dynamic causal modelling (dcm) for fmri wellcome trust centre for neuroimaging university college...

27
Dynamic Causal Modelling Dynamic Causal Modelling (DCM) for fMRI (DCM) for fMRI Wellcome Trust Centre for Neuroimaging University College London Andre Marreiros Andre Marreiros

Upload: samantha-thomas

Post on 28-Mar-2015

229 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Dynamic Causal Modelling (DCM) for fMRI Wellcome Trust Centre for Neuroimaging University College London Andre Marreiros

Dynamic Causal Modelling (DCM) Dynamic Causal Modelling (DCM) for fMRIfor fMRI

Dynamic Causal Modelling (DCM) Dynamic Causal Modelling (DCM) for fMRIfor fMRI

Wellcome Trust Centre for Neuroimaging

University College London

Andre MarreirosAndre Marreiros

Page 2: Dynamic Causal Modelling (DCM) for fMRI Wellcome Trust Centre for Neuroimaging University College London Andre Marreiros

Thanks to...

Stefan KiebelLee HarrisonKlaas StephanKarl Friston

Page 3: Dynamic Causal Modelling (DCM) for fMRI Wellcome Trust Centre for Neuroimaging University College London Andre Marreiros

Overview

Dynamic Causal Modelling of fMRIDynamic Causal Modelling of fMRI

Definitions & motivationDefinitions & motivation

The neuronal model (bilinear dynamics)

The Haemodynamic model

The neuronal model (bilinear dynamics)

The Haemodynamic model

Estimation: Bayesian frameworkEstimation: Bayesian framework

DCM latest ExtensionsDCM latest Extensions

Page 4: Dynamic Causal Modelling (DCM) for fMRI Wellcome Trust Centre for Neuroimaging University College London Andre Marreiros

Principles of organisation

Functional specializationFunctional specialization Functional integrationFunctional integration

Page 5: Dynamic Causal Modelling (DCM) for fMRI Wellcome Trust Centre for Neuroimaging University College London Andre Marreiros

Neurodynamics: 2 nodes with input

00

0211

2

1

2221

11

2

1

au

c

z

z

aa

a

z

z

u2

u1

z1

z2

activity in is coupled to viacoefficient 21a

11a

22a

21a

2z 1z

Page 6: Dynamic Causal Modelling (DCM) for fMRI Wellcome Trust Centre for Neuroimaging University College London Andre Marreiros

Neurodynamics: positive modulation

000

000 2211

2

1221

22

1

2221

11

2

1

bu

c

z

z

bu

z

z

aa

a

z

z

u2

u1

z1

z2

modulatory input u2 activity through the coupling 21a

11a

22a

21a

Page 7: Dynamic Causal Modelling (DCM) for fMRI Wellcome Trust Centre for Neuroimaging University College London Andre Marreiros

Neurodynamics: reciprocal connections

00000

00 22112211

2

1221

22

1

2221

1211

2

1

baau

c

z

z

bu

z

z

aa

aa

z

z

u2

u1

z1

z2

reciprocalconnectiondisclosed by u2

11a

22a

21a

12a

Page 8: Dynamic Causal Modelling (DCM) for fMRI Wellcome Trust Centre for Neuroimaging University College London Andre Marreiros

000

00

00 22112211

2

1221

22

1

2221

1211

2

1

baau

c

z

z

bu

z

z

aa

aa

z

z

Simulated response

Haemodynamics: reciprocal connections

Bold

Response

Bold

Response

21a

a11

a22

a12

green: neuronal activity

red: bold response

Page 9: Dynamic Causal Modelling (DCM) for fMRI Wellcome Trust Centre for Neuroimaging University College London Andre Marreiros

000

00

00 22112211

2

1221

22

1

2221

1211

2

1

baau

c

z

z

bu

z

z

aa

aa

z

z

Haemodynamics: reciprocal connections

Bold

with

Noise added

Bold

with

Noise added

21a

a11

a22

a12

green: neuronal activity

red: bold response

Page 10: Dynamic Causal Modelling (DCM) for fMRI Wellcome Trust Centre for Neuroimaging University College London Andre Marreiros

LGleft

LGright

RVF LVF

FGright

FGleft

Example: modelled BOLD signalUnderlying model(modulatory inputs not shown)

LG = lingual gyrus Visual input in the FG = fusiform gyrus - left (LVF)

- right (RVF)visual field.

blue: observed BOLD signal

red: modelled BOLD signal (DCM)

left LG

right LG

Page 11: Dynamic Causal Modelling (DCM) for fMRI Wellcome Trust Centre for Neuroimaging University College London Andre Marreiros

Use differential equations to describe mechanistic model of a system

• System dynamics = change of state vector in time

• Causal effects in the system:

– interactions between elements

– external inputs u

• System parameters :specify exact form of system

)(

)(

)(1

tz

tz

tz

n

),,...(

),,...(

1

1111

nnn

n

n uzzf

uzzf

z

z

),,( uzFz

overall system staterepresented by state variables

nz

z

z

1

change ofstate vectorin time

Page 12: Dynamic Causal Modelling (DCM) for fMRI Wellcome Trust Centre for Neuroimaging University College London Andre Marreiros

Example: linear dynamic system

LGleft

LGright

RVF LVF

FGright

FGleft

LG = lingual gyrusFG = fusiform gyrus

Visual input in the - left (LVF) - right (RVF)visual field.z1 z2

z4z3

u2 u1

state changes

effectiveconnectivity

externalinputs

systemstate

inputparameters

2

1

12

21

4

3

2

1

444342

343331

242221

131211

4

3

2

1

0

0

0

0

0

0

0

0

0

0

u

u

c

c

z

z

z

z

aaa

aaa

aaa

aaa

z

z

z

z

CuAzz

},{ CA

Page 13: Dynamic Causal Modelling (DCM) for fMRI Wellcome Trust Centre for Neuroimaging University College London Andre Marreiros

Extension:

bilinear dynamic system

LGleft

LGright

RVF LVF

FGright

FGleft

z1 z2

z4z3

u2 u1

CONTEXTu3

CuzBuAzm

j

jj

)(1

3

2

112

21

4

3

2

1

334

312

3

444342

343331

242221

131211

4

3

2

1

0

0

0

0

0

0

0

0

0

0

0000

000

0000

000

0

0

0

0

u

u

uc

c

z

z

z

z

b

b

u

aaa

aaa

aaa

aaa

z

z

z

z

Page 14: Dynamic Causal Modelling (DCM) for fMRI Wellcome Trust Centre for Neuroimaging University College London Andre Marreiros

Bilinear state equation in DCM/fMRI

state changes connectivity

m externalinputs

systemstate

direct inputs

CuzBuAzm

j

jj

)(1

mnmn

m

n

m

j jnn

jn

jn

j

j

nnn

n

n u

u

cc

cc

z

z

bb

bb

u

aa

aa

z

z

1

1

1111

11

111

1

1111

modulation ofconnectivity

Page 15: Dynamic Causal Modelling (DCM) for fMRI Wellcome Trust Centre for Neuroimaging University College London Andre Marreiros

BOLDy

y

y

hemodynamicmodel

Inputu(t)

activityz2(t)

activityz1(t)

activityz3(t)

effective connectivity

direct inputs

modulation ofconnectivity

The bilinear model CuzBuAz jj )(

c1 b23

a12

neuronalstates

λ

z

y

integration

Neuronal state equation ),,( nuzFz Conceptual overview

Friston et al. 2003,NeuroImage

u

z

u

FC

z

z

uuz

FB

z

z

z

FA

jj

j

2

Page 16: Dynamic Causal Modelling (DCM) for fMRI Wellcome Trust Centre for Neuroimaging University College London Andre Marreiros

sf

tionflow induc

s

v

f

v

q q/vvf,Efqτ /α

dHbchanges in

1)( /αvfvτ

volumechanges in

1

f

q

)1( fγszs

ry signalvasodilato

important for model fitting, but of no interest for statistical inference

signal BOLD

qvty ,)(

The hemodynamic “Balloon” model

)(tz

activity • 5 hemodynamic parameters:

• Empirically determineda priori distributions.

• Computed separately for each area

},,,,{ h

Page 17: Dynamic Causal Modelling (DCM) for fMRI Wellcome Trust Centre for Neuroimaging University College London Andre Marreiros

Diagram

Dynamic Causal Modelling of fMRIDynamic Causal Modelling of fMRI

Model inversion using

Expectation-maximization

State space Model

fMRI data y

Posterior distribution of parameters

Network dynamics

Haemodynamicresponse

Model comparison

Priors

Page 18: Dynamic Causal Modelling (DCM) for fMRI Wellcome Trust Centre for Neuroimaging University College London Andre Marreiros

Constraints on•Connections

•Hemodynamic parameters

Models of•Hemodynamics in a single region

•Neuronal interactions

Bayesian estimation

)(p

)()|()|( pypyp

)|( yp

posterior

priorlikelihood term

Estimation: Bayesian framework

Page 19: Dynamic Causal Modelling (DCM) for fMRI Wellcome Trust Centre for Neuroimaging University College London Andre Marreiros

sf (rCBF)induction -flow

s

v

f

stimulus function u

modelled BOLD response

vq q/vvf,Efqτ /α1)(

dHbin changes

/αvfvτ 1

in volume changes

f

q

)1(

signalry vasodilatodependent -activity

fγszs

s

)(xy eXuhy ),(

observation model

hidden states},,,,{ qvfszx

state equation),,( uxFx

parameters

},{

},...,{

},,,,{1

nh

mn

h

CBBA

• Specify model (neuronal and hemodynamic level)

• Make it an observation model by adding measurement error e and confounds X (e.g. drift).

• Bayesian parameter estimation using Bayesian version of an expectation-maximization algorithm.

• Result:(Normal) posterior parameter distributions, given by mean ηθ|y and Covariance Cθ|y.

Overview:parameter estimation

ηθ|y

neuronal stateequation CuzBuAz j

j )(

Page 20: Dynamic Causal Modelling (DCM) for fMRI Wellcome Trust Centre for Neuroimaging University College London Andre Marreiros

Activity in z1 is coupled to z2 via coefficient a21

Haemodynamics: 2 nodes with input

21a

a11

a22

)()|()|( pypyp

Dashed Line: Real BOLD response

Page 21: Dynamic Causal Modelling (DCM) for fMRI Wellcome Trust Centre for Neuroimaging University College London Andre Marreiros

Inference about DCM parameters:single-subject analysis

• Bayesian parameter estimation in DCM: Gaussian assumptions about the posterior distributions of the parameters

• Use of the cumulative normal distribution to test the probability by which a certain parameter (or contrast of parameters cT ηθ|y) is above a chosen threshold γ:

ηθ|y

Page 22: Dynamic Causal Modelling (DCM) for fMRI Wellcome Trust Centre for Neuroimaging University College London Andre Marreiros

Model comparison and selection

Given competing hypotheses, which model is the best?

Pitt & Miyung (2002), TICS

)(

)()|(log

mcomplexity

maccuracymyp

)|(

)|(

jmyp

imypBij

Page 23: Dynamic Causal Modelling (DCM) for fMRI Wellcome Trust Centre for Neuroimaging University College London Andre Marreiros

V1

V5

SPC

Motion

Photic

Attention

0.85

0.57 -0.02

1.360.70

0.84

0.23

V1

V5

SPC

Motion

PhoticAttention

0.86

0.56 -0.02

1.42

0.550.75

0.89V1

V5

SPC

Motion

PhoticAttention

0.85

0.57 -0.02

1.36

0.030.70

0.85

Attention

0.23

Model 1:attentional modulationof V1→V5

Model 2:attentional modulationof SPC→V5

Model 3:attentional modulationof V1→V5 and SPC→V5

Comparison of three simple models

Bayesian model selection: Model 1 better than model 2,

model 1 and model 3 equal

→ Decision for model 1: in this experiment, attention

primarily modulates V1→V5

)|(log)|(log)|(log 231 mypmypmyp

Page 24: Dynamic Causal Modelling (DCM) for fMRI Wellcome Trust Centre for Neuroimaging University College London Andre Marreiros

• potential timing problem in DCM:

temporal shift between regional time series because of multi-slice acquisition

• Solution:

– Modelling of (known) slice timing of each area.

1

2

slic

e ac

quis

ition

visualinput

Extension I: Slice timing model

Slice timing extension now allows for any slice timing differences. Long TRs (> 2 sec) no longer a limitation. (Kiebel et al., 2007)

Page 25: Dynamic Causal Modelling (DCM) for fMRI Wellcome Trust Centre for Neuroimaging University College London Andre Marreiros

)(tu

ijij uBA

input

Single-state DCM

1x

Intrinsic (within-region) coupling

Extrinsic (between-region) coupling

NNNN

N

x

x

tx

AA

AA

A

CuxuBAt

x

1

1

111

)(

)(

Two-state DCM

Ex1

IN

EN

I

E

AA

AAA

AA

AAA

u

x

x

x

x

tx

ee

eee

ee

eee

A

CuxABt

x

IINN

IENN

EINN

EENNN

IIIE

NEIEE

1

1

)(

00

0

00

0

)(

1

1111

11111

)exp( ijij uBA

Ix1

)exp( 1111IEIE uBA IEx ,

1

CuzBuAzzjj

Extension II: Two-state model

Page 26: Dynamic Causal Modelling (DCM) for fMRI Wellcome Trust Centre for Neuroimaging University College London Andre Marreiros

Extension III: Nonlinear DCM for fMRI

CuzDzBuAdt

dz m

i

n

j

jj

ii

1 1

)()(

Here DCM can model activity-dependent changes in connectivity; how connections are enabled or gated by activity in one or more areas.

The D matrices encode which of the n neural units gate which connections in the system.

Can V5 activity during attention to motion be explained by allowing activity in SPC to modulate the V1-to-V5 connection?

The posterior density of indicates that this gating existed with 97.4% confidence.

V1 V5

SPC

attention

0.03(100%)

motion

0.04(100%)

1.65(100%)

0.19(100%)

0.01(97.4%)

)(1,5

SPCVVD

Page 27: Dynamic Causal Modelling (DCM) for fMRI Wellcome Trust Centre for Neuroimaging University College London Andre Marreiros

Conclusions

Dynamic Causal Modelling (DCM) of fMRI is mechanistic model that is informed by anatomical and physiological principles.

Dynamic Causal Modelling (DCM) of fMRI is mechanistic model that is informed by anatomical and physiological principles.

DCM is not model or modality specific (Models will change and the method extended to other modalities e.g. ERPs)

DCM is not model or modality specific (Models will change and the method extended to other modalities e.g. ERPs)

DCM combines state-equations for dynamics with observation model (fMRI: BOLD response, M/EEG: lead field).

DCM combines state-equations for dynamics with observation model (fMRI: BOLD response, M/EEG: lead field).

DCM uses a deterministic differential equation to model neuro-dynamics (represented by matrices A,B and C)

DCM uses a deterministic differential equation to model neuro-dynamics (represented by matrices A,B and C)

DCM uses a Bayesian framework to estimate theseDCM uses a Bayesian framework to estimate these