dynamic control2

Upload: audrey-patrick-kalla

Post on 14-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 Dynamic Control2

    1/921

    Chemical Process

    Dynamics and Control

    Cheng-Liang ChenPSELABORATORY

    Department of Chemical EngineeringNational TAIWAN University

  • 7/27/2019 Dynamic Control2

    2/921

    Chen CL 1

    Some Notes

    - Instructor:

    Cheng-Liang Chen ([email protected])

    - Teaching Assistant:

    Ying-Jyuan Ciou ([email protected])

    -

    Textbook:Smith, C.A., and A. Corripio (2006).

    Principles and Practice of Automatic Process Control (3rd Ed.)

    - Lecture Time: Mon 9 : 10 10 : 00; Wed 10 : 20 12 : 10

    - Examination: 2 Mid-terms and 1 Final (20 2 + 30 = 70%)

    - Homework: 10 (20%)

    - Computer Exercise: Simulink, (PControLab3) (10%)

  • 7/27/2019 Dynamic Control2

    3/921

    Chen CL 2

    Learning Objectives

    - Understand how the basic components of control systemswork (Sensor, Valve, Controller, Process)

    - Develop dynamic mathematical process models that will help

    in the analysis, design, and operation of control systems

    - Design and tune feedback controllers

    - Apply a variety of techniques that enhance feedback control,

    including cascade control, selective control, override control,

    ratio control, and feedforward control- Master the fundamentals of dynamic simulation of process

    control systems using MATLAB and Simulink

  • 7/27/2019 Dynamic Control2

    4/921

    Chen CL 3

    Course Outline

    - Process Control: Essentials Chapter 1

    - Basic Control Elements: Sensor Chapter 5- Basic Control Elements: Valve Chapter 5

    - Basic Control Elements: Controller Chapter 5

    - Basic Control Elements: Process Chapters 3,4

    - Analysis of Feedback Control Loops Chapters 6,2

    - Adjusting Controller Parameters Chapter 7

    - Frequency Response Techniques Chapter 8

    - Enhanced PID Control: Cascade Control Chapter 9

    - Enhanced PID Control: Selective Control Chapter 10

    - Enhanced PID Control: Feedforward Control Chapter 11

    -

    Control Systems and Dynamic Simulation Chapter 13

  • 7/27/2019 Dynamic Control2

    5/921

    Basic Concept of

    Process Control

    Cheng-Liang ChenPSELABORATORY

    Department of Chemical EngineeringNational TAIWAN University

    C C 1

  • 7/27/2019 Dynamic Control2

    6/921

    Chen CL 1

    A Process Heat ExchangerThe Problem

    - Control Objectives: to keep T at TD (and q at qD) T: controlled variable TD: set point

    - Environment: varying qs, Ps, Ta, Ti, q , E (efficiency)

    Ps, Ta, Ti, E: hard to handle disturbances

    qs, q: easy for adjusting manipulated variable

    Ch CL 2

  • 7/27/2019 Dynamic Control2

    7/921

    Chen CL 2

    A Process Heat ExchangerThe Tools

    - We need one sensor to know current status of T

    - We need one valve to adjust qs

    - We need one method to make decision

    - We have to check if CV = SP from time to time

    Ch CL 3

  • 7/27/2019 Dynamic Control2

    8/921

    Chen CL 3

    A Process Heat ExchangerManual Method to Achieve Control Objective

    - To know: reading T (influenced by Ps, Ta, Ti, E)

    - To decide: comparing T with TD and decide adjusting action

    - To do: implementing new qs manually by a field operator

    - Repeat above actions for every second

    Ch CL 4

  • 7/27/2019 Dynamic Control2

    9/921

    Chen CL 4

    A Process Heat ExchangerAutomatic Method to Achieve Control Objective

    - To know: reading T (influenced by Ps, Ta, Ti, E)

    - To decide: comparing T with TD and decide adjusting action

    - To do: implementing new qs automatically by a controller

    - Repeat above actions for every second

    Ch CL 5

  • 7/27/2019 Dynamic Control2

    10/921

    Chen CL 5

    A Process Heat ExchangerFour Basic Elements

    - Primary/Secondary Element (sensor/transmitter)

    to know current status for CV

    (fast, accurate, standard)

    T (oC) TE= T (mV)TT

    = y (4 20 mA; 1 5V; 0% 100%)

    Example: desired zero = 50o

    C, span = 100o

    C

    50oC 4 mA 1 V 0%

    TE/TT or or

    150o

    C 20 mA 5 V 100%

    Chen CL 6

  • 7/27/2019 Dynamic Control2

    11/921

    Chen CL 6

    A Process Heat ExchangerFour Basic Elements

    - Decision-making Element (operator or controller)

    to calculate the trial corrective action

    (simple to use, acceptable performance, robust, reliable)

    inputs: set-point ysp (mA or %), (from TDo

    C)measured PV y(t) (mA or %), (from T oC)

    output: control action u(t) (mA or %)

    Chen CL 7

  • 7/27/2019 Dynamic Control2

    12/921

    Chen CL 7

    A Process Heat ExchangerFour Basic Elements

    - Final Control Element (I/P transducer + valve)

    to realize operators or controllers decision

    u(t) (4 20 mA)I/P

    = u(t) (3 15 psi)valve

    = 0% 100% valve opening

    = qs(t) (kg/sec) ( MV)

    Chen CL 8

  • 7/27/2019 Dynamic Control2

    13/921

    Chen CL 8

    A Process Heat ExchangerFour Basic Elements

    - Process

    to wait for new value of CV

    inputs: qs (kg/sec) (MV)

    Ps, Ti, Ta, (Disturbances) output: T (oC) (PV, CV)

    Chen CL 9

  • 7/27/2019 Dynamic Control2

    14/921

    Chen CL 9

    A Process Heat ExchangerFour Basic Elements

    Summary

    - Primary/Secondary Element (sensor/transmitter)

    - Decision-making Element (controller)

    - Final Control Element (I/P transducer/valve)

    - Process (the heat exchanger)

    Chen CL 10

  • 7/27/2019 Dynamic Control2

    15/921

    Chen CL 10

    Chen CL 11

  • 7/27/2019 Dynamic Control2

    16/921

    Chen CL 11

    Basic Concept of Process ControlSummary

    - Process Control:

    adjusting a Manipulated Variable ( MV)

    to maintain the Controlled Variable ( CV)

    at desired operating value ( Set Point) ( SP)

    in the presence of output Disturbances ( Ds)

    Chen CL 12

  • 7/27/2019 Dynamic Control2

    17/921

    Chen CL 12

    Control StrategiesFeedback Control

    - Adjusting MV if CV is not equal to SP

    - Advantage: simple, can compensate all disturbances

    -

    Disadvantage: CV is not equal to SP in most time

    Chen CL 13

  • 7/27/2019 Dynamic Control2

    18/921

    Chen CL 13

    Control StrategiesFeed-forward Control

    - Adjusting MV to compensate influence of multiple Ds on CV

    - Advantage:

    simultaneously consider influence of multiple Ds and MV on CV

    detecting Ds adjusting MV BEFORE CV deviates from SP

    - Disadv.s: modeling error ?; not considering ALL disturbances ?

    Chen CL 14

  • 7/27/2019 Dynamic Control2

    19/921

    Chen CL 14

    Control StrategiesFeed-forward Control with Feedback Trim

    Chen CL 15

  • 7/27/2019 Dynamic Control2

    20/921

    Chen CL 15

    Incentives for Chemical Process Control

    -

    Safety:temperature, pressure, concentration of chemicals

    should be within allowable limits

    - Production Specifications:

    a plant should produce desired amounts and quality of final products

    - Environmental Regulations:

    various laws specify concentrations of chemicals of effluent from a

    plant be within certain limits

    Chen CL 16

  • 7/27/2019 Dynamic Control2

    21/921

    Chen CL 6

    Incentives for Chemical Process Control

    -

    Operational Constraints:various types of equipment have constraints inherent to their

    operation

    - Economics:

    operating conditions are controlled at given optimum levels ofminimum operating cost and maximum profit

    Chen CL 17

  • 7/27/2019 Dynamic Control2

    22/921

    Design Aspects of A Process Control System

    Define Control Objectives:

    Q 1: What are the operational objectives that a control system is called

    upon to achieve ?

    Ensuring stability of the process, or

    Suppressing the influence of external disturbances, or Optimizing the economic performance of a plant, or

    A combination of the above

    Select Measurements:

    Q 2: What variables should we measure to monitor the operational

    performance of a plant ?

    Chen CL 18

  • 7/27/2019 Dynamic Control2

    23/921

    Design Aspects of A Process Control System

    Select Manipulated Variables:

    Q 3: What are the manipulated variables to be used to control a

    chemical process ?

    Select Control Configuration: (control structure)

    Q 4: What is the best control configuration for a given chemical

    process control situation ?

    Feedback control cascade ? override ? Feedforward control feedback trim ? Inferential control

    Chen CL 19

  • 7/27/2019 Dynamic Control2

    24/921

    Design Aspects of A Process Control System

    Design the Controller: (control law)

    Q 5: How is the information, taken from the measurements, used to

    adjust the values of the manipulated variables ?

    Control law (controller structure, P - PI - PID ?)

    Controller tuning (Kc, I, D ?)

    Chen CL 20

  • 7/27/2019 Dynamic Control2

    25/921

    Why Laplace Transform

    -

    Ex: PID Controller 4 signals 2 signals

    PID Controller: u(t) = Kc

    e(t) + 1

    TI

    t0

    e()d + TDde(t)

    dt

    + ub

    Steady States: u = Kc

    e + 1

    TI

    t0

    e d + TDde

    dt

    + ub [u = ub; e = 0]

    Deviation Variables: U(t) = Kc

    E(t) + 1

    TI

    t0

    E()d + TDdE(t)

    dt

    U(t) u(t) ub; E(t) = e(t) 0)

    Chen CL 21

  • 7/27/2019 Dynamic Control2

    26/921

    Why Laplace Transform

    -

    PID Controller: (cont)

    Laplace Transform: U(s) = Kc

    E(s) + 1

    TI

    E(s)

    s+ TDsE(s)

    = Kc 1 + 1TI

    1s

    + TDsE(s)

    Transfer Function:U(s)

    E(s)= Kc

    1 + 1

    TI

    1s

    + TDs

    Gc(s)

    Chen CL 22

  • 7/27/2019 Dynamic Control2

    27/921

    Why Laplace Transform

    -

    Ex: Simple Process 3 signals 2 signals

    First-Order Model: Tdy(t)dt

    + y(t) = Ku(t d)

    Steady States: Tdydt

    + y = Ku

    Deviation Variables: Td[y(t)y]dt

    + [y(t) y] = K[u(t d) u]

    TdY(t)

    dt+ Y(t) = KU(t d)

    Laplace Transform: T sY(s) + Y(s) = KU(s)e

    ds

    Transfer Function:Y(s)

    U(s)=

    Keds

    T s + 1 Gp(s)

    Chen CL 23

  • 7/27/2019 Dynamic Control2

    28/921

    Why Laplace Transform

    - Dynamic relation (ysp to y): time-domain vs. s-domain

    Time domain: simultaneous dynamic equations

    S-domain:y(s)

    ysp(s)=

    GcGp1 + GcGp

  • 7/27/2019 Dynamic Control2

    29/921

    Sensors and Transmitters

    (Transducer)

    Cheng-Liang ChenPSELABORATORY

    Department of Chemical EngineeringNational TAIWAN University

    Chen CL 1

  • 7/27/2019 Dynamic Control2

    30/921

    Transducer

    - Transducer:

    to convert a physical quantity into an electrical signal

    The sensor produces a phenomenonmechanical,

    electrical, or the likerelated to the process variable

    it measures The transmitter converts this phenomenon into a

    signal that can be transmitted

    - Measured Quantities:

    position, force, velocity, acceleration,

    pressure, level, flow, temperature,

    - Output Signals:

    current, voltage, resistance, capacitance, or frequency

    Chen CL 2

  • 7/27/2019 Dynamic Control2

    31/921

    Transducer Specifications

    -

    Static Specifications: Accuracy

    Resolution

    Repeatability

    Hysteresis

    Linearity

    - Dynamic Specifications

    Dead time Rise time

    Time constant

    Frequency response

    Chen CL 3

  • 7/27/2019 Dynamic Control2

    32/921

    AccuracyPercent of Full Scale Output (%FPO)

    Example:

    A load cell is a transducer used to measure weight (100 kg 20

    mV). A calibration record is given in table. Plot calibration curve

    (skip). Determine the accuracy of the transducer. Express answer inboth %FSO (percent of full scale output) and % of reading. Assume

    linear relationship between output.

    vtrue =vfull scale

    loadfull scale load

    =20 mV

    100 kg load = 0.2

    mV

    kg

    load

    Chen CL 4

  • 7/27/2019 Dynamic Control2

    33/921

    True output Actual output Error Accuracy

    (mV) (mV) (mV) %FSO %reading

    0 0 0.08 0.08 0.40 -

    5 1.00 0.45 0.55 2.75 55.00

    10 2.00 1.02 0.98 4.90 49.00

    15 3.00 1.71 1.29 6.45 43.00

    20 4.00 2.55 1.45 7.25 36.25

    25 5.00 3.43 1.57 7.85 31.40

    30 6.00 4.48 1.52 7.60 25.33

    35 7.00 5.50 1.50 7.50 21.43

    40 8.00 6.53 1.47 7.35 27.01

    45 9.00 7.64 1.36 6.80 15.11

    50 10.00 8.70 1.30 6.50 13.00

    55 11.00 9.85 1.15 5.75 10.45

    60 12.00 11.01 0.99 4.95 8.25

    65 13.00 12.40 0.60 3.00 2.77

    70 14.00 13.32 0.68 3.40 7.14

    75 15.00 14.35 0.65 3.25 4.33

    80 16.00 15.40 0.60 3.00 3.75

    85 17.00 16.48 0.52 2.60 3.06

    90 18.00 17.66 0.34 1.70 1.89

    95 19.00 18.90 0.10 0.50 0.53

    100 20.00 19.93 0.07 0.35 0.35

    Chen CL 5

  • 7/27/2019 Dynamic Control2

    34/921

    Resolution

    This optical encoder has a 90o resolution

    Chen CL 6

  • 7/27/2019 Dynamic Control2

    35/921

    Resolution: Example

    A 2.5-m-long vane is rotated slowly in a circle. The motor and gears

    attach to the vane at its center. It is necessary to know the position

    of the vane within 2 cm. What must be the resolution of the optical

    encoder attached to the shaft that positions the vane ?

    Solution:

    c = d = (2.5 m) = 7.854 m = 785.4 cm

    arc

    360o=

    2 cm

    785.4 cm

    arc =(360o)(2 cm)

    785.4 cm= 0.917o

    360o

    0.917o= 392.6 ( 400 500) pulses per revolution

    Chen CL 7

  • 7/27/2019 Dynamic Control2

    36/921

    Repeatability

    accurate repeatable both accurate

    not repeatable not accurate and repeatable

    Chen CL 8

  • 7/27/2019 Dynamic Control2

    37/921

    Hysteresis ( Increasing= Decreasing)

  • 7/27/2019 Dynamic Control2

    38/921

    Chen CL 10

    D d i

  • 7/27/2019 Dynamic Control2

    39/921

    Dead Time

    Chen CL 11

    Ri Ti

  • 7/27/2019 Dynamic Control2

    40/921

    Rise Time

    Chen CL 12

    Ti C

  • 7/27/2019 Dynamic Control2

    41/921

    Time Constant

    Chen CL 13

    S li Ti

  • 7/27/2019 Dynamic Control2

    42/921

    Settling Time

    Chen CL 14

    F R

  • 7/27/2019 Dynamic Control2

    43/921

    Frequency Response

    Chen CL 15

    Bl k Di f A T d

  • 7/27/2019 Dynamic Control2

    44/921

    Block Diagram of A Transducer

    H(s) =C(s)

    PV(s)

    =K

    T

    Ts + 1K

    T=

    (20 4) mA

    (200 0) pisg= 0.08 mA/pisg

    KT

    =(100 0) %TO

    (200 0) pisg= 0.5 %TO/pisg

    Chen CL 16

    P iti T d

  • 7/27/2019 Dynamic Control2

    45/921

    Position TransducerLinear and Angular Potentiometers

    Chen CL 17

    Li d A l P t ti t E l

  • 7/27/2019 Dynamic Control2

    46/921

    Linear and Angular Potentiometers: Example

    It is necessary to measure the position of a panel. It moves 0.8 m.

    Its position must be known within 0.1 cm. Part of the mechanismwhich moves the panel is a shaft that rotates 250o when the panel is

    moved from one extreme to the other. A control potentiometer has

    been found which is rated at 300o full-scale movement. It has 1000

    turns of wire. Can this be used ?

    Solution:

    300o

    1000

    = 0.300o (resolution of the potentiometer)

    250o

    0.8 m= 312.5o/m or 3.125o/cm (conversion of shaft)

    0.1 cm 3.125o/cm = 0.3125o (panel required resolution)

    > 0.300o

    the potentiometer will work

    Chen CL 18

    P iti T d

  • 7/27/2019 Dynamic Control2

    47/921

    Position TransducerLinear Variable Differential Transformer (LVDT)

    One primary coil,

    two secondary coils,one free-moving rod-shaped

    magnetic core inside coil

    assembly

    Chen CL 19

    F T d

  • 7/27/2019 Dynamic Control2

    48/921

    Force TransducerBounded Resistance Strain Gage

    Stress: =force

    area=

    F

    A

    Strain: = deformationlength

    = LL

    =

    Chen CL 20

    Fo ce T a sd ce

  • 7/27/2019 Dynamic Control2

    49/921

    Force TransducerBounded Resistance Strain Gage

    Stress Strain Electrical Resistance

    Gage Factor, GF = fractional change in resistancefractional change in length =R/R

    L/L

    Chen CL 21

    Example:

  • 7/27/2019 Dynamic Control2

    50/921

    Example:

    A strain gage is bounded to a steel beam which is 10.00 cm long and

    has a cross-sectional area of 4.00 cm2. Youngs modulus (E = /)

    of elasticity for steel is 20.7 1010 N/m2. The strain gage has a

    nominal (unstrained) resistance of 240 and a gage factor of 2.20.

    When a load is applied, the gages resistance changes by 0.013.

    Calculate the change in length of the steel beam and the amount of

    force applied to the beam.

    Chen CL 22

    Solution:

  • 7/27/2019 Dynamic Control2

    51/921

    Solution:

    L =1

    GF L

    R

    R

    = 12.20

    0.1(m) 0.013240

    = 2.46 106 m

    F

    A = = E = EL

    L

    = E1

    GF

    R

    R

    = 20.7 1010(N/m2)1

    2.20

    0.013

    240 F = 2.037 103 N

    1 b

    4.482N

    = 454 b

    Chen CL 23

    Force Transducer

  • 7/27/2019 Dynamic Control2

    52/921

    Force TransducerTwo Strain Gages

    Chen CL 24

    Pressure Transducer

  • 7/27/2019 Dynamic Control2

    53/921

    Pressure TransducerDiaphragm with Strain Gage

    Chen CL 25

    Pressure Transducer

  • 7/27/2019 Dynamic Control2

    54/921

    Pressure TransducerDiaphragm with Strain Gage

    Chen CL 26

    Pressure Transducer

  • 7/27/2019 Dynamic Control2

    55/921

    Pressure TransducerCapacitive Absolute-Pressure Transducer

    Chen CL 27

    Pressure Transducer

  • 7/27/2019 Dynamic Control2

    56/921

    Pressure TransducerPressure-to-Displacement Transducer

    Capsule, Bellow, Bourdon tube, Spiral, Helix

    Chen CL 28

    Pressure Transducer

  • 7/27/2019 Dynamic Control2

    57/921

    Pressure TransducerLVDT Sensing Pressure Transducer

    Chen CL 29

    Pressure Transducer

  • 7/27/2019 Dynamic Control2

    58/921

    Pressure TransducerPotentiometer Sensing Pressure Transducer

    Chen CL 30

    Flow Transducer

  • 7/27/2019 Dynamic Control2

    59/921

    Flow TransducerDifferential Pressure Obstruction Flow Sensors

    Orifice plate, Venturi, Pitot tube

    f = CoAo

    po

    1

    dD

    4

    Chen CL 31

    Flow Transducer

  • 7/27/2019 Dynamic Control2

    60/921

    Flow TransducerDeflection-type Flow Transducers

    Cantilever beam, Variable-area rotameter

    Chen CL 32

    Flow Transducer

  • 7/27/2019 Dynamic Control2

    61/921

    Flow TransducerSpin-type Flow Transducers

    Paddle wheel, Flow turbine

    Chen CL 33

    Flow Transducer

  • 7/27/2019 Dynamic Control2

    62/921

    Flow TransducerElectromagnetic Flow Meter

    Chen CL 34

    Flow Transducer

  • 7/27/2019 Dynamic Control2

    63/921

    Flow TransducerUltrasonic Flow Transducer

    Chen CL 35

    Flow Transducer: Characteristics

  • 7/27/2019 Dynamic Control2

    64/921

    Flow Transducer: Characteristics

    Chen CL 36

    Level Transducer

  • 7/27/2019 Dynamic Control2

    65/921

    Level TransducerDiscrete-type Level Transducer

    Float switch, Photoelectric

    Chen CL 37

    Level Transducer

  • 7/27/2019 Dynamic Control2

    66/921

    Level TransducerBy Sensing Pressure with

    Offset transducer, Sealed tank

    Chen CL 38

    Level Transducer

  • 7/27/2019 Dynamic Control2

    67/921

    Level TransducerBy Sensing differential Pressure

    Chen CL 39

    Level Transducer

  • 7/27/2019 Dynamic Control2

    68/921

    Level Transducerwith Float-driven Control System

    Chen CL 40

    Level Transducer

  • 7/27/2019 Dynamic Control2

    69/921

    Level TransducerCapacitance Level Transducer

    Chen CL 41

    Level Transducer

  • 7/27/2019 Dynamic Control2

    70/921

    Level TransducerTop-mounted Ultrasonic Level Sensor

    Chen CL 42

    Common Temperature Transducers

  • 7/27/2019 Dynamic Control2

    71/921

    Common Temperature Transducers

    Chen CL 43

    Common Temperature Transducers

  • 7/27/2019 Dynamic Control2

    72/921

    p

    Chen CL 44

    Common Temperature Transducers

  • 7/27/2019 Dynamic Control2

    73/921

    p

    Chen CL 45

    Thermocouple

  • 7/27/2019 Dynamic Control2

    74/921

    pSeebeck Effect

    - Current in a closed circuit

    - Voltage across an open circuit

    Chen CL 46

    Thermocouple

  • 7/27/2019 Dynamic Control2

    75/921

    pEquivalent Circuits

    Chen CL 47

    Thermocouple

  • 7/27/2019 Dynamic Control2

    76/921

    pwith External Reference

    Chen CL 48

    Thermocouple

  • 7/27/2019 Dynamic Control2

    77/921

    pExternal Reference Junction with No Ice Bath

    Chen CL 49

    Thermocouple

  • 7/27/2019 Dynamic Control2

    78/921

    pScanning Many Thermocouples

    Chen CL 50

    Thermocouple

  • 7/27/2019 Dynamic Control2

    79/921

    pElectronic Ice-point Compensation

  • 7/27/2019 Dynamic Control2

    80/921

    Chen CL 1

    Why Focus on Valve ?

  • 7/27/2019 Dynamic Control2

    81/921

    - Valves are often the least understood component of the

    control loop

    -

    Valves are often the most neglected component of thecontrol loop

    -

    Valves are often the biggest contributor to poor controlloop performance

    Chen CL 2

    A Typical Globe Valve

  • 7/27/2019 Dynamic Control2

    82/921

    Chen CL 3

    Energy and Pressure Grades

  • 7/27/2019 Dynamic Control2

    83/921

    Ideal/Real Flows Across An Ideal Restriction

    Chen CL 4

    Energy and Pressure Grades

  • 7/27/2019 Dynamic Control2

    84/921

    A Valve or Orifice Is Not Ideal

    Chen CL 5

    Inception of Cavitation in An Orifice

  • 7/27/2019 Dynamic Control2

    85/921

    Chen CL 6

    Efect of Vaporization on Flow Rate

  • 7/27/2019 Dynamic Control2

    86/921

    Chen CL 7

    Energy and Pressure Grades Across A Valve

  • 7/27/2019 Dynamic Control2

    87/921

    Chen CL 8

    Valves Cost Energy

  • 7/27/2019 Dynamic Control2

    88/921

    A control valve is simply an orifice with a variable area of flow

    all control valves and regulators cost energy

    Chen CL 9

    A Full Speed Pump and Throttling Valve Cost Energy

  • 7/27/2019 Dynamic Control2

    89/921

    Chen CL 10

    Variable Speed Drive Saves Energy

  • 7/27/2019 Dynamic Control2

    90/921

    Chen CL 11

    Affinity Laws

  • 7/27/2019 Dynamic Control2

    91/921

    Const Impeller Diameter:Q1Q2 =

    N1N2

    H1H2

    =

    N1N2

    2bhp1bhp2 =

    N1N23

    Const Pump Speed:Q1Q2

    =

    D1D2H1

    H2=

    D1D2

    2bhp1bhp2

    =

    D1D2

    3

    Chen CL 12

    - Efficiency remains virtually constant for changes in speed

    d ll i ll di h

  • 7/27/2019 Dynamic Control2

    92/921

    and small impeller diameter changes

    -

    A 10% speed reduction (90% of nominal speed)

    capacity = 90% of original operating conditions

    head = 81% of original required head

    bhp = 73% of nominal brake horsepower

    Chen CL 13

    Comparative Performances of Valve and

  • 7/27/2019 Dynamic Control2

    93/921

    Variable Speed DriveItem

    Control

    Valve

    Variable Speed

    Drive

    Ease of Installation - -

    Equipment Efficiency - Better

    Motor Efficiency - Better

    Power Factor - Better

    Operating Costs - Better

    Flexibility of Location - Better

    Exposure to Process - Better

    Specification - Better

    Ability to Control - Better

    Potential for Leaks - Better

    Installed Cost: small - Better

    large Better -

    Shutoff Capability Better -

    Maintenance: expertise Better -

    valve/drive - Better

    equipment - Better

    spare parts - -

    Why Control Valve ?

    Chen CL 14

    Important Issues in Control Valves

  • 7/27/2019 Dynamic Control2

    94/921

    - Types

    - Actions: air-failure-open ( FO), air-failure-close ( FC)

    - Sizing

    - Characteristics: inherent (manufactured) and installed

    - Valves in common loops: flow, temperature, level,

    pressure

    - Software characterizer

    - Diagnosis

    Chen CL 15

    Types of Control ValvesGl b V l

  • 7/27/2019 Dynamic Control2

    95/921

    Globe Valve

    A Single-Ported Two Way Valve

  • 7/27/2019 Dynamic Control2

    96/921

    Chen CL 17

    Types of Control ValvesGl b V l

  • 7/27/2019 Dynamic Control2

    97/921

    Globe Valve

    An Angle Valve and A Y-Pattern Valve

    Chen CL 18

    Types of Control ValvesGl b V l

  • 7/27/2019 Dynamic Control2

    98/921

    Globe Valve

    Valves with Three-Way Bodies

    Chen CL 19

    Types of Control ValvesGl b V l

  • 7/27/2019 Dynamic Control2

    99/921

    Globe Valve

    Anti-Cavitation Valve

    Chen CL 20

    Types of Control ValvesB ll V l

  • 7/27/2019 Dynamic Control2

    100/921

    Ball Valve

    Full Ball Valve

    Chen CL 21

    Types of Control ValvesB ll V l

  • 7/27/2019 Dynamic Control2

    101/921

    Ball Valve

    Three-Way Ball Valve

    Chen CL 22

    Types of Control ValvesBall Val e

  • 7/27/2019 Dynamic Control2

    102/921

    Ball Valve

    Segmented Ball Valve

  • 7/27/2019 Dynamic Control2

    103/921

    Chen CL 24

    Types of Control ValvesDi h V l

  • 7/27/2019 Dynamic Control2

    104/921

    Diaphragm Valve

    Chen CL 25

    Types of Control ValvesDi i l V l

  • 7/27/2019 Dynamic Control2

    105/921

    Digital Valve

    - A digital valve is made up of a group of on-off valve elements

    installed in a common body

    - Each valve element has a different capacity sequence of sizes form a binary series

    - These valves have the capability to change from one capacity to

    another instantaneously

    Chen CL 26

    - Example:

    6 valve elements with capacity ratios 1 2 4 8 16 32

  • 7/27/2019 Dynamic Control2

    106/921

    6 valve elements with capacity ratios 1, 2, 4, 8, 16, 32

    Each incremental step will vary by1

    63(1 + 2 + + 32 = 63)

    Ratio of maximum to minimum capacity will be 63 : 1

    8 elements 1, 2, . . . , 128 255 : 1

    - Limited to use with clean fluids and moderate temperatures

    Chen CL 27

    Digital Valve Operation

  • 7/27/2019 Dynamic Control2

    107/921

    - A collection of individual on-off valves arranged in parallel

    - All elements have different flowrates

    - All elements are controlled by pneumatic or electrical means upon

    command from a computer/controller

    - By adjusting the combination of open and closed valves

    = desired flowrate: quick, exact, high resolution

    - Digital Valve: adds or subtracts fixed area orifices responds quickly

    - Analog Valve: seeks a new orifice (opening) size

    responds slowly with overshoot

    Chen CL 28

    - IF increasing number of individual on/off valves, and

    valve openings are sized in a binary progression (1-2-4...)

  • 7/27/2019 Dynamic Control2

    108/921

    p g y p g ( )

    (doubling area openings doubling flowrates)

    THEN flow range in increased substantially

    - EX: 6-bit = range - 63 : 1; resolution - 163EX: 20-bit =

    range - 1, 048, 575 : 1; resolution - 1

    1,048,575

    Chen CL 29

    Advantages of Digital Valves- Fast Res o se

  • 7/27/2019 Dynamic Control2

    109/921

    - Fast Response

    Analog Valve: 3

    8 sec.

    Digital Valve: 50 100 msec. (milli-sec) Instantaneous response from zero flow to full flow Same speed from 1 to 2, and 0 to full

    - Wide Rangeability

    Analog valve: far less than 100 to 1

    Digital valve: 7-bit

    exceeds 100 to 1

    Chen CL 30

    - Precise Repeatability

    no position error absolutely repeatable

  • 7/27/2019 Dynamic Control2

    110/921

    - High Resolution

    Analog valve: 1% of maximum flow

    Digital valve:

    6-bit: r = 1 part in 63 (1.59%)

    8-bit: r = 1 part in 255 (0.39%)

    10-bit: r = 1 part in 1,023 (0.09%) 20-bit: r = 1 part in 1,048,575 (0.0001%)

    - Flow Measurement Capability

    - Computer Compatibility

    Chen CL 31

    A Globe Valve again

  • 7/27/2019 Dynamic Control2

    111/921

    Chen CL 32

    Overview

  • 7/27/2019 Dynamic Control2

    112/921

    - Some Descriptive Terms:

    single-seated, air-actuated, spring-opposed,fail-closed with a plug-and-seat trim

    Air pressure under the diaphragm causes the stem to rise

    As stem rises, area of opening between valve plug and seat

    increases Area of opening is maximum at maximum seat position

    Pressure drop across valve and valve opening determine flow rate

    through valve

    Chen CL 33

    - Valve Coefficient: Cv (gal/psig) (Cvmax ?)

    flow rate of water through the valve

  • 7/27/2019 Dynamic Control2

    113/921

    flow rate of water through the valve

    in US gallons per minute at 70oF

    when p across the valve is 1 psig(function of valve opening)

    - Flow of Liquid Through Valve:

    F = Cv

    p

    = Cvmaxf(m)

    p

    F: flow rate, US gpm (or, q)

    p: differential pressure, psig

    : specific gravity of fluid, relative to water at 70oF

    m%: 0 100%; or vp: valve position, 0 1

    Chen CL 34

    - Note: instrumentation schematic for a control valve

  • 7/27/2019 Dynamic Control2

    114/921

    Chen CL 35

    Action of Control ValvesSafety Consideration

  • 7/27/2019 Dynamic Control2

    115/921

    Safety Consideration

    - SAFETY is the only consideration in selecting the

    action of the control valve

    - Control valve action directly affects the action of the

    feedback controller

    Air-Failure-Close (AFC) Air-Failure-Open (AFO)

    orAir-to-Open (ATO) Air-to-Close (ATC)

    vp =m

    100 vp = 1 m

    100

    Chen CL 36

    Example:

  • 7/27/2019 Dynamic Control2

    116/921

    Chen CL 37

    Sizing of Control ValveA Basic Trade off Problem

  • 7/27/2019 Dynamic Control2

    117/921

    A Basic Trade-off Problem

    Process Engineer: bigger valve lower pv smaller pump lower operating cost

    lower operability !!Control Engineer: smaller valve larger pv

    larger pump

    higher operating cost

    higher operability

    - Design Logic:

    to design (select) the valve and the pump on having

    a process that can obtain specified qmin, qmax

    Chen CL 38

    Sizing of Control ValveSelect A Larger Valve

  • 7/27/2019 Dynamic Control2

    118/921

    Select A Larger Valve

    - Larger Valve

    q = 100 gpm, ph = 40 psi, f(x) = 0.5

    p1 = pressure after pump

    p2 = 150 psi, pressure at system output

    pt = p1 p2 = f(q) (constant)let q = q

    minat f = 0.1

    Chen CL 39

    - Select one valve such that pv = 20 psi

  • 7/27/2019 Dynamic Control2

    119/921

    p1 = 150 + 40 + 20 = 210 psi pumpq = C

    vmaxf(x)pv/G

    Cvmax =100

    0.5

    201

    = 44.72 gpm/

    psi valve

    assume ph = 40 q100

    2

    pv = p1 p2 ph= 210 150 40 q1002

    q(x) = 44.72 f(x)210 150 40q(x)1002

    Chen CL 40

    f ( ) 1 44 72 1

    210 150 40qmax2

  • 7/27/2019 Dynamic Control2

    120/921

    f(x) = 1 qmax = 44.72 1

    210 150 40 qmax100 qmax = 115 gpm

    f(x) = .1 qmin

    44.72 .1

    210 150 40 qmin100 2q

    min= 33.3 gpm

    qmaxq

    min

    =115

    33.3= 3.46 (turndown ratio)

    Chen CL 41

    Sizing of Control ValveSelect A Small Valve

  • 7/27/2019 Dynamic Control2

    121/921

    - Smaller Valve

    q = 100 gpm, ph = 40 psi, f(x) = 0.5

    p1 = pressure after pump

    p2 = 150 psi, pressure at system output

    pt = p1 p2 = f(q) (constant)let q = q

    minat f = 0.1

    Chen CL 42

    - Select one valve such that pv = 80 psi

  • 7/27/2019 Dynamic Control2

    122/921

    p1 = 150 + 40 + 80 = 270 psi

    pump

    q = Cvmaxf(x)

    pv/G

    Cvmax =100

    0.5

    801

    = 22.36 gpm/

    psi valve

    assume ph = 40 q1002 pv = p1 p2 ph

    = 270 150 40 q1002 q(x) = 22.36 f(x)270 150 40q(x)1002

    Chen CL 43

    f(x) = 1 qmax = 22.36 1

    270 150 40 qmax100 2q = 141 gpm

  • 7/27/2019 Dynamic Control2

    123/921

    qmax = 141 gpm

    f(x) = .1 qmin

    22.36 .1270 150 40 qmin1002q

    min = 24.2 gpm

    qmaxqmin

    = 14124.2 = 5.83 > 3.46

    Chen CL 44

    Control Valve Capacity

  • 7/27/2019 Dynamic Control2

    124/921

    - Cv coefficient: flow in US gpm of water that flowsthrough a valve at a pressure drop of 1 psi across valve

    - Liquid:

    q = CvpvGf

    = Cvmaxf(vp)pvGf

    (liquid flow, US gpm)

    pv : pressure drop across valve, psi Gf : specific gravity

    w = qgal

    min 60min

    h 8.33Gflb

    gal = 500CvGfpv lb/h

    Chen CL 45

    - Compressible Flow: (Masoneilan Inst. Inc.)

  • 7/27/2019 Dynamic Control2

    125/921

    qs = 836CvCfp1GT

    (y 0.148y3)

    w = 2.8CvCfp1

    G520T (y 0.148y3) gas or vapor1.83CvCf

    p1(1+0.0007T

    SH)(y 0.148y3) steam flow

    y =1.63

    Cf pvp1

    qs : gas flow, scfh (ft3/h at standard conditions of 14.7 psia, 60oF)

    G : gas specific gravity w.r.t. air, = M W/29

    T : temperature at valve inlet, oR =o F + 460

    Cf : critical flow factor (0.6 0.95)p1 : pressure at valve inlet w : gas flow, lb/h

    TSH

    : degree of superheat

    p = p1

    p2 pressure drop across valve

    Chen CL 46

  • 7/27/2019 Dynamic Control2

    126/921

    Chen CL 47

    - Compressible Flow: (Fisher Controls)

  • 7/27/2019 Dynamic Control2

    127/921

    qs = Cg502GTp1 sin

    59.64C1

    pvp1 rad

    - Note: the above sine function is basically the same

    function of y

    Chen CL 48

  • 7/27/2019 Dynamic Control2

    128/921

    Chen CL 49

  • 7/27/2019 Dynamic Control2

    129/921

    Chen CL 50

    Control Valve Capacity: Example

  • 7/27/2019 Dynamic Control2

    130/921

    From Fig. C-10-1a, a 3-in. Masoneilan valve with full trim has a

    capacity factor of 110 gpm/(psi)

    1/2

    when fully opened. The pressuredrop across the valve is 10 psi.

    (a) Calculate the flow of a liquid solution with density 0.8 g/cm3

    (1.0 g/cm3 for water).

    q = 110

    100.8 = 389 gpm

    w = 500(110)

    (0.8)(10) = 155, 600 lb/h

    Chen CL 51

    (b) Calculate the flow of gas with average MW of 35 when valve inlet

    conditions are 100 psig and 100oF.

  • 7/27/2019 Dynamic Control2

    131/921

    G = 35/29 = 1.207 p1 = 100 + 14.7 = 114.7 psia

    T = 100 + 460 = 560oR Cf = 0.9

    y = 1.630.9

    10

    114.7 = 0.535

    qs = 836(110)(0.9)114.7

    (1.207)(560)[0.535 0.148(0.535)3]

    0.512= 187, 000 scfh

    w = 2.8(110)(0.9)(114.7)

    1.207520560(0.512) = 17, 240 lb/h

    Chen CL 52

    (c) Calculate the flow of gas from part (b) when the inlet pressure is

    5 psig. Calculate the flow both in volumetric and mass rate units,

    and compare the results for a 3 in Fisher Control valve

  • 7/27/2019 Dynamic Control2

    132/921

    and compare the results for a 3-in. Fisher Control valve.

    p1 = 5 + 14.7 = 19.7 psia

    y = 1.290 [y 0.148y3] = 0.972qs = 836(110)(0.9)

    19.7(1.207)(560)

    (0.972) = 61, 000 scfh

    = 5, 620 lb/h

    Fisher: qs = 4280

    520(1.207)(560)(114.7)sin

    59.6435.7

    10

    114.7

    = 204, 000 scfh (9% higher)

    qs = 4280

    520(1.207)(560)(19.7) sin

    59.6435.7

    1019.7

    = 68, 700 scfh (13% higher)

    Chen CL 53

    Sizing of Control Valves: Example

    A t l l i t l t th fl f t i t di till ti

  • 7/27/2019 Dynamic Control2

    133/921

    A control valve is to regulate the flow of steam into a distillation

    column reboiler with a design heat transfer rate of 15 million Btu/h.

    The supply steam is saturated at 20 psig. Size the control valve fora pressure drop of 5 psi and 100% over-capacity.

    H = 930 Btu/lb latent heat of cond., from steam table

    qs = 15, 000, 000/930 = 16, 130 lb/hp1 = 20 + 14.7 = 3 4.7 (valve inlet pressure)

    Cf = 0.8

    y = 1.63

    0.8534.7 = 0.773 y 0.148y3 = 0.705Cv = f

    Gf

    pv= 16,130(1.83)(0.8)(34.7)(.705) = 450

    gpmpsi

    Cvmax = 2.0Cv = 900gpm

    psi

    Cv = 1000 (select a valve with this Cv)

    Chen CL 54

    Fisher: G = 18/2 9 = 0.621 C1 35

    q (16 130)(380)/18 341 000 scfh (380 scf/lbmole)

  • 7/27/2019 Dynamic Control2

    134/921

    qs = (16, 130)(380)/18 = 341, 000 scfh (380 scf/lbmole)

    sin 59.6435 534.7 = sin(0.647) = 0.603Cg =

    341,000520

    (0.621)(710)(34.7)(0.603)

    = 15, 000

    Cg = 30, 000 Cv = Cg/C1 = 30, 000/35 = 856

    gpmpsi

    Chen CL 55

    Sizing of Control Valves: ExampleThe following figure shows a process for transferring an oil from a

  • 7/27/2019 Dynamic Control2

    135/921

    storage tank to a separation tower. The tank is at atmospheric

    pressure, and the tower works at 25.9 in.Hg absolute (12, 7 psia).Nominal oil flow is 700 gpm, its specific gravity is 0.94, and its

    vapor pressure at the following temperature of 90oF is 13.85 psia.

    The pipe is 8-in. Schedule 40 commercial steel pipe, and the

    efficiency of the pump is 75%. Size a valve to control the flow of oil.

    From liquid flow correlations, the frictional pressure drop in the line

    is found to be 6 psi.

    Chen CL 56

    Note: the liquid may flash if we place valve at entrance of tower

    (12.7 psia < 13.85 psia)

    Place valve at pump discharge: hydrostatic pressure is

  • 7/27/2019 Dynamic Control2

    136/921

    Place valve at pump discharge: hydrostatic pressure is

    12.7 + (62.3 lb/ft2

    )(0.94)(60 ft)/(144 in2/ ft2) 24.4 psia

    = 37.1 psia

    Select pv = 5 psi

    annual oper cost =700 gal1 min

    1 ft3

    7.48 gal5 lbf1 in2

    144 lbf1 ft2

    1 kW-min44250 ft-lbf

    8200 h1 yr

    $0.031 kW-h

    10.75

    = $500/yr

    Cvmax = 2(700)0.945 = 607 gpmpsi select an 8-in. Masoneilan valve with Cv = 640

    Chen CL 57

    Valve Inherent Characteristics

    ( )

  • 7/27/2019 Dynamic Control2

    137/921

    - Inherent Characteristics: q(x)

    qmaxpv=c

    q(x) = Cvmax f(x) Cv

    pvG x : 0 1 (= vp)qmax = Cvmax 1

    pv

    G(valve full open)

    q(x)

    qmax pv=c = f(x) (ratio of flow area)=

    x linear

    Rx1 equal percentage

    quick opening

    Chen CL 58

    Valve Inherent Characteristics

  • 7/27/2019 Dynamic Control2

    138/921

    Chen CL 59

    Valve Inherent Characteristics

  • 7/27/2019 Dynamic Control2

    139/921

    - Note: equal percentage ?

    df(x)

    dx= kf(x)

    df(x)f

    = kdx

    a + ln[f(x)] = kx

    a = k (x = 0 f = 0; x = 1 f = 1)

    ln[f(x)] = k(x 1)f(x) = ek(x1) = Rx1

    Chen CL 60

    Valve Installed Characteristics

  • 7/27/2019 Dynamic Control2

    140/921

    - Installed Characteristics: q(x)

    qmax pt=cq(x) = Cvmax f(x)

    pv

    Gx : 0 1

    = Cvmax f(x)pt ph

    G

    = Cvmax

    f(x)

    pt pmaxh q(x)qmax

    2

    G

    qmax = Cvmax 1

    pt pmaxh 1G

    Chen CL 61

    Valve Installed Characteristics

  • 7/27/2019 Dynamic Control2

    141/921

    q(x)

    qmax

    pt=c

    = f(x)

    pt pmaxh q(x)qmax2pt pmaxh

    q(x)qmax pt=c = f(x)pt

    pt [1 f2(x)] pmaxh > f(x)

    = f(x)1

    1 [1 f2(x)]

    pmaxh

    pt = f(x)

    11 [1 f2(x)](1 )

    =f(x)

    + (1 )f2(x)

    Chen CL 62

    Valve Installed Characteristics

  • 7/27/2019 Dynamic Control2

    142/921

    where = pvptq(x)max =

    pvpt

    qmax

    =

    = pvptqnote:

    q(x)

    qmax

    pt=c

    =f(x)

    1 [1 f2(x)] 1

    qmaxq

    Chen CL 63

    Valve Installed Characteristics again

  • 7/27/2019 Dynamic Control2

    143/921

    pL = kLGfq2 kL =

    pLGfq

    2

    pv = Gfq2

    C2v(Cv = Cvmaxf(x))

    po = pv + pL =

    1C2v

    + kL

    Gfq2

    q = Cv1+kLC

    2v

    p0Gf

    qmax =

    Cvmax

    1+kLC2vmaxp0Gfq

    qmax

    po=c

    =Cv

    Cvmax

    f(x)

    1+kLC2vmax

    1+kLC2v

    Chen CL 64

    Valve Installed Characteristics: Example

    F l l fi d h i fl h h h l h

  • 7/27/2019 Dynamic Control2

    144/921

    For last example, find the maximum flow through the valve, the

    installed flow characteristics, and the rangeability of the valve.

    Assume both linear and equal percentage characteristics with

    rangeability parameter of R = 50. Analyze the effect of varying the

    pressure drop across the valve at nominal flow.

    Chen CL 65

    kL =6 psi

    (0.94)(700 gpm)2= 13.0 106 psi

    (gpm)2

  • 7/27/2019 Dynamic Control2

    145/921

    ( )( g ) (g )

    po = pv + pL = 5 + 6 = 11 psi (constant)

    qmax = 6401+(13.0106)(640)2

    110.94 = 870 gpm (< 2 700)

    Linear:

    q.95 =(640)(0.95)

    1+(13.0

    106)(640)2

    110.94 = 862 gpm

    q.05 = (640)(0.05)1+(13.0106)(640)2

    110.94 = 109 gpm

    rangeability = 862109 = 7.9 (inherent range =.95.05 = 19)

    Equal %:

    q.95 = (640)(500.95

    1

    )1+(13.0106)(640)2

    110.94 = 839 gpm

    q.05 =(640)(500.051)

    1+(13.0106)(640)2

    110.94 = 53.2 gpm

    rangeability = 83953.2 = 15.8 (inherent range =500.951

    500.051 = 34.8)

    Chen CL 66

    valve pressure drop, psi

    2 5 10

  • 7/27/2019 Dynamic Control2

    146/921

    total pressure drop 8 11 16

    calculated Cvmax 960 607 429

    required valve size 10-in. 8-in. 8-in.

    actual Cvmax 1000 640 640

    maximum flow, gpm 779 870 1049linear rangeability 5.4 7.9 7.9

    Equal % rangeability 10.8 15.8 15.8

    Chen CL 67

    Installed flow characteristics:

    (a) linear inherent characteristics.

    (b) equal percentage characteristics with = 59

  • 7/27/2019 Dynamic Control2

    147/921

    ( ) q p g

    Chen CL 68

    Application I: Fluid TransferSelf-Regulated Processes

  • 7/27/2019 Dynamic Control2

    148/921

    Chen CL 69

    Application I: Fluid TransferLiquid Transferred by Pressure Difference

  • 7/27/2019 Dynamic Control2

    149/921

    Chen CL 70

    Application I: Fluid TransferLiquid Transferred by Pressure Difference

  • 7/27/2019 Dynamic Control2

    150/921

    Chen CL 71

    Application I: Fluid TransferA Flow-Controlled Pump

  • 7/27/2019 Dynamic Control2

    151/921

    Chen CL 72

    Application I: Fluid TransferSteam Ejector

  • 7/27/2019 Dynamic Control2

    152/921

    Chen CL 73

    Application II: Heat TransferSteam Heaters and Dryers

  • 7/27/2019 Dynamic Control2

    153/921

    Chen CL 74

    Application II: Heat TransferHeat Exchangers

  • 7/27/2019 Dynamic Control2

    154/921

    Chen CL 75

    Application II: Heat TransferAntifreeze Applications

  • 7/27/2019 Dynamic Control2

    155/921

    Chen CL 76

    Application III: Chemical ReactionsA pH Control System

  • 7/27/2019 Dynamic Control2

    156/921

    Chen CL 77

    Application III: Chemical ReactionsCombustion Processes

  • 7/27/2019 Dynamic Control2

    157/921

  • 7/27/2019 Dynamic Control2

    158/921

    Proportional-Integral-Derivative

  • 7/27/2019 Dynamic Control2

    159/921

    PID Controllers

    Cheng-Liang Chen

    PSELABORATORYDepartment of Chemical Engineering

    National TAIWAN University

    Chen CL 1

    Outline

    - Proportional Integral Derivative Controller:

  • 7/27/2019 Dynamic Control2

    160/921

    - Proportional-Integral-Derivative Controller:

    PID Control based on CurrentFuture Error with ConstantReset Bias

    PID Control based on CurrentFuture Error with ConstantReset Bias

    PID Control based on CurrentFuture Error with ConstantReset Bias

    PIDControl based on CurrentFuture Error with ConstantReset Bias

    PID Control based on CurrentFuture Error with ConstantReset Bias

    PID Control based on CurrentFuture Error with ConstantReset Bias

    PID Control based on CurrentFuture Error with ConstantReset Bias

    Chen CL 2

    - Steady Offset of PID when using Constant bias

  • 7/27/2019 Dynamic Control2

    161/921

    -Series PID Parallel PID

    - Response of PID Controllers to Typical Inputs

    -

    Operational Aspects of PID Controllers problems of D action: sensitivity to noise

    problems of I action: moving PB and reset windup

    manual control requirement

    bump-less transfer

    Chen CL 3

    PID Controller: A Survey

    More Than 95% of Controllers Are of PID Type

  • 7/27/2019 Dynamic Control2

    162/921

    - Bialkowski (1993): paper mills in Canada

    A typical mill has more than 2000 control loops

    97% of loops use PI control

    Only 20% of control loops were found to work welland decrease process variability

    Reasons for poor performance were Poor tuning (30%)

    Valve problems (30%)

    Others (20%): sensor, bad sampling rates

    Chen CL 4

    PID Controller: A Survey

    More Than 95% of Controllers Are of PID Type

  • 7/27/2019 Dynamic Control2

    163/921

    - Ender (1993)

    30% of installed process controllers operate in manual

    20% of loops use default parameters (factory tuning)

    30% of loops function poorly because of equipmentproblems (valves, sensors )

    Chen CL 5

    Why PID Controllers Are So Popular ?

    - St t i l

  • 7/27/2019 Dynamic Control2

    164/921

    - Structure: simple

    Easy for understanding

    A few adjustable parameters, easy for tuning

    - Performance: good or acceptable level

    - Robustness: strong to uncertain operating conditions

    - Applicability: wide to different processes/industries

    Chen CL 6

    A Heat Exchanger with Feedback ControlValve: AFC (ATO); Controller: Reverse Action

  • 7/27/2019 Dynamic Control2

    165/921

    Chen CL 7

    Simplest Controller: On-Off Control

  • 7/27/2019 Dynamic Control2

    166/921

    u(t) =

    ub + u if y(t) < ysp d

    ub u if y(t) > ysp + d

    - Problem: oscillatory response !On-off cares about control direction only;

    On-off gives same control action for different error magnitudes

    - Solution: control action considering error magnitude

    Chen CL 8

    Current-Error-Based P Controlwith Constant Bias (SS value)

  • 7/27/2019 Dynamic Control2

    167/921

    current control corrective action, u(t) current error magnitude, e(t) ysp y(t)

    u(t) e(t) ysp y(t)

    u(t) = Kc e(t) p(t) (Kc: adjustable proportionality) u(t) = Kc e(t)

    u(t)

    + ub

    SS value

    for e(t) = 0

    Chen CL 9

    Problem of Current-Error-Based P Control

    u(t) = Kc e(t) + ub

  • 7/27/2019 Dynamic Control2

    168/921

    ( ) c ( ) u(t)+ bSS valuefor e(t) = 0

    - Too late to correct current error

    - It takes time to know effect of control on output

    conservative action to guarantee stability limited achievable control performance

    Chen CL 10

    Solution: Future-Error-Based P ControlBack to the Future

  • 7/27/2019 Dynamic Control2

    169/921

    Control action based on future condition (error) take control action in advance better control performance

    u(t) = Kc e(t+Td) u(t)

    + ubSS value

    for e(t) = 0

    u(t) = Kc e(t+Td) u(t)

    + ubSS value

    for e(t) = 0

    Chen CL 11

    Future-Error-Based P ControlGives Better Performance

    HE: pulse decrease in input temperature

  • 7/27/2019 Dynamic Control2

    170/921

    HE: pulse decrease in input temperature

    - At t1: e(t1 + Td) > e(t1) P control based on e(t1 + Td) has larger action more steam smaller undershoot in T

    ( Pre-Act P) Kc e(t1 + Td) + ub > Kc e(t1) + ub

    ( Normal P)

    Chen CL 12

    Future-Error-Based P ControlGives Better Performance

    HE: pulse decrease in input temperature

  • 7/27/2019 Dynamic Control2

    171/921

    HE: pulse decrease in input temperature

    - At t2: e(t2 + Td) < e(t2) P control based on e(t2 + Td) has smaller action less steam smaller overshoot in T

    ( Pre-Act P) Kc e(t2 + Td) + ub < Kc e(t2) + ub

    ( Normal P)

    Chen CL 13

    Implement Future-Error-Based P ControlAs Current-Error-Based PD Control

  • 7/27/2019 Dynamic Control2

    172/921

    Original P: u(t) = Kc e(t) + ub

    PreAct P: u(t) = Kc e(t + Td) + ub

    Kc

    e(t) + Td

    de(t)

    dt

    e(t)e(t+Td)

    + ub

    Chen CL 14

  • 7/27/2019 Dynamic Control2

    173/921

    u(t) = Kc e(t + Td) + ub

    Kc e(t) + Tdde(t)

    dt e(t)e(t+Td)

    + ub

    Chen CL 15

    Sub-SummaryP control based on current error with constant bias

  • 7/27/2019 Dynamic Control2

    174/921

    e(t) e(t + Td)

    P control based on future error with constant bias

    u(t) = Kce(t + Td) + ub

    Kc

    e(t) + Td

    de(t)

    dt

    e(t)

    +ub

    PD control based on current error with constant bias

    Chen CL 16

    Steady Offset for P (PD) Control

    - Non zero Steady State Offset (I): Setpoint Change

  • 7/27/2019 Dynamic Control2

    175/921

    - Non-zero Steady State Offset (I): Setpoint Change

    Initial steady state: (all variables [0, 100%])

    y = ysp = y e = 0 u = ub = u =

    Chen CL 17

    Case I: Setpoint change ysp : y y + New steady state: y =?, u =?, e =?

    (change in y) = K {change in process input}

  • 7/27/2019 Dynamic Control2

    176/921

    (change in y) = Kp {change in process input}

    = Kp {(change in CO) + (change in load)}

    y y = Kp

    u u

    change in CO

    +

    change in load=0

    = Kp

    Kc

    e (y + ) new sp

    y

    +ub u

    u + =0

    y = y + KcKp1 + KcKp

    new steady state

    = y + desired sp

    Chen CL 18

    - Non-zero Steady State Offset (II): Load Change

  • 7/27/2019 Dynamic Control2

    177/921

    Initial steady state: (all variables [0, 100%])

    y = ysp = y e = 0 u = ub = u =

    Chen CL 19

    Case II: Load change : + New steady state: y =?, u =?, e =?

    (change in y) K {change in process input}

  • 7/27/2019 Dynamic Control2

    178/921

    (change in y) = Kp {change in process input}

    = Kp {(change in CO) + (change in load)}

    y y = Kp

    u u

    change in CO+

    change in load=

    = Kp

    Kc

    e (y)

    sp

    y

    +ub

    uu +

    y = y + Kp1 + KcKp

    new steady state

    = ydesired sp

    Chen CL 20

    Current-Error-Based P Controlwith Reset Bias

  • 7/27/2019 Dynamic Control2

    179/921

    - Question:using P or PD control with constant bias,

    how to guarantee zero steady-state offset ?

    (at steady state: e = 0, y = ysp)

    - Answer: u = ub at SS

    desired: e = 0 (y = ysp) at SS

    u = ub at SS

  • 7/27/2019 Dynamic Control2

    180/921

    Chen CL 22

    Reset Bias for Zero SS OffsetFeasible Method

  • 7/27/2019 Dynamic Control2

    181/921

    -

    Feasible method to guarantee u = ub at SS:desired: ub = u at SS

    simplest method: ub(t) equals u(t) t

    feasible method: ub(t) tracks u(t) t

    - ub(t) tracks u(t) with first-order dynamics:

    (use Ti to adjust tracking velocity)

    Tidub(t)

    dt+ ub(t) = u(t)

    equal

    tracking

    Chen CL 23

    P control based on current error with reset biasvia first-order dynamics

  • 7/27/2019 Dynamic Control2

    182/921

    Chen CL 24

    Reset Bias Integral Action

  • 7/27/2019 Dynamic Control2

    183/921

    (1) u(t) = Kce(t) + ub(t) (P with reset bias)

    (2) u(t) = Tidub(t)

    dt + ub(t) (ub(t) tracks u(t))

    Tidub(t)

    dt= Kce(t) = p(t)

    ub(t) ub =1

    Ti

    t0

    p(t)dt

    change in bias

    =KcTi

    t0

    e(t)dt

    =ub(t)

    Chen CL 25

    (1) u(t) = Kce(t)p(t)

    +

    ub(t) 1

    Ti

    t0

    p(t)(t)dt +ub (PI)

  • 7/27/2019 Dynamic Control2

    184/921

    p(t) ub(t)= Kce(t) +

    KcTi

    t0

    e(t)dt + ub

    = Kc

    e(t) + 1Ti

    t0

    e(t)dt

    + ub

    - Reset bias: interpreted as integral action

    current-error-based P control with reset bias

    (reseting bias according to integral of error)

    = current-error-based PI control with constant bias

    Chen CL 26

    Reset Bias Integral Action

  • 7/27/2019 Dynamic Control2

    185/921

    Chen CL 27

  • 7/27/2019 Dynamic Control2

    186/921

    Chen CL 28

    Future-Error-Based P Control with Reset Bias

    - P control based on future error with reset bias

  • 7/27/2019 Dynamic Control2

    187/921

    PD PI Interpreted As PD +PI (series PID ) Controller

    e(t + Td) e(t) + Tdde(t)

    dt

    e(t)

    Chen CL 29

    ub(t) =1

    Ti

    Kce

    (t)dt + ub

    ub(t)

  • 7/27/2019 Dynamic Control2

    188/921

    u(t) = Kce(t) p(t)

    +

    b( ) 1TiKce(t)

    p(t)

    dt +ub

    ub(t)

    Chen CL 30

    Series PID Parallel PID

  • 7/27/2019 Dynamic Control2

    189/921

    Kpc = Kc

    1 + TdTi

    Kc = Kpc

    0.5 +

    0.25

    Tpd

    Tpi

    T

    p

    i = Ti 1 + TdTi Ti = Tpi 0.5 + 0.25 Tpd

    Tpi Tpd = Td/

    1 + TdTi

    Td = T

    pd /

    0.5 +

    0.25

    Tpd

    Tpi

    Chen CL 31

    Series PID Parallel PID

  • 7/27/2019 Dynamic Control2

    190/921

    p(t) = Kc

    e(t) + Td

    de(t)dt

    u(t) = p(t) + ub(t)

    Tidub(t)dt + ub(t) = u(t)

    P(t) = Kc

    E(t) + Td

    dE(t)dt

    U(t) = P(t) + Ub(t)

    TidUb(t)dt + Ub(t) = U(t)

    P(s) = Kc (E(s) + TdsE(s)) = Kc(1 + Tds)E(s)

    U(s) = P(s) + Ub(s)

    TisUb(s) + Ub(s) = U(s) Ub(s) =1

    Tis+1U(s)

    Chen CL 32

    U(s) = P(s) + Ub(s) = P(s) +1

    Tis+1U(s)

    U(s) = Tis+1Tis P(s)

    Tis+1K (1 + T )E( ) ( i PID)

  • 7/27/2019 Dynamic Control2

    191/921

    = Tis+1TisKc(1 + Tds)E(s) (series PID)

    = KcTis

    TiTds2 + (Ti + Td)s + 1

    E(s)

    = KcTi+TdTi

    1 + 1(Ti+Td)s

    + TiTdTi+Tds

    E(s)

    = Kc 1 + TdTi1 + 1Ti1+TdTi s + Td 1 + TdTi sE(s)= Kpc

    1 + 1

    Tpi s

    + Tpd s

    E(s) (parallel PID)

    Chen CL 33

    P Control Based on {Current, Future} Errorwith {Constant, Reset} Bias

    const. bias reset bias

  • 7/27/2019 Dynamic Control2

    192/921

    current error P PI

    future error PD PID

    Chen CL 34

    P Action to Step Error

  • 7/27/2019 Dynamic Control2

    193/921

    Chen CL 35

    PD Action to Step Error

  • 7/27/2019 Dynamic Control2

    194/921

    Chen CL 36

    PI (P-Reset) Action to Step Error

  • 7/27/2019 Dynamic Control2

    195/921

    Chen CL 37

    PID Action to Step Error

  • 7/27/2019 Dynamic Control2

    196/921

    Chen CL 38

    PD Action to Ramp Error

  • 7/27/2019 Dynamic Control2

    197/921

    Chen CL 39

    PID Action to Ramp Error

  • 7/27/2019 Dynamic Control2

    198/921

    Chen CL 40

    Problem of D Action (I):Sensitive to High-Frequency Noise

  • 7/27/2019 Dynamic Control2

    199/921

    - Derivative action without filter:

    - Problem: sinusoidal input output mag. frequency

    e(t) = A sin(t) D(t) = Tdde(t)dt = TdA cos(t)

    Chen CL 41

    Solution: (first-order) low-pass filter

    TdN

    dD(t)

    dt+ D(t) = Td

    de(t)

    dt

  • 7/27/2019 Dynamic Control2

    200/921

    D action equal

    follow

    Chen CL 42

    - Problem: (again)derivative + filtering large inner signal (e

    d)

    Solution: filtering derivative

  • 7/27/2019 Dynamic Control2

    201/921

    Solution: filtering derivative

    Chen CL 43

    Problem of D Action (II):Bump Response to Step Input

    - Solution 1: D action on measurement

  • 7/27/2019 Dynamic Control2

    202/921

    Derivative on measurement:y(t + Td) y(t) + Td

    dy(t)

    dte(t + Td) = ysp y(t + Td)

    = ysp y(t) + Td

    dy(t)

    dt e(t) Tddy(t)

    dt For noise: filtering + derivative action

    TdN

    dyf(t)

    dt+ yf(t) = y(t) (yf(t) follows y(t))

    D(t) = KcTddyf(t)

    dt (derivative on yf(t))

    Chen CL 44

    - Solution 2: filtering on setpoint signal(use r(t) as the practical setpoint)

  • 7/27/2019 Dynamic Control2

    203/921

    - Solution 3: setpoint weighting (skip)

    Chen CL 45

    Problem of Reset (I):Moving Proportional Band

  • 7/27/2019 Dynamic Control2

    204/921

    - (Reverse) P with reset bias: ([umin, umax] = [0%, 100%])

    u(t) = Kc

    ysp y(t)

    + ub(t) (Kc > 0)

    y(t) = ymax = ? u(t) = Kc

    ysp ymax

    + ub(t) = umin = 0%

    y(t) = ymin

    = ? u(t) = Kc ysp ymin

    + ub(t) = umax = 100%

    y(t) > ymax u(t) < umin (saturation !)

    y(t) < ymin u(t) > umax (saturation !)

    y(t) {ymin, ymax} u(t) {umax, umin} (normal operation)

    Chen CL 46

    - Proportional Band: (for normal operation)

    PB = [ymin, ymax] =

    ysp +ub(t)umin

    Kc, ysp +

    ub(t)umaxKc

    ub(t)0 ub(t)100

  • 7/27/2019 Dynamic Control2

    205/921

    = ysp + ub( ) 0Kc , ysp + ub( ) 00Kc - If y(t) PB, Then controller output is normal

    width of PB: affected by Kc

    ymax ymin =umax umin

    Kc=

    100

    Kc%

    position of PB: affected by Kc, ysp, ub(t)

    Chen CL 47

    - Example:ysp = 50%, Kc = 2, ub(t) = 50% t,

    umin = 0%, umax = 100%

  • 7/27/2019 Dynamic Control2

    206/921

    PB =

    50 + ub(t) 100Kc

    % , 50 + ub(t) 0Kc

    %

    = [ 25% , 75% ]

    Chen CL 48

    Moving PB due to Resetting Bias: Example

    - Process: G(s) = 0.0163s+150

    30s+11

    10s+1

  • 7/27/2019 Dynamic Control2

    207/921

    - ZN-PI tuning: Kc = 3.40, Ti = 37 ( PB =

    100%Kc%/%

    = 29.4%)

    Chen CL 49

    Moving PB due to Resetting Bias: Example

    - Process: G(s) =

    0.0163s+1

    50

    30s+1

    1

    10s+1

  • 7/27/2019 Dynamic Control2

    208/921

    - Faster reset: Kc = 3.40, Ti = 18.5 ( PB = 100%Kc%/% = 29.4%)

    Chen CL 50

    Moving PB due to Resetting Bias: Example

    - Process: G(s) = 0.0163s+150

    30s+11

    10s+1

  • 7/27/2019 Dynamic Control2

    209/921

    - Slower reset: Kc = 3.40, Ti = 74 ( PB =

    100%Kc%/%

    = 29.4%)

    Chen CL 51

    Problem ofReset (II)

  • 7/27/2019 Dynamic Control2

    210/921

    Reset Windup

    HE Example

    Chen CL 52

    Anti Reset-Windup:Use A Saturation Model to Limit Control Signal

  • 7/27/2019 Dynamic Control2

    211/921

    u(t) =

    100% for v(t) 100%

    v(t) for 0% v(t) 100%

    0% for v(t) 100%

    Chen CL 53

    Anti Reset-Windup for Parallel PID

  • 7/27/2019 Dynamic Control2

    212/921

    If v > u = umax

    Then es = u v < 0

    1Tt

    esdt < 0 v until v = umax

    Chen CL 54

    Modification of PID (I):High-Frequency Noise

  • 7/27/2019 Dynamic Control2

    213/921

    - Problem of D Action: sensitive to high frequency noiseSolution: low-pass filter on D (P & D)

    Chen CL 55

    Modification of PID (II):Anti Reset-Windup

  • 7/27/2019 Dynamic Control2

    214/921

    - Problem of Reset Action: reset windup (saturation)Solution: limiter

    Chen CL 56

    Modification of PID (III):Manual Control

    - Manual control: with an integrator

  • 7/27/2019 Dynamic Control2

    215/921

    Chen CL 57

    Modification of PID (IV):Bumpless A/M Transfer

  • 7/27/2019 Dynamic Control2

    216/921

    - When in automatic control: m(t) (manual) tracks u(t) (auto) m(t): always ready to control

    Chen CL 58

    Modification of PID (V):Bumpless M/A Transfer

    - Method 1: resetting bias during M/A (keep original ysp)

  • 7/27/2019 Dynamic Control2

    217/921

    let ub(t) = m(t) Kce(t) (when M/A transfer)

    thus u(t) = ub(t) + Kce(t) (auto control action)

    = m(t) (final manual action)

    Chen CL 59

    - Method 2: set-point tracking (ysp(t) tracks y(t) when manual control)

    Tsdysp(t)

    dt+ ysp(t) = y(t) (when manual control)

  • 7/27/2019 Dynamic Control2

    218/921

    Disadvantage: ysp moved to undesired value ?

    Chen CL 60

    A Complete PID Controller (I) Automatic control Anti-reset windup Bias tracking: bias tracks final output u(t) Manual tracking: m(t) tracks final output u(t)

  • 7/27/2019 Dynamic Control2

    219/921

    Manual tracking: m(t) tracks final output u(t) Manual setpoint adjustment

    Chen CL 61

    A Complete PID Controller (II) Manual control Anti-reset windup Bias tracking: bias tracks final output u(t) Manual tracking: m(t) tracks final output u(t)

  • 7/27/2019 Dynamic Control2

    220/921

    a ua t ac g m(t) t ac s a output u(t) (Manual setpoint adjustment)

    Chen CL 62

    A Complete PID Controller (III) External setpoint (used in Cascade Control) Anti-reset windup Bias tracking: bias tracks final output u(t) Manual tracking: m(t) tracks final output u(t)

  • 7/27/2019 Dynamic Control2

    221/921

    g ( ) p ( ) Setpoint tracking:

    Chen CL 63

    A Complete PID Controller (IV) Automatic control (used in Override Control) Anti-reset windup Bias tracking: bias tracks external signal z(t) Manual tracking: m(t) tracks final output u(t)

  • 7/27/2019 Dynamic Control2

    222/921

    g ( ) p ( ) Setpoint tracking:

    Chen CL 64

  • 7/27/2019 Dynamic Control2

    223/921

    Thank You for Your Attention

    Modeling Dynamic and StaticBehavior of Chemical Processes

  • 7/27/2019 Dynamic Control2

    224/921

    Cheng-Liang Chen

    PSELABORATORYDepartment of Chemical Engineering

    National TAIWAN University

    Chen CL 1

    State Variables and State Equations

    - State Variables:

  • 7/27/2019 Dynamic Control2

    225/921

    A set of fundamental dependent quantities whose valueswill describe the natural state of a given system

    (temperature, pressure, flow rate, concentration )

    - State Equations:A set of equations in the state variables above which

    will describe how the natural state of a given system

    changes with time

    Chen CL 2

    Principle of Conservation of A Quantity S

  • 7/27/2019 Dynamic Control2

    226/921

    S =

    total mass

    mass of individual componentstotal energy

    momentum

    Chen CL 3

    accumulation of S

    within a system

    time period=

    flow of S

    in the system

    time period

  • 7/27/2019 Dynamic Control2

    227/921

    flow of S

    out the system

    time period

    +

    amount of S generated

    within the system

    time period

    amount of S consumed

    within the system

    time period

    Chen CL 4

    - Total Mass Balance:

    d(V)

    dt=i:inlet

    iFi

    j:outlet

    jFj

  • 7/27/2019 Dynamic Control2

    228/921

    - Mass Balance on Component A:

    dnA

    dt=

    d(cA

    V)

    dt=

    i:inlet

    cAi

    Fi

    j:outlet

    cAj

    Fj rV

    - Total Energy Balance:

    dEdt

    =d(U + K+ P)

    dt=i:inlet

    iFihi

    j:outlet

    jFjhjQWs

    Chen CL 5

    Mathematical ModelA Stirred Tank Heater

    - Mathematical model of a process

  • 7/27/2019 Dynamic Control2

    229/921

    = state equations with associated state variables

    Chen CL 6

    - Total mass in tank: V = Ah

    - Total energy of liquid in tank:

  • 7/27/2019 Dynamic Control2

    230/921

    E = U + K+ PdU

    dt

    dH

    dt;

    dK

    dt=

    dP

    dt= 0

    H = Ahcp

    T Tref

    - State variables: h, T

    - Total mass balance:

    d(Ah)

    dt= Fi F

    =c A

    dh

    dt= Fi F

    Chen CL 7

    - Total energy balance:

  • 7/27/2019 Dynamic Control2

    231/921

    d

    Ahcp

    T Tref

    dt

    = Ficp

    Ti Tref F cp

    T T

    ref

    + Q

    Tref=0 A

    d(hT)

    dt

    = FiTi F T +Q

    cp

    Ad(hT)

    dt= Ah

    dT

    dt+ T A

    dh

    dt

    =FiF= FiTi F T + Q

    cp

    AhdT

    dt= Fi (Ti T) +

    Q

    cp

    Chen CL 8

    - Summary: State equations

    Adh

    dt= Fi F

  • 7/27/2019 Dynamic Control2

    232/921

    AhdTdt = Fi (Ti T) + Qcp

    - Summary: variables

    state variables: h, T

    output variables: h, T

    disturbances: Ti, Fi

    manipulated variables: Q, Fparameters: A,,cp

    Chen CL 9

    Mathematical ModelA Stirred Tank Heater (cont)

  • 7/27/2019 Dynamic Control2

    233/921

    - Assumed initial steady states:

    0 = Adh

    dt= Fi,s Fs

    0 = AhdTdt

    = Fi,s (Ti,s Ts) +Qscp

    Chen CL 10

    - Temperature response to a step decrease in inlet temperature:

  • 7/27/2019 Dynamic Control2

    234/921

    - Dynamic response to a step decrease in inlet flow rate:

    Chen CL 11

    Additional Element:Transport Rate Equations

  • 7/27/2019 Dynamic Control2

    235/921

    - Transport Rate Equations:To describe rate of mass, energy, and momentum transfer between

    a system and its surroundings

    - Example: a stirred tank heater

    heat supplied by steam:

    Q = U At (Tst T)

    Chen CL 12

    Additional Element:Kinetic Rate Equations

    -

  • 7/27/2019 Dynamic Control2

    236/921

    - Kinetic Rate Equations:To describe rates of chemical reactions taking place in a system

    - Example: a 1st-order reaction in a CSTR

    reaction rate equation:

    r = k0eE/RTc

    A

    Chen CL 13

    Additional Element:Reaction and Phase Equilibrium Relationships

    - Reaction and Phase Equilibrium Relationships:

  • 7/27/2019 Dynamic Control2

    237/921

    To describe equilibrium situations reached during a chemicalreaction or by two or more phases

    - Example: a flash drum temperature of liquid phase

    = temperature of vapor phase

    pressure of liquid phase

    = pressure of vapor phase

    chemical potential of component i

    in liquid phase =

    chemical potential of component i

    in vapor phase

    Chen CL 14

    Additional Element:Equations of States

    - Equations of States:

    To describe the relationship

    i i i bl

    Ideal gas law for vapor phase:

  • 7/27/2019 Dynamic Control2

    238/921

    among intensive variablesdescribing the

    thermodynamic state

    of a system

    - Example: a flash drum

    pVvapor

    = (moles of A + moles of B)RT

    =mass of A + mass of B

    average MW

    RT

    =mass of A + mass of B

    yA

    MA

    + yB

    MB

    RT

    vapor =mass of A + mass of B

    Vvapor

    = [yA

    MA

    + yB

    MB

    ] pRT

    liquid

    = (T, xA

    )

    Chen CL 15

    Dead Time

    - Dead Time:

    Whenever an input variable of a system changes

  • 7/27/2019 Dynamic Control2

    239/921

    there is a time interval (short or long) during which

    no effect is obsrved on outputs of the system

    - dead time, transportation lag, pure delay,

    distance-velocity lag

    Chen CL 16

    - Example: liquid through a pipe

  • 7/27/2019 Dynamic Control2

    240/921

    A: temperature of inlet changes

    B: temperature of outlet response

    dead time: d

    d =volume of pipe

    volumetric flow rate=

    A L

    A Uav=

    L

    UavTout(t) = Tin(t d)

    Chen CL 17

    Modeling Difficulties

    - Poorly understood processes

  • 7/27/2019 Dynamic Control2

    241/921

    - Imprecisely known parameters

    - Size and complexity of a model

    Chen CL 18

    Additional Examples of Mathematical ModelingContinuous Stirred Tank Reactor (CSTR)

  • 7/27/2019 Dynamic Control2

    242/921

    Exothermic Rx: A B

    Chen CL 19

    - Total Mass Balance:

    d(V)

    dt= iFi F 0

    =c=

    dV

    dt

    = Fi F

  • 7/27/2019 Dynamic Control2

    243/921

    dt

    - Mass Balance on Component A:

    (r: rate of reaction per unit volume)

    dnAdt

    = d(cAV)dt

    = cAi

    Fi cAF rV

    Vdc

    A

    dt+ c

    A

    dV

    dt

    =FiF= c

    AiFi cAF k0e

    E/RTcA

    V

    dcAdt

    = FiV

    cAi c

    A

    k0e

    E/RTcA

    Chen CL 20

    - Total Energy Balance:total energy E = U + K+ P = U H(T, nA

    , nB

    ) (enthalpy)

  • 7/27/2019 Dynamic Control2

    244/921

    dE

    dt=

    dU

    dt

    dH

    dt= iFihi(Ti) F h(T)Q (1)

    also dHdt

    = HTV cp

    dTdt

    + Hn

    AHA(T)

    dnAdt

    + Hn

    BHA(T)

    dnBdt

    notedn

    A

    dt=

    d(cA

    V)

    dt= c

    AiFi cAF rV

    dnB

    dt =d(c

    B

    V)

    dt = cBiFi =0

    cBF + rV

    dH

    dt= V cp

    dT

    dt+ H

    A

    cAi

    Fi cAF rV

    + HB

    c

    BF rV

    (2)

  • 7/27/2019 Dynamic Control2

    245/921

    Chen CL 22

    - Summaries:

    state var.s: V, cA

    , T

    state eqn.s:dV

    dt= Fi F

    d F

  • 7/27/2019 Dynamic Control2

    246/921

    dcAdt

    =FiV

    cAi c

    A

    k0e

    E/RTcA

    dT

    dt= FiV (Ti T) + Jk0e

    E/RTcA QcpV

    output var.s: V, cA, Tinput var.s: c

    Ai, Fi, Ti, Q , F

    manip. var.s: Q, F

    disturbances: cAi

    , Fi, Ti

    const. par.s: , cp, (Hr), k0, E , R

    Chen CL 23

    Additional Examples of Mathematical ModelingAn Ideal Binary Distillation Column

  • 7/27/2019 Dynamic Control2

    247/921

    Chen CL 24

    -Assumptions: constant vapor holdup:

    equal molar heats of vaporization for A and B

    negligible heat loss

    constant relative volativility

  • 7/27/2019 Dynamic Control2

    248/921

    constant relative volativility 100% tray efficiency

    V = V1 = = VN

    yi =

    xi

    1 + ( 1)xi

    neglect dynamics of condenser and reboiler

    neglect momentum balance for each tray

    leaving liquid = Li = f(Mi), i = 1, , Nliquid holdup = Mi

    Chen CL 25

    - State Equations (1): feed tray (i = f)

  • 7/27/2019 Dynamic Control2

    249/921

    total mass:dMf

    dt= Ff + Lf+1 + Vf1 Lf Vf

    = Ff + Lf+1 Lf

    comp A: d(Mfxf)dt

    = Ffcf + Lf+1xf+1 + Vf1yf1 Lfxf Vfyf

    Chen CL 26

    - State Equations (2): top tray (i = N)

  • 7/27/2019 Dynamic Control2

    250/921

    total mass:dM

    N

    dt= F

    R+ V

    N1 L

    N V

    N

    = FR L

    N

    comp A:

    d(MN

    xN

    )

    dt = FRxD + VN1yN1 LNxN VNyN

    Chen CL 27

    - State Equations (3): bottom tray (i = 1)

  • 7/27/2019 Dynamic Control2

    251/921

    total mass:dM1

    dt= L2 L1 + V V1

    = L2 L1

    comp A: d(M1x1)dt

    = L2x2 + V yB L1x1 V1y1

    Chen CL 28

    - State Equations (4): ith tray (i = 2, , N 1; i = f)

  • 7/27/2019 Dynamic Control2

    252/921

    total mass:dMi

    dt= Li+1 Li + Vi1 Vi

    = Li+1 Li

    comp A:d(Mixi)

    dt= Li+1xi+1 Lixi + Vi1yi1 Viyi

    Chen CL 29

    - State Equations (5): reflux drum

  • 7/27/2019 Dynamic Control2

    253/921

    total mass:dM

    RD

    dt= V

    N F

    R F

    D

    comp A:d(M

    RDxD

    )

    dt= V

    N

    yN

    (FR

    + FD

    )xD

    Chen CL 30

    - State Equations (6): column base

  • 7/27/2019 Dynamic Control2

    254/921

    total mass:dM

    B

    dt= L1 V FB

    comp A:

    d(MB

    xB

    )

    dt = L1x1 V yB FBxB

    Chen CL 31

    -Relationships: equilibrium relationships:

    yi =xi

    1 + ( 1)xii = 1, , f, , N; B

  • 7/27/2019 Dynamic Control2

    255/921

    hydraulic relationships: (Francis weir formula)

    Li = f(Mi) i = 1, , f, , N

    - State Variables:

    liquid holdups:

    M1, M2, , Mf, , MN; MRD, MB

    liquid concentrations:

    x1, x2, , xf, , xN; xD, xB

    Chen CL 32

    -Summaries: 2N + 4 nonlinear differential equations (state eqn.s)

    2N + 1 algebraic equations (equilibrium and hydraulic)

    example: N = 20 trays

  • 7/27/2019 Dynamic Control2

    256/921

    example: N = 20 trays

    2N + 4 = 2(20) + 4 = 44 nonlinear diff. eqn.s

    2N + 1 = 2(20) + 1 = 41 algebraic equations

    Chen CL 33

    Modeling Considerationsfor Control Purposes

    - State variables model

  • 7/27/2019 Dynamic Control2

    257/921

    - State-variables model input-output model (convenient for control)

    - Degrees of freedom ( df) inherent in the process

    extent of control problem to be solved

    Chen CL 34

    - Input-Output Model:

  • 7/27/2019 Dynamic Control2

    258/921

    output = f(input variables)

    yi = f(m1, , mk; d1, , dt) i = 1, , m

    Chen CL 35

    - Example: Input-Output Model for CSTR

  • 7/27/2019 Dynamic Control2

    259/921

    Assumptions: Fi = F dV/dt = 0

    Chen CL 36

    Total Energy Balance:

    VdT

    dt= Fi(Ti T) +

    Q

    cpQ = U At(Tst T)

    dTdt +FiV + U AtV c T = FiV Ti + U AtV c Tst

  • 7/27/2019 Dynamic Control2

    260/921

    dTdt +FV + U AV cp

    a1/+K

    T FV1/

    T + U AV cp K

    Tst

    dT

    dt+ aT = 1Ti + KTst

    SS: 0 + aTs =1Ti,s + KTst,s

    d(T Ts)

    dt+ a (T Ts)

    T

    = 1 (Ti Ti,s) T

    i,s

    +K(Tst Tst,s) T

    st

    dT

    dt+ aT

    = 1T

    i + KT

    st

    T

    (t) = c1eat + t

    0

    1T

    i + KT

    st dt

    initial: T

    (t = 0) = 0 c1 = 0

    T

    (t) =

    t0

    1

    T

    i + KT

    st

    dt

    Chen CL 37

    Block Diagram: inputs (T

    i(t), T

    st(t)) output (T

    (t))

  • 7/27/2019 Dynamic Control2

    261/921

    This example: output variables = state variables

    Chen CL 38

    Distillation: output variables = state variables! State variables:

    liquid holdups:

    M1, M2, , Mf, , MN; MRD, MB

  • 7/27/2019 Dynamic Control2

    262/921

    liquid concentrations:

    x1, x2, , xf, , xN; xD, xB

    Output variables:

    distillate rate and composition: FD

    , xD

    bottom rate and composition: FB

    , xB

    Chen CL 39

    DOF: Degree of Freedom

    - Degrees of Freedom (DOF):

    # of independent variables that must be specified in order to define

    a process completely

  • 7/27/2019 Dynamic Control2

    263/921

    a process completely

    DOF = (# Var.s) (# Indep. Eq.s)

    Chen CL 40

    -

    Example: stirred tank heater mathematical model: # of eq.s = 2

    Adh

    dt= Fi F

    dT( )

    Q

  • 7/27/2019 Dynamic Control2

    264/921

    AhdT

    dt= Fi (Ti T) +

    Q

    cp

    # of variables = 6 (h, Ti, T , F , F i, Q)

    DOF = 6 - 2 = 4 specify Ti, Fi, F , Q h(t), T(t)

    in order to specify a process completely

    the # of DoF should be zero

    Chen CL 41

    -

    Example: binary distillation column

    DOF = (4N + 11) (4N + 5) = 6

  • 7/27/2019 Dynamic Control2

    265/921

    Chen CL 42

    Degrees of Freedom of A Process

    - f = DOF = V E = (# Var.s) (# Indep. Eq.s)

    - Case 1: DOF = 0

  • 7/27/2019 Dynamic Control2

    266/921

    Case 1: DOF 0unique values of the V variables

    the process is exactly specified

    -Case 2: DOF > 0

    multiple solutions result from the E equations

    can specify arbitrarily f of the V variables

    the process is underspecified by f equations

    - Case 3: DOF < 0no solution to the E equations

    the process is overspecified by f equations

    Chen CL 43

    DOF and Process Controllers

    - An under-specified process with DOF = f > 0

    - Q: how to reduce DOF to zero

  • 7/27/2019 Dynamic Control2

    267/921

    Q Oto specify system completely with unique behavior ?

    from external world: disturbances

    to add control loops

    - Control loop:

    additional equation between MV and CV

    additional variable: set-point

    same: DOFdifference: specify MV specify set-point

    Chen CL 44

    -

    Example: stirred tank heater with two control loops

    DOF = 4 DOF = 0 if we specify

    Ti, Fi from external world ( disturbances)

    set-points of the two controllers

  • 7/27/2019 Dynamic Control2

    268/921

    p

    Chen CL 45

    -Example: binary distillation column ( DOF = 6)

    specification of disturbances (external world):

    feed rate (Ff) and feed composition (cf)

    DOF = 6 DOF = 4

  • 7/27/2019 Dynamic Control2

    269/921

    specification of control objectives ( set-points):

    (I) for products:

    xD: distillate composition x

    B: bottom stream composition

    (II) for operational feasibility:

    MRD

    : liquid holdup in reflux drum

    MB: liquid holdup at base of column four control loops

    DOF = 6 DOF = 4 DOF = 0

    Chen CL 46

  • 7/27/2019 Dynamic Control2

    270/921

    Note: other alternative control objectives

    (1) keep at desired FD, xD, MRD, MB(2) keep at desired F

    B, x

    B, M

    RD, M

    B

    Controller Simulationusing Simulink

  • 7/27/2019 Dynamic Control2

    271/921

    Cheng-Liang Chen

    PSELABORATORYDepartment of Chemical EngineeringNational TAIWAN University

    Chen CL 1

    Simulation of Control InstrumentationP Control with Reset Bias (PI)

    u(t) = Kce(t) + ub(t) u(0) = ub(0) = ub

    u(t) = TIdub(t)dt

    + ub(t)

  • 7/27/2019 Dynamic Control2

    272/921

    ( ) ( )dt

    ( )

    dub(t)

    dt=

    1

    TI[u(t) ub(t)]

    ub(t) =

    t

    0

    1

    TI [u

    (

    ) u

    b(

    )]d

    +ub(0)

    =

    t0

    1

    TI[(u() u(0)) (ub() ub(0))] d+ ub(0)

    Ub(t) = t

    0

    1

    TI

    [U() Ub()] d

    Ub(s) =1

    s

    1

    TI[U(s) Ub(s)]

    Chen CL 2

    Simulation of Control InstrumentationSimulation of PI Controller

    u(t) = Kce(t) + ub(t); ub(t) ub(0) =

    t0

    1

    TI[u() ub()] d

  • 7/27/2019 Dynamic Control2

    273/921

    Chen CL 3

    Simulation of Control InstrumentationSimulation of PI Controller

    % P control with reset bias

    plot(tout,p,m,linewidth,2)

    hold onplot(tout ub b linewidth 2)

  • 7/27/2019 Dynamic Control2

    274/921

    plot(tout,ub, b , linewidth ,2)

    plot(tout,u,r,linewidth,2)

    ylabel(\bf PI Output Signals,...

    fontsize,14);

    xlabel(\bf t (min),fontsize,14);

    set(gca,linewidth,3);legend(p(t),u_b(t),u(t));

    hold off

    Chen CL 4

    Simulation of Control InstrumentationSimulation of PI Controller

    % P control with reset bias

    subplot(3,1,1)

    plot(tout,p,m,linewidth,2)ylabel(\bf p(t) fontsize 14);

  • 7/27/2019 Dynamic Control2

    275/921

    ylabel( \bf p(t) , fontsize ,14);

    set(gca,linewidth,3);

    subplot(3,1,2)

    plot(tout,ub,b,linewidth,2)

    ylabel(\bf u_b(t),fontsize,1

    set(gca,linewidth,3);subplot(3,1,3)

    plot(tout,u,r,linewidth,2)

    ylabel(\bf u(t),fontsize,14);

    xlabel(\bf t (min),fontsize,

    set(gca,linewidth,3);

    Chen CL 5

    Simulation of Control InstrumentationSimulation of PD Controller

    D Action on Error e with A Low-pass Filter

    u(t) = Kce(t + TD) + ub Kc e(t) + TDde(t)

    dt + ubdef(t)

  • 7/27/2019 Dynamic Control2

    276/921

    u(t) = Kc

    e(t) + TD

    def(t)

    dt

    + ub

    e(t) = TDdef(t)

    dt+ ef(t) TD

    def(t)

    dt=

    1

    [e(t) ef(t)]

    ef(t) =t0

    1TD

    TDde

    f()d

    d+ ef(0)

    =0

    =

    t0

    1

    TD

    1

    [e() ef()]

    d+ ef(0)

    =0

    or Ef(t) =t0

    1TD

    1

    [E()Ef()]d (deviation var.s)

    Ef(s) =1

    s

    1

    TD

    1

    [E(s)Ef(s)] =

    1

    s

    1

    TDL

    TD

    dEf(t)

    dt

    Chen CL 6

    Simulation of Control InstrumentationSimulation of PD Controller

    D Action on Error e with A Low-pass Filter

    TDdef(t)

    dt=

    1

    (e(t) ef(t)) ; ef(t) ef(0) =

    t0

    1

    TD

    TD

    def()

    d

    d

  • 7/27/2019 Dynamic Control2

    277/921

    Chen CL 7

    Simulation of Control InstrumentationSimulation of PD Controller

    D Action on Error e with A Low-pass Filter

    % PD control

    plot(tout,e,Color,[0,.5,0],linewhold on

  • 7/27/2019 Dynamic Control2

    278/921

    hold on

    plot(tout,efuture,Color,[.5,0,.5],

    plot(tout,p,r,linewidth,2)

    plot(tout,Daction,b,linewidth,2)

    plot(tout,PDout,m,linewidth,2)

    ylabel(\bf PD Output Signals,...fontsize,14);

    xlabel(\bf t (min),fontsize,14);

    set(gca,linewidth,3);

    legend(e(t),e(t+T_d),p(t),D(

    hold off

    Chen CL 8

    Simulation of Control InstrumentationSimulation of PD ControllerD Action on Error e with A Low-pass Filter

    subplot(5,1,2)

    plot(tout,efuture,Color,[.5,0,.

    linewidth,2)l b l(\bf ( T d) f i

  • 7/27/2019 Dynamic Control2

    279/921

    % PD control

    subplot(5,1,1)

    plot(tout,e,Color,[0,.5,0],...

    linewidth,2)

    ylabel(\bf e(t),fontsize,14);

    set(gca,linewidth,3);

    ylabel(\bf e(t+T_d),fontsize,

    set(gca,linewidth,3);

    subplot(5,1,3)

    plot(tout,p,r,linewidth,2)

    ylabel(\bf p(t),fontsize,14);set(gca,linewidth,3);

    subplot(5,1,4)

    plot(tout,Daction,b,linewidth

    ylabel(\bf D(t),fontsize,14);

    set(gca,linewidth,3);

    subplot(5,1,5)plot(tout,PDout,m,linewidth,

    ylabel(\bf u(t),fontsize,14);

    xlabel(\bf t (min),fontsize,

    set(gca,linewidth,3);

    Chen CL 9

    Simulation of Control InstrumentationSimulation of PD ControllerD Action on Measurement y with A Low-pass Filter

    u(t) = Kce(t + T

    D) + u

    b K

    c ysp y(t) + TDdy(t)

    dt + ub dy (t)

  • 7/27/2019 Dynamic Control2

    280/921

    u(t) = Kc

    ysp

    y(t) + TD

    dyf(t)

    dt

    + ub

    y(t) = TDdyf(t)

    dt+ yf(t) TD

    dyf(t)

    dt=

    1

    [y(t) yf(t)]

    yf(t) =t0

    1TD

    TD

    dyf()d

    d+ yf(0)

    =

    t0

    1

    TD

    1

    [y() yf()]

    d+ yf(0)

    or Yf(t) =t0

    1TD

    1

    [Y() Yf()]d (deviation var.s)

    Yf(s) =1

    s

    1

    TD

    1

    [Y(s) Yf(s)] =

    1

    s

    1

    TDL

    TD

    dYf(t)

    dt

    Chen CL 10

    Simulation of Control InstrumentationSimulation of PD ControllerD Action on Error y with A Low-pass Filter

    TDdyf(t)

    dt=

    1

    (y(t) yf(t)) ; yf(t) yf(0) =

    t0

    1

    TD

    TD

    dyf()

    d

    d

  • 7/27/2019 Dynamic Control2

    281/921

    Chen CL 11

    Simulation of Control InstrumentationSimulation of PD ControllerD Action on Error y with A Low-pass Filter

    % PD control

    plot(tout,y,Color,[0,.5,0],linewhold on

  • 7/27/2019 Dynamic Control2

    282/921

    plot(tout,yfuture,Color,[.5,0,.5],

    plot(tout,p,r,linewidth,2)

    plot(tout,Daction,b,linewidth,2)

    plot(tout,PDout,m,linewidth,2)

    ylabel(\bf PD Output Signals,...fontsize,14);

    xlabel(\bf t (min),fontsize,14);

    set(gca,linewidth,3);

    legend(y(t),y(t+T_d),p(t),-D

    hold off

    Chen CL 12

    Simulation of Control InstrumentationSimulation of PD ControllerD Action on Error y with A Low-pass Filter

    subplot(5,1,2)

    plot(tout,yfuture,Color,[.5,0,.

    linewidth,2)ylabel(\bf y(t+T d) fontsize

  • 7/27/2019 Dynamic Control2

    283/921

    % PD control

    subplot(5,1,1)

    plot(tout,y,Color,[0,.5,0],...linewidth,2)

    ylabel(\bf y(t),fontsize,14);

    set(gca,linewidth,3);

    ylabel(\bf y(t+T_d),fontsize,

    set(gca,linewidth,3);

    subplot(5,1,3)

    plot(tout,p,r,linewidth,2)

    ylabel(\bf p(t),fontsize,14);

    set(gca,linewidth,3);

    subplot(5,1,4)

    plot(tout,Daction,b,linewidth

    ylabel(\bf -D(t),fontsize,14)

    set(g