    If b2(X)=1

    Prefers small d (d=5 for Quintic)

    F (t) =d

    6t3 S ∼ Q

    3/2

    d1/2

    Q ∈ H2(X,Z)

  • Supersymmetry breaking

    Non-susy boundary conditions

    Z(β) = Tr e−βH β

    Positivity of Hβ < β0 ⇒ Z(β) > Z(β0)

    Ground states

    Prefers symmetric CY’s (accidental zero-modes)

    Z(∞) = dimH0 = #harmonic forms≥ Euler

  • Space of AllCalabi-Yau’s?

  • cf Space of Riemann Surface/CFTs1. Deligne-Mumford compactification Mg

    g g1 g2

    • boundary contains lower genus surfaces

    • factorization: local operators in CFT

    O1 O2

  • 2. Combinatorical approach

    • closed strings: operator product expansion

    O1

    O2O1 · O2

    • open strings: matrix models

  • 1. Factorization

  • Topology of Calabi-Yau spaces

    Diffeomorphism type of X is completely fixed (in case of zero torsion) by b3(X) and b2(X) plus invariantsZ

    X

    1

    6x3, x ∈ H2(X,Z)Z

    X

    x ∧ c2 X

  • Decomposition

    =

    X0X Σg

    X = X0#Σg

    b3 = 0 b2 = 0

    Core

  • Non-Kähler CY are unique

    Σg

    Σg = #g S3 × S3

    Moduli space of complex structures

    dimMg = g − 1

  • Miles Reid’s Fantasy:“There is only one CY space”

    Mg

    b2 = 0

    All CY connected through conifoldtransitions S3 → S2

    b2 = 1Kähler CYs

  • 2. Combinatorics

  • CY

    3S

    3T

    SYZ: fibrations of CY by special Lagr T3

    network ofsingularities

    S1 shrinks

    6d Gauge Theory

    3d Gauge Theory

  • CY 3M

    Potential Φ(u) satisfies Monge-Ampère equation

    ds2 = gij(u)duiduj , gij(u) = ∂i∂jΦ(u),

    det ∂i∂jΦ = 1.

    Limit Vol(T3) → 0, integral affine manifold

    R3 o SL(3,Z)

    Large complex structure

  • 3。

    Stringy cosmic stringu1, u2

    ds2 =1

    τ2|du2 − τdu1|2 + (du3)2

    τ(z) ∼ 12πlog z + · · ·

    u1 = Re(z), u2 = Re(

    Z zτ(w)dw),

    u3

  • Monodromy in SL(2,Z)u1, u2

    u3

    1 1

    2 2

    1 0

    1 1u uu u⎛ ⎞ ⎛ ⎞⎛ ⎞

    →⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

    S1 shrinks

  • 3。

    Two Vertices

    + -

    dualMirror

    Symmetrytopological vertex local Riemann surface

    3。

  • The Quintic [Wei-Dong Ruan]

    3 4S B= ∂ 4 4B ≅ Δ4-simplex

  • The Quintic

    glue+ -

    --- - -

    - - -- - - - -

    -

    ++

    ++

    + + + + ++

    ++

    ++

  • OSV: Large N 3d Susy Gauge Theory

    • in IR dominated by CS term (after deformation)• Wilson lines carry adjoint fields• 3d top field theory realization?

    3S

  • 24 Wilson loops

    2 2 13 K T S S× → ×

    ... 2S

    Ztop =1

    η(t)24

  • Universal Moduli Space of CYs?

  • Topological Strings

    • Compute BPS black hole degeneracies(gauge-gravity dualities)

    • Interesting probability distribution onthe moduli space of vacua

    • Universal Calabi-Yau wave function?• Combinatorical models?• Many more surprises...