dwarf spheroidal galaxies and the physical properties of dark ......• dwarf spheroidal galaxies...

16
Dwarf spheroidal galaxies and the physical properties of dark matter Mark Wilkinson University of Leicester

Upload: others

Post on 31-Mar-2021

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dwarf spheroidal galaxies and the physical properties of dark ......• Dwarf spheroidal galaxies are valuable laboratories for testing the properties of dark matter • No kinematic

Dwarf spheroidal galaxies and the physical

properties of dark matter

Mark Wilkinson

University of Leicester

Page 2: Dwarf spheroidal galaxies and the physical properties of dark ......• Dwarf spheroidal galaxies are valuable laboratories for testing the properties of dark matter • No kinematic

Gerry Gilmore (Cambridge) Jan Kleyna (Hawaii)Andreas Koch (UCLA) Wyn Evans (Cambridge)Eva Grebel (Heidelberg)Rosemary Wyse (JHU)Justin Read (Zurich)Vasily Belokurov (Cambridge)Dan Zucker (Cambridge)

Collaborators

Page 3: Dwarf spheroidal galaxies and the physical properties of dark ......• Dwarf spheroidal galaxies are valuable laboratories for testing the properties of dark matter • No kinematic

Local Group satellites

Grebel (1999)

Page 4: Dwarf spheroidal galaxies and the physical properties of dark ......• Dwarf spheroidal galaxies are valuable laboratories for testing the properties of dark matter • No kinematic

Satellites and dark matter

Moore

Hot Warm Cold

Page 5: Dwarf spheroidal galaxies and the physical properties of dark ......• Dwarf spheroidal galaxies are valuable laboratories for testing the properties of dark matter • No kinematic

• Low luminosity, gas-poor satellites of Milky Way and M31

• No well-defined tidal radii

• Individual stellar velocities measurable with ≥ 4m telescopes

• Core radii

• Inferred mass-to-light ratios in range

Dwarf spheroidal galaxies

Odenkirchen et al. (2001)

L = 3× 104L! − 2× 107L!

σ0 ∼ 7− 12 km s−1

r0 ≈ 130− 500 pc

3− 300 M!/L!

Page 6: Dwarf spheroidal galaxies and the physical properties of dark ......• Dwarf spheroidal galaxies are valuable laboratories for testing the properties of dark matter • No kinematic

Velocity dispersion profilesDraco Ursa Minor Sextans

0 2 4

Carina

0 2 4

Leo I

0 2 4

Leo II

0 5 10 15

Omega Centauri

0 5 10 15

Mass follows light

Gilmore et al. (2007)

Page 7: Dwarf spheroidal galaxies and the physical properties of dark ......• Dwarf spheroidal galaxies are valuable laboratories for testing the properties of dark matter • No kinematic

Velocity dispersion profiles II

Walker et al. (2007)

dSph dispersion profiles generally remain flat to large radii

Page 8: Dwarf spheroidal galaxies and the physical properties of dark ......• Dwarf spheroidal galaxies are valuable laboratories for testing the properties of dark matter • No kinematic

Are dSphs in equillibrium?

!"#

!$#

%##

%!#

&'())*+,)-!./

!.0!.#!0#0.#.0

!$#

!$0

!1#

!10

%##

2&'(3))*+,)-!./

45678)59:-)85;:5<);:-=5>(?))*58(,:>/

@5-= A?-=

Koch et al. (2007)

• Velocity gradients are signature of tidal disturbance

• No dSph shows evidence of significant velocity gradient in inner regions ⇒ bulk mass estimates are robust

Page 9: Dwarf spheroidal galaxies and the physical properties of dark ......• Dwarf spheroidal galaxies are valuable laboratories for testing the properties of dark matter • No kinematic

dSphs: the case for cored haloesJeans equations give simple relation between kinematics, the light distribution and the underlying mass distribution

We can either:

1. Assume a parameterised mass model and velocity anisotropy and fit dispersion profile

or

2. Use Jeans equations to determine mass profile from projected velocity dispersion profile and a fit to the light distribution

M(r) = −r2

G

(1ν

d νσ2r

d r+ 2

βσ2r

r

)

β(r)M(r)

Page 10: Dwarf spheroidal galaxies and the physical properties of dark ......• Dwarf spheroidal galaxies are valuable laboratories for testing the properties of dark matter • No kinematic

Fitting dSph dispersion profiles: Leo I• Assume either NFW halo

( ) or more general profile ( )

• Best-fit dispersion obtained for cored profiles with roughly isotropic velocity dispersions

• Significant velocity anisotropy not favoured (but not excluded)

• Enclosed mass in both cored and cusped haloes

! !"# !"$ !"% !"& '!

(

'!

'(

)*+,-./

!**+,0*1*2/

34)5

"*6*!!"(

"*6*!

"*6*!"(

"*6*'"789):

!

(

'!

'(

;<=

"*6*!!"(

"*6*!

"*6*!"(

"*6*'

Koch et al. (2007)

∼ 8× 107M!

ρ ∝ r−1

ρ ∝ r−α

Page 11: Dwarf spheroidal galaxies and the physical properties of dark ......• Dwarf spheroidal galaxies are valuable laboratories for testing the properties of dark matter • No kinematic

Density profiles from Jeans equations: assumptions

10 20 30 40 500.01

0.1

1

10

100

R (arcmin)

Draco

0 10 20 30 400

5

10

15

20

R (arcmin)

1 5 10 500.01

0.1

1

10

R (arcmin)

Carina

0 10 20 300

5

10

15

R (arcmin)

Page 12: Dwarf spheroidal galaxies and the physical properties of dark ......• Dwarf spheroidal galaxies are valuable laboratories for testing the properties of dark matter • No kinematic

• Masses:

• Conclusion: dSph kinematics are consistent with cored haloes

Density profiles from Jeans equations

3− 8× 107 M! =⇒ M/L = 13− 240 M!/L!

r (kpc)

ρ(M

!pc

−3

)

Ursa Minor

Draco

LeoII

LeoI

Carina

Sextans1/r

10−1 10010−3

10−2

10−1

100

Gilmore et al. (2007)

Page 13: Dwarf spheroidal galaxies and the physical properties of dark ......• Dwarf spheroidal galaxies are valuable laboratories for testing the properties of dark matter • No kinematic

• Majority of current data consistent with cored dark matter distributions and a mass scale (interior to light) of

• Mean dark matter density

• NFW halo:

Global trend of dSph haloes

!!"!!#!!$!%!&!$

$

!$!

!$#

!$'

()

*(+,- ./0/1)..+..*(+,- .0

23450

6(7

89:/4;<

=03;4:

85>?@/03

A437;4

,90B

,90BB

C;DBE

C;DBB

6(4

F00/9<

Mateo et al. (1998), Wilkinson et al. (2006), Gilmore et al. (2007)

∼ 3× 107M!

ρ(r < 10 pc) ≈ 60 M! pc−3(2 TeV/c2cm−3)

! 0.1 M! pc−3(5GeV/c2 cm−3)

Page 14: Dwarf spheroidal galaxies and the physical properties of dark ......• Dwarf spheroidal galaxies are valuable laboratories for testing the properties of dark matter • No kinematic

Size distribution of stellar systems

Gilmore et al. (2007)

Page 15: Dwarf spheroidal galaxies and the physical properties of dark ......• Dwarf spheroidal galaxies are valuable laboratories for testing the properties of dark matter • No kinematic

The next step - resolving the cusp/core issue with the VLT

! !"# $ $"#!

%

&

'

(

$!

$%

)*+,-./

!*012*+,3*2!$/

*

*

4156*!*721851-7.

492-*!*721851-7.

4156*!*5:;7:0

492-*!*5:;7:0

!!" !#" !$" " $" #" !"!"%&

!"%'

!"%(

!"%#

"

"%#

)*+,-*./0*-

!$1

.2*3,45*!*2*36-71*8*2*3,45

• Degeneracy between velocity anisotropy and inner density profile can be broken using ~500 radial velocities in the inner 0.2 kpc

• Program to apply this to Carina dSph currently underway at VLT

Page 16: Dwarf spheroidal galaxies and the physical properties of dark ......• Dwarf spheroidal galaxies are valuable laboratories for testing the properties of dark matter • No kinematic

Conclusions

• Dwarf spheroidal galaxies are valuable laboratories for testing the properties of dark matter

• No kinematic evidence that tides have inflated central velocity dispersions of dSphs

• Current kinematic data are consistent with high M/L ratio, cored dark matter distributions - mass scale ( ):

• Mean dark matter density:

• In cusped halo:

• More data being obtained to place more robust constraints on density profiles

∼ 3× 107M!r ! 400 pc

ρ(r < 10 pc) ≈ 60 M! pc−3(2 TeV/c2cm−3)

! 0.1 M! pc−3(5GeV/c2 cm−3)