dynamics - ccicci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffnetwork flows, queues,...

42
{Network Flows, Queues, Combinatorial Optimization, ... } + Dynamics CCI Mini-Workshop on Theoretical Foundations of CPS April 14, 2017 Ketan Savla ([email protected]) University of Southern California Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 1 / 11

Upload: others

Post on 30-Dec-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

{Network Flows, Queues, Combinatorial Optimization, ... }+

Dynamics

CCI Mini-Workshop on Theoretical Foundations of CPSApril 14, 2017

Ketan Savla([email protected])

University of Southern California

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 1 / 11

Page 2: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

Personal Perspective on Theoretical CPS

optimizationqueueing systems

network flowsgame theory

+

motion kinematicspsychologydynamicsphysics

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 2 / 11

Page 3: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

Personal Perspective on Theoretical CPS

Physical Sciences(physics, human behavior, dynamics)

Systems Sciences(operations research, network science, decision theory)

optimizationqueueing systems

network flowsgame theory

+

motion kinematicspsychologydynamicsphysics

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 2 / 11

Page 4: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

Personal Perspective on Theoretical CPS

⇑Research Theme

Physical Sciences(physics, human behavior, dynamics)

Systems Sciences(operations research, network science, decision theory)

optimizationqueueing systems

network flowsgame theory

+

motion kinematicspsychologydynamicsphysics

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 2 / 11

Page 5: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

Personal Perspective on Theoretical CPS

⇑Research Theme

Physical Sciences(physics, human behavior, dynamics)

Systems Sciences(operations research, network science, decision theory)

optimizationqueueing systems

network flowsgame theory

+

motion kinematicspsychologydynamicsphysics

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 2 / 11

Page 6: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

Personal Perspective on Theoretical CPS

⇑Research Theme

Physical Sciences(physics, human behavior, dynamics)

Systems Sciences(operations research, network science, decision theory)

optimizationqueueing systems

network flowsgame theory

+

motion kinematicspsychologydynamicsphysics

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 2 / 11

Page 7: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

Static Network Flowfig19

� �

cut Link flow capacity CeFeasible z:

ze ≤ Ce∑incoming ze =

∑outgoing ze′

Max flow min cut theorem

λ ≤ mincut

e∈cutCe

︸ ︷︷ ︸min cut capacity

⇐⇒ feasible z

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 3 / 11

Page 8: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

Static Network Flowfig19

� �

cut Link flow capacity CeFeasible z:

ze ≤ Ce∑incoming ze =

∑outgoing ze′

Max flow min cut theorem

λ ≤ mincut

e∈cutCe

︸ ︷︷ ︸min cut capacity

⇐⇒ feasible z

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 3 / 11

Page 9: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

Transmission Capacity of the Power Grid

Cmaxtrans

maxw∈[wl,wu]

maxµ

µ Nonconvex

s.t. −c ≤ z(w, µ) ≤ c

Robustness Formulation

R(p) =

min�: k�k1=1,1T �=0

maxw,µ

µ Nonconvex

s.t. �c f(w, p + �µ) c

wl w wu

pk

pi pj

�i

�j

�l

Simple Case: p contains one supply-demand pair(default in this talk) kpk1 = 1; � = ±p

maxw2[wl,wu]

maxµ

µ Nonconvex

s.t. �c f(w, p + pµ) c

pi pj

�i

�j

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 3 / 13

Transmission Capacity Function & Equivalent Weight

Equivalent Weight

H(w, p) :=�pTL†(w)p

��1

Parallel: H(w) =P

i wi

Series: H(w) = (P

i1wi

)�1

⇠ Thevenin e↵ective resistance

Rayleigh: rwH(w) � 0

pi pj

�i

�j

Cmaxtrans = maxweq2[H(wl),H(wu)]

Ctranseq(weq)

Ctranseq(weq) = maxw: H(w)=weq

Ctrans(w)

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

(wl1, wl

2)

(wu1 , wu

2 )

w1

w2

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 6 / 13

Combining Transmission Capacity Functions

Series

1 2 3e1 e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Parallel

1 2

e1

e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Link-reducible

1

2

3

4

e1

e2

e3

e4

e5

weq

Ctranseq(weq) {e 4,5}{e 2,4,5}{e 1,3}{e 1,2,3,4,5}

1

2

3

4

e1 e3

e2 e6

1 4

e7

e8

1 4e9

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 7 / 13

Combining Transmission Capacity Functions

Series

1 2 3e1 e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Parallel

1 2

e1

e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Link-reducible

1

2

3

4

e1

e2

e3

e4

e5

weq

Ctranseq(weq) {e 4,5}{e 2,4,5}{e 1,3}{e 1,2,3,4,5}

1

2

3

4

e1 e3

e2 e6

1 4

e7

e8

1 4e9

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 7 / 13

Combining Transmission Capacity Functions

Series

1 2 3e1 e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Parallel

1 2

e1

e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Link-reducible

1

2

3

4

e1

e2

e3

e4

e5

weq

Ctranseq(weq) {e 4,5}{e 2,4,5}{e 1,3}{e 1,2,3,4,5}

1

2

3

4

e1 e3

e2 e6

1 4

e7

e8

1 4e9

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 7 / 13

Combining Transmission Capacity Functions

Series

1 2 3e1 e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Parallel

1 2

e1

e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Link-reducible

1

2

3

4

e1

e2

e3

e4

e5

weq

Ctranseq(weq) {e 4,5}{e 2,4,5}{e 1,3}{e 1,2,3,4,5}

1

2

3

4

e1 e3

e2 e6

1 4

e7

e8

1 4e9

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 7 / 13

Combining Transmission Capacity Functions

Series

1 2 3e1 e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Parallel

1 2

e1

e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Link-reducible

1

2

3

4

e1

e2

e3

e4

e5

weq

Ctranseq(weq) {e 4,5}{e 2,4,5}{e 1,3}{e 1,2,3,4,5}

1

2

3

4

e1 e3

e2 e6

1 4

e7

e8

1 4e9

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 7 / 13

Combining Transmission Capacity Functions

Series

1 2 3e1 e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Parallel

1 2

e1

e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Link-reducible

1

2

3

4

e1

e2

e3

e4

e5

weq

Ctranseq(weq) {e 4,5}{e 2,4,5}{e 1,3}{e 1,2,3,4,5}

1

2

3

4

e1 e3

e2 e6

1 4

e7

e8

1 4e9

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 7 / 13

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 4 / 11

Page 10: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

Transmission Capacity of the Power Grid

Cmaxtrans

maxw∈[wl,wu]

maxµ

µ Nonconvex

s.t. −c ≤ z(w, µ) ≤ c

Robustness Formulation

R(p) =

min�: k�k1=1,1T �=0

maxw,µ

µ Nonconvex

s.t. �c f(w, p + �µ) c

wl w wu

pk

pi pj

�i

�j

�l

Simple Case: p contains one supply-demand pair(default in this talk) kpk1 = 1; � = ±p

maxw2[wl,wu]

maxµ

µ Nonconvex

s.t. �c f(w, p + pµ) c

pi pj

�i

�j

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 3 / 13

Transmission Capacity Function & Equivalent Weight

Equivalent Weight

H(w, p) :=�pTL†(w)p

��1

Parallel: H(w) =P

i wi

Series: H(w) = (P

i1wi

)�1

⇠ Thevenin e↵ective resistance

Rayleigh: rwH(w) � 0

pi pj

�i

�j

Cmaxtrans = maxweq2[H(wl),H(wu)]

Ctranseq(weq)

Ctranseq(weq) = maxw: H(w)=weq

Ctrans(w)

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

(wl1, wl

2)

(wu1 , wu

2 )

w1

w2

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 6 / 13

Combining Transmission Capacity Functions

Series

1 2 3e1 e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Parallel

1 2

e1

e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Link-reducible

1

2

3

4

e1

e2

e3

e4

e5

weq

Ctranseq(weq) {e 4,5}{e 2,4,5}{e 1,3}{e 1,2,3,4,5}

1

2

3

4

e1 e3

e2 e6

1 4

e7

e8

1 4e9

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 7 / 13

Combining Transmission Capacity Functions

Series

1 2 3e1 e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Parallel

1 2

e1

e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Link-reducible

1

2

3

4

e1

e2

e3

e4

e5

weq

Ctranseq(weq) {e 4,5}{e 2,4,5}{e 1,3}{e 1,2,3,4,5}

1

2

3

4

e1 e3

e2 e6

1 4

e7

e8

1 4e9

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 7 / 13

Combining Transmission Capacity Functions

Series

1 2 3e1 e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Parallel

1 2

e1

e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Link-reducible

1

2

3

4

e1

e2

e3

e4

e5

weq

Ctranseq(weq) {e 4,5}{e 2,4,5}{e 1,3}{e 1,2,3,4,5}

1

2

3

4

e1 e3

e2 e6

1 4

e7

e8

1 4e9

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 7 / 13

Combining Transmission Capacity Functions

Series

1 2 3e1 e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Parallel

1 2

e1

e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Link-reducible

1

2

3

4

e1

e2

e3

e4

e5

weq

Ctranseq(weq) {e 4,5}{e 2,4,5}{e 1,3}{e 1,2,3,4,5}

1

2

3

4

e1 e3

e2 e6

1 4

e7

e8

1 4e9

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 7 / 13

Combining Transmission Capacity Functions

Series

1 2 3e1 e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Parallel

1 2

e1

e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Link-reducible

1

2

3

4

e1

e2

e3

e4

e5

weq

Ctranseq(weq) {e 4,5}{e 2,4,5}{e 1,3}{e 1,2,3,4,5}

1

2

3

4

e1 e3

e2 e6

1 4

e7

e8

1 4e9

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 7 / 13

Combining Transmission Capacity Functions

Series

1 2 3e1 e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Parallel

1 2

e1

e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Link-reducible

1

2

3

4

e1

e2

e3

e4

e5

weq

Ctranseq(weq) {e 4,5}{e 2,4,5}{e 1,3}{e 1,2,3,4,5}

1

2

3

4

e1 e3

e2 e6

1 4

e7

e8

1 4e9

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 7 / 13

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 4 / 11

Page 11: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

Transmission Capacity of the Power Grid

Cmaxtrans

maxw∈[wl,wu]

maxµ

µ Nonconvex

s.t. −c ≤ z(w, µ) ≤ c

Robustness Formulation

R(p) =

min�: k�k1=1,1T �=0

maxw,µ

µ Nonconvex

s.t. �c f(w, p + �µ) c

wl w wu

pk

pi pj

�i

�j

�l

Simple Case: p contains one supply-demand pair(default in this talk) kpk1 = 1; � = ±p

maxw2[wl,wu]

maxµ

µ Nonconvex

s.t. �c f(w, p + pµ) c

pi pj

�i

�j

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 3 / 13

Transmission Capacity Function & Equivalent Weight

Equivalent Weight

H(w, p) :=�pTL†(w)p

��1

Parallel: H(w) =P

i wi

Series: H(w) = (P

i1wi

)�1

⇠ Thevenin e↵ective resistance

Rayleigh: rwH(w) � 0

pi pj

�i

�j

Cmaxtrans = maxweq2[H(wl),H(wu)]

Ctranseq(weq)

Ctranseq(weq) = maxw: H(w)=weq

Ctrans(w)

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

(wl1, wl

2)

(wu1 , wu

2 )

w1

w2

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 6 / 13

Combining Transmission Capacity Functions

Series

1 2 3e1 e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Parallel

1 2

e1

e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Link-reducible

1

2

3

4

e1

e2

e3

e4

e5

weq

Ctranseq(weq) {e 4,5}{e 2,4,5}{e 1,3}{e 1,2,3,4,5}

1

2

3

4

e1 e3

e2 e6

1 4

e7

e8

1 4e9

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 7 / 13

Combining Transmission Capacity Functions

Series

1 2 3e1 e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Parallel

1 2

e1

e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Link-reducible

1

2

3

4

e1

e2

e3

e4

e5

weq

Ctranseq(weq) {e 4,5}{e 2,4,5}{e 1,3}{e 1,2,3,4,5}

1

2

3

4

e1 e3

e2 e6

1 4

e7

e8

1 4e9

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 7 / 13

Combining Transmission Capacity Functions

Series

1 2 3e1 e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Parallel

1 2

e1

e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Link-reducible

1

2

3

4

e1

e2

e3

e4

e5

weq

Ctranseq(weq) {e 4,5}{e 2,4,5}{e 1,3}{e 1,2,3,4,5}

1

2

3

4

e1 e3

e2 e6

1 4

e7

e8

1 4e9

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 7 / 13

Combining Transmission Capacity Functions

Series

1 2 3e1 e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Parallel

1 2

e1

e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Link-reducible

1

2

3

4

e1

e2

e3

e4

e5

weq

Ctranseq(weq) {e 4,5}{e 2,4,5}{e 1,3}{e 1,2,3,4,5}

1

2

3

4

e1 e3

e2 e6

1 4

e7

e8

1 4e9

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 7 / 13

Combining Transmission Capacity Functions

Series

1 2 3e1 e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Parallel

1 2

e1

e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Link-reducible

1

2

3

4

e1

e2

e3

e4

e5

weq

Ctranseq(weq) {e 4,5}{e 2,4,5}{e 1,3}{e 1,2,3,4,5}

1

2

3

4

e1 e3

e2 e6

1 4

e7

e8

1 4e9

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 7 / 13

Combining Transmission Capacity Functions

Series

1 2 3e1 e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Parallel

1 2

e1

e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Link-reducible

1

2

3

4

e1

e2

e3

e4

e5

weq

Ctranseq(weq) {e 4,5}{e 2,4,5}{e 1,3}{e 1,2,3,4,5}

1

2

3

4

e1 e3

e2 e6

1 4

e7

e8

1 4e9

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 7 / 13

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 4 / 11

Page 12: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

Transmission Capacity of the Power Grid

Cmaxtrans

maxw∈[wl,wu]

maxµ

µ Nonconvex

s.t. −c ≤ z(w, µ) ≤ c

Robustness Formulation

R(p) =

min�: k�k1=1,1T �=0

maxw,µ

µ Nonconvex

s.t. �c f(w, p + �µ) c

wl w wu

pk

pi pj

�i

�j

�l

Simple Case: p contains one supply-demand pair(default in this talk) kpk1 = 1; � = ±p

maxw2[wl,wu]

maxµ

µ Nonconvex

s.t. �c f(w, p + pµ) c

pi pj

�i

�j

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 3 / 13

Transmission Capacity Function & Equivalent Weight

Equivalent Weight

H(w, p) :=�pTL†(w)p

��1

Parallel: H(w) =P

i wi

Series: H(w) = (P

i1wi

)�1

⇠ Thevenin e↵ective resistance

Rayleigh: rwH(w) � 0

pi pj

�i

�j

Cmaxtrans = maxweq2[H(wl),H(wu)]

Ctranseq(weq)

Ctranseq(weq) = maxw: H(w)=weq

Ctrans(w)

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

(wl1, wl

2)

(wu1 , wu

2 )

w1

w2

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 6 / 13

Combining Transmission Capacity Functions

Series

1 2 3e1 e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Parallel

1 2

e1

e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Link-reducible

1

2

3

4

e1

e2

e3

e4

e5

weq

Ctranseq(weq) {e 4,5}{e 2,4,5}{e 1,3}{e 1,2,3,4,5}

1

2

3

4

e1 e3

e2 e6

1 4

e7

e8

1 4e9

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 7 / 13

Combining Transmission Capacity Functions

Series

1 2 3e1 e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Parallel

1 2

e1

e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Link-reducible

1

2

3

4

e1

e2

e3

e4

e5

weq

Ctranseq(weq) {e 4,5}{e 2,4,5}{e 1,3}{e 1,2,3,4,5}

1

2

3

4

e1 e3

e2 e6

1 4

e7

e8

1 4e9

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 7 / 13

Combining Transmission Capacity Functions

Series

1 2 3e1 e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Parallel

1 2

e1

e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Link-reducible

1

2

3

4

e1

e2

e3

e4

e5

weq

Ctranseq(weq) {e 4,5}{e 2,4,5}{e 1,3}{e 1,2,3,4,5}

1

2

3

4

e1 e3

e2 e6

1 4

e7

e8

1 4e9

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 7 / 13

Combining Transmission Capacity Functions

Series

1 2 3e1 e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Parallel

1 2

e1

e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Link-reducible

1

2

3

4

e1

e2

e3

e4

e5

weq

Ctranseq(weq) {e 4,5}{e 2,4,5}{e 1,3}{e 1,2,3,4,5}

1

2

3

4

e1 e3

e2 e6

1 4

e7

e8

1 4e9

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 7 / 13

Combining Transmission Capacity Functions

Series

1 2 3e1 e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Parallel

1 2

e1

e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Link-reducible

1

2

3

4

e1

e2

e3

e4

e5

weq

Ctranseq(weq) {e 4,5}{e 2,4,5}{e 1,3}{e 1,2,3,4,5}

1

2

3

4

e1 e3

e2 e6

1 4

e7

e8

1 4e9

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 7 / 13

Combining Transmission Capacity Functions

Series

1 2 3e1 e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Parallel

1 2

e1

e2

Ctranseq(weq)

0 weqwleq

wueq

Cmaxtrans

Link-reducible

1

2

3

4

e1

e2

e3

e4

e5

weq

Ctranseq(weq) {e 4,5}{e 2,4,5}{e 1,3}{e 1,2,3,4,5}

1

2

3

4

e1 e3

e2 e6

1 4

e7

e8

1 4e9

Ketan Savla (CEE, USC) Robustness of DC Power Networks March 7, 2017 7 / 13

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 4 / 11

Page 13: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

Max Residual Capacity under Local Routing

δ∗ =min node residual capacity

:= minv

e∈E+v

(Ce − z∗e )

fig16

v

� �out(t)

E+v

Min node residual capacity= min{1.5 + 1.5, 0.75}= 0.75

δ = 0.6

v1

v2

2

Cez∗e

(1.5, 2)

(0.5, 2) (0.5, 1.25)

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 5 / 11

Page 14: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

Max Residual Capacity under Local Routing

δ∗ =min node residual capacity

:= minv

e∈E+v

(Ce − z∗e )

fig16

v

� �out(t)

E+v

Min node residual capacity= min{1.5 + 1.5, 0.75}= 0.75

δ = 0.6

v1

v2

2

Cez∗e

(1.5, 2)

(0.5, 2) (0.5, 1.25)

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 5 / 11

Page 15: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

Max Residual Capacity under Local Routing

δ∗ =min node residual capacity

:= minv

e∈E+v

(Ce − z∗e )

fig16

v

� �out(t)

E+v

Min node residual capacity= min{1.5 + 1.5, 0.75}= 0.75

δ = 0.6

static routing

v1

v2

2

Cez∗e

(1.5, 2)(1.5, 1.4)

(0.5, 2) (0.5, 1.25)

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 5 / 11

Page 16: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

Max Residual Capacity under Local Routing

δ∗ =min node residual capacity

:= minv

e∈E+v

(Ce − z∗e )

fig16

v

� �out(t)

E+v

Min node residual capacity= min{1.5 + 1.5, 0.75}= 0.75

δ = 0.6

v1

v2

2

Cez∗e

(1.5, 2)

(0.5, 2) (0.5, 1.25)

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 5 / 11

Page 17: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

Max Residual Capacity under Local Routing

δ∗ =min node residual capacity

:= minv

e∈E+v

(Ce − z∗e )

fig16

v

� �out(t)

E+v

Min node residual capacity= min{1.5 + 1.5, 0.75}= 0.75

δ = 0.6

aggressive routing

v1

v2

2

Cez∗e

(1.5, 2)(0.5, 1.4)

(0.5, 2)(1.5, 2)

(0.5, 1.25)

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 5 / 11

Page 18: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

Max Residual Capacity under Local Routing

δ∗ =min node residual capacity

:= minv

e∈E+v

(Ce − z∗e )

fig16

v

� �out(t)

E+v

Min node residual capacity= min{1.5 + 1.5, 0.75}= 0.75

δ = 0.6

aggressive routing

v1

v2

2

Cez∗e

(1.5, 2)(0.5, 1.4)

(0.5, 2)(1.5, 2)

(0.5, 1.25)

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 5 / 11

Page 19: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

Max Residual Capacity under Local Routing

δ∗ =min node residual capacity

:= minv

e∈E+v

(Ce − z∗e )

fig16

v

� �out(t)

E+v

Min node residual capacity= min{1.5 + 1.5, 0.75}= 0.75

δ = 0.6

downstream cascades

v1

v2

2

Cez∗e

(1.5, 2)(0.5, 1.4)

(0.5, 2)(1.5, 2)

(0.5, 1.25)

4 = 1

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 5 / 11

Page 20: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

General Dynamical Network Flowfig12

ixi k

j

zj

zi Rik

Mass Conservation

x = λ+R(x)T z(x)− z(x)

= λ+(RT (x)− I

)z(x)

xi : mass on link i

λi : external inflow into link i

R(x) : sub-stochastic routing matrix

zi(x) : outflow from link i

Flow Constraints:z(x) ∈ Z(x)

Positive Systems: for all i,xi → 0+ =⇒ zi(x)→ 0+

Objectives

Stability

Robustness

Optimal control

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 6 / 11

Page 21: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

General Dynamical Network Flowfig12

ixi k

j

zj

zi Rik

Mass Conservation

x = λ+R(x)T z(x)− z(x)

= λ+(RT (x)− I

)z(x)

xi : mass on link i

λi : external inflow into link i

R(x) : sub-stochastic routing matrix

zi(x) : outflow from link i

Flow Constraints:z(x) ∈ Z(x)

Positive Systems: for all i,xi → 0+ =⇒ zi(x)→ 0+

Objectives

Stability

Robustness

Optimal control

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 6 / 11

Page 22: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

General Dynamical Network Flowfig12

ixi k

j

zj

zi Rik

Mass Conservation

x = λ+R(x)T z(x)− z(x)

= λ+(RT (x)− I

)z(x)

xi : mass on link i

λi : external inflow into link i

R(x) : sub-stochastic routing matrix

zi(x) : outflow from link i

Flow Constraints:z(x) ∈ Z(x)

Positive Systems: for all i,xi → 0+ =⇒ zi(x)→ 0+

Objectives

Stability

Robustness

Optimal control

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 6 / 11

Page 23: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

Stability of Simple Nonlinear Modelfig 56

Ci

xi

zi(xi) fig3

k

i

jh

zkRki = Rhi; Rii = 0∂∂xj

Rki(x) ≥ 0 i 6= j

Decentralized control

x = λ+(RT (x)− I

)z(x) =: g(x)

∂gi(x)∂xj

≥ 0∑

i∂gi(x)∂xj

≤ 0

fig3

24⇤ ⇤ ⇤⇤ ⇤ ⇤⇤ ⇤ ⇤

35

P 0

� 0

`1 Contraction Principle

If [∂gi/xj ]ij is compartmental ∀x,

then ddt‖x(t)− x(t)‖1 ≤ 0 ∀ x(0), x(0)

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 7 / 11

Page 24: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

Stability of Simple Nonlinear Modelfig 56

Ci

xi

zi(xi) fig3

k

i

jh

zkRki = Rhi; Rii = 0∂∂xj

Rki(x) ≥ 0 i 6= j

Decentralized control

x = λ+(RT (x)− I

)z(x) =: g(x)

∂gi(x)∂xj

≥ 0

∑i∂gi(x)∂xj

≤ 0

fig3

24⇤ ⇤ ⇤⇤ ⇤ ⇤⇤ ⇤ ⇤

35

P 0

� 0

`1 Contraction Principle

If [∂gi/xj ]ij is compartmental ∀x,

then ddt‖x(t)− x(t)‖1 ≤ 0 ∀ x(0), x(0)

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 7 / 11

Page 25: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

Stability of Simple Nonlinear Modelfig 56

Ci

xi

zi(xi) fig3

k

i

jh

zkRki = Rhi; Rii = 0∂∂xj

Rki(x) ≥ 0 i 6= j

Decentralized control

x = λ+(RT (x)− I

)z(x) =: g(x)

∂gi(x)∂xj

≥ 0∑

i∂gi(x)∂xj

≤ 0

fig3

24⇤ ⇤ ⇤⇤ ⇤ ⇤⇤ ⇤ ⇤

35

P 0

� 0

`1 Contraction Principle

If [∂gi/xj ]ij is compartmental ∀x,

then ddt‖x(t)− x(t)‖1 ≤ 0 ∀ x(0), x(0)

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 7 / 11

Page 26: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

Stability of Simple Nonlinear Modelfig 56

Ci

xi

zi(xi) fig3

k

i

jh

zkRki = Rhi; Rii = 0∂∂xj

Rki(x) ≥ 0 i 6= j

Decentralized control

x = λ+(RT (x)− I

)z(x) =: g(x)

∂gi(x)∂xj

≥ 0∑

i∂gi(x)∂xj

≤ 0

fig3

24⇤ ⇤ ⇤⇤ ⇤ ⇤⇤ ⇤ ⇤

35

P 0

� 0

`1 Contraction Principle

If [∂gi/xj ]ij is compartmental ∀x,

then ddt‖x(t)− x(t)‖1 ≤ 0 ∀ x(0), x(0)

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 7 / 11

Page 27: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

State-dependent Queue: Human-in-the-loop Systems

x =b− xτ

, τ > 0

Server dynamics

b(t) =

⇢1 server busy at t0 server idle at t

x(t) 2 [0, 1]: server state

x =b � x

⌧, x(0) = x0

⌧ > 0: sensitivity of the server

0

0

1

1

t

t

x(t)

b(t)

t1 t2 t3

t1 t2 t3

small ⌧ big ⌧

Ketan Savla (LIDS, MIT) Dynamical Queues September 14, 2010 5 / 13

Server dynamics

b(t) =

⇢1 server busy at t0 server idle at t

x(t) 2 [0, 1]: server state

x =b � x

⌧, x(0) = x0

⌧ > 0: sensitivity of the server

0

0

1

1

t

t

x(t)

b(t)

t1 t2 t3

t1 t2 t3

small ⌧ big ⌧

Ketan Savla (LIDS, MIT) Dynamical Queues September 14, 2010 5 / 13

Objectives

t

x(t)

x

S(x)

Smin

S(1)

1

u

Stability

�maxu = max{� | lim supt!1 queue length(t) < 1 8x0 a.s.}

�max = supu �maxu ; stability () � �max

u maximally stabilizing () �maxu = �max

Dynamical version of a D/G/1 queue

Trivial bounds: (wS(1))�1 �max (wSmin)�1

Ketan Savla (LIDS, MIT) Dynamical Queues September 14, 2010 6 / 13

Homogeneous tasks: one-task equilibrium

fW = �w; u(t) ⌘ ON

0

1

t

x(t)

xi xi+1

ti ti + S(xi) ti + 1�

x0 1

S(x)

R(x,�low)

R(x,�med)

R�x, �

Smin

Smax

1/�

xxmed,1 xmed,2xlow

xeq(�): set of one-task eqm states

� := max{� | xeq(�) 6= ;}x := xeq(�)

Ketan Savla (LIDS, MIT) Dynamical Queues September 14, 2010 7 / 13

Threshold policy is throughputoptimal:

uT(t) =

{ON if x(t) ≤ x,OFF otherwise.

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 8 / 11

Page 28: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

State-dependent Queue: Human-in-the-loop Systems

x =b− xτ

, τ > 0

Server dynamics

b(t) =

⇢1 server busy at t0 server idle at t

x(t) 2 [0, 1]: server state

x =b � x

⌧, x(0) = x0

⌧ > 0: sensitivity of the server

0

0

1

1

t

t

x(t)

b(t)

t1 t2 t3

t1 t2 t3

small ⌧ big ⌧

Ketan Savla (LIDS, MIT) Dynamical Queues September 14, 2010 5 / 13

Server dynamics

b(t) =

⇢1 server busy at t0 server idle at t

x(t) 2 [0, 1]: server state

x =b � x

⌧, x(0) = x0

⌧ > 0: sensitivity of the server

0

0

1

1

t

t

x(t)

b(t)

t1 t2 t3

t1 t2 t3

small ⌧ big ⌧

Ketan Savla (LIDS, MIT) Dynamical Queues September 14, 2010 5 / 13

Objectives

t

x(t)

x

S(x)

Smin

S(1)

1

u

Stability

�maxu = max{� | lim supt!1 queue length(t) < 1 8x0 a.s.}

�max = supu �maxu ; stability () � �max

u maximally stabilizing () �maxu = �max

Dynamical version of a D/G/1 queue

Trivial bounds: (wS(1))�1 �max (wSmin)�1

Ketan Savla (LIDS, MIT) Dynamical Queues September 14, 2010 6 / 13

Homogeneous tasks: one-task equilibrium

fW = �w; u(t) ⌘ ON

0

1

t

x(t)

xi xi+1

ti ti + S(xi) ti + 1�

x0 1

S(x)

R(x,�low)

R(x,�med)

R�x, �

Smin

Smax

1/�

xxmed,1 xmed,2xlow

xeq(�): set of one-task eqm states

� := max{� | xeq(�) 6= ;}x := xeq(�)

Ketan Savla (LIDS, MIT) Dynamical Queues September 14, 2010 7 / 13

Threshold policy is throughputoptimal:

uT(t) =

{ON if x(t) ≤ x,OFF otherwise.

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 8 / 11

Page 29: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

State-dependent Queue: Human-in-the-loop Systems

x =b− xτ

, τ > 0

Server dynamics

b(t) =

⇢1 server busy at t0 server idle at t

x(t) 2 [0, 1]: server state

x =b � x

⌧, x(0) = x0

⌧ > 0: sensitivity of the server

0

0

1

1

t

t

x(t)

b(t)

t1 t2 t3

t1 t2 t3

small ⌧ big ⌧

Ketan Savla (LIDS, MIT) Dynamical Queues September 14, 2010 5 / 13

Server dynamics

b(t) =

⇢1 server busy at t0 server idle at t

x(t) 2 [0, 1]: server state

x =b � x

⌧, x(0) = x0

⌧ > 0: sensitivity of the server

0

0

1

1

t

t

x(t)

b(t)

t1 t2 t3

t1 t2 t3

small ⌧ big ⌧

Ketan Savla (LIDS, MIT) Dynamical Queues September 14, 2010 5 / 13

Objectives

t

x(t)

x

S(x)

Smin

S(1)

1

u

Stability

�maxu = max{� | lim supt!1 queue length(t) < 1 8x0 a.s.}

�max = supu �maxu ; stability () � �max

u maximally stabilizing () �maxu = �max

Dynamical version of a D/G/1 queue

Trivial bounds: (wS(1))�1 �max (wSmin)�1

Ketan Savla (LIDS, MIT) Dynamical Queues September 14, 2010 6 / 13

Homogeneous tasks: one-task equilibrium

fW = �w; u(t) ⌘ ON

0

1

t

x(t)

xi xi+1

ti ti + S(xi) ti + 1�

x0 1

S(x)

R(x,�low)

R(x,�med)

R�x, �

Smin

Smax

1/�

xxmed,1 xmed,2xlow

xeq(�): set of one-task eqm states

� := max{� | xeq(�) 6= ;}x := xeq(�)

Ketan Savla (LIDS, MIT) Dynamical Queues September 14, 2010 7 / 13

Threshold policy is throughputoptimal:

uT(t) =

{ON if x(t) ≤ x,OFF otherwise.

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 8 / 11

Page 30: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

State-dependent Queue: Human-in-the-loop Systems

x =b− xτ

, τ > 0

Server dynamics

b(t) =

⇢1 server busy at t0 server idle at t

x(t) 2 [0, 1]: server state

x =b � x

⌧, x(0) = x0

⌧ > 0: sensitivity of the server

0

0

1

1

t

t

x(t)

b(t)

t1 t2 t3

t1 t2 t3

small ⌧ big ⌧

Ketan Savla (LIDS, MIT) Dynamical Queues September 14, 2010 5 / 13

Server dynamics

b(t) =

⇢1 server busy at t0 server idle at t

x(t) 2 [0, 1]: server state

x =b � x

⌧, x(0) = x0

⌧ > 0: sensitivity of the server

0

0

1

1

t

t

x(t)

b(t)

t1 t2 t3

t1 t2 t3

small ⌧ big ⌧

Ketan Savla (LIDS, MIT) Dynamical Queues September 14, 2010 5 / 13

Objectives

t

x(t)

x

S(x)

Smin

S(1)

1

u

Stability

�maxu = max{� | lim supt!1 queue length(t) < 1 8x0 a.s.}

�max = supu �maxu ; stability () � �max

u maximally stabilizing () �maxu = �max

Dynamical version of a D/G/1 queue

Trivial bounds: (wS(1))�1 �max (wSmin)�1

Ketan Savla (LIDS, MIT) Dynamical Queues September 14, 2010 6 / 13

Homogeneous tasks: one-task equilibrium

fW = �w; u(t) ⌘ ON

0

1

t

x(t)

xi xi+1

ti ti + S(xi) ti + 1�

x0 1

S(x)

R(x,�low)

R(x,�med)

R�x, �

Smin

Smax

1/�

xxmed,1 xmed,2xlow

xeq(�): set of one-task eqm states

� := max{� | xeq(�) 6= ;}x := xeq(�)

Ketan Savla (LIDS, MIT) Dynamical Queues September 14, 2010 7 / 13

Threshold policy is throughputoptimal:

uT(t) =

{ON if x(t) ≤ x,OFF otherwise.

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 8 / 11

Page 31: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

State-Dependent Queue: Horizontal Traffic Queue

fig8 fig9 fig8

σ(service) > 0 σ(service) > 0stability = N/A >

σ(service) = 0 σ(service) = 0

HTQ1 Release Control Policy

HTQ2HTQ1

HTQ2

(a) (b)

1x

2x

3x

1y 2y

3y0 L

' HTQ1

HTQ2

HTQ1Release Control

Policy

HTQ2

1x

2x

3x

1y 2y

3y0 L

1x

2x

3x

1y 2y

3y0 L

1x

2x

3x

1y 2y

3y0 L

1x

2x

3x

1y 2y

3y0 L

0 1�ix ix 1�ix L

0 1�ix ix 1�ix LHTQ

VTQ

ix�

minv

iv

' 'D iy

1x

2x

3x

1y2y

3y 0 L

arrM\

M

\

in

out

depM

service rate =∑i(xi+1 − xi)m

S1 S2

1x 2x 3x

1x 2x 3x

0 1

L0

10

1x 2x 3x

1x 2x

1I 1B 2I 2B

1 2 3

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 9 / 11

Page 32: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

State-Dependent Queue: Horizontal Traffic Queue

fig8 fig9 fig8

σ(service) > 0 σ(service) > 0stability = N/A >

σ(service) = 0 σ(service) = 0

HTQ1 Release Control Policy

HTQ2HTQ1

HTQ2

(a) (b)

1x

2x

3x

1y 2y

3y0 L

' HTQ1

HTQ2

HTQ1Release Control

Policy

HTQ2

1x

2x

3x

1y 2y

3y0 L

1x

2x

3x

1y 2y

3y0 L

1x

2x

3x

1y 2y

3y0 L

1x

2x

3x

1y 2y

3y0 L

0 1�ix ix 1�ix L

0 1�ix ix 1�ix LHTQ

VTQ

ix�

minv

iv

' 'D iy

1x

2x

3x

1y2y

3y 0 L

arrM\

M

\

in

out

depM

service rate =∑i(xi+1 − xi)m

S1 S2

1x 2x 3x

1x 2x 3x

0 1

L0

10

1x 2x 3x

1x 2x

1I 1B 2I 2B

1 2 3

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 9 / 11

Page 33: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

State-Dependent Queue: Horizontal Traffic Queue

fig8 fig9 fig8

σ(service) > 0 σ(service) > 0stability = N/A >

σ(service) = 0 σ(service) = 0

HTQ1 Release Control Policy

HTQ2HTQ1

HTQ2

(a) (b)

1x

2x

3x

1y 2y

3y0 L

' HTQ1

HTQ2

HTQ1Release Control

Policy

HTQ2

1x

2x

3x

1y 2y

3y0 L

1x

2x

3x

1y 2y

3y0 L

1x

2x

3x

1y 2y

3y0 L

1x

2x

3x

1y 2y

3y0 L

0 1�ix ix 1�ix L

0 1�ix ix 1�ix LHTQ

VTQ

ix�

minv

iv

' 'D iy

1x

2x

3x

1y2y

3y 0 L

arrM\

M

\

in

out

depM

service rate =∑i(xi+1 − xi)m

S1 S2

1x 2x 3x

1x 2x 3x

0 1

L0

10

1x 2x 3x

1x 2x

1I 1B 2I 2B

1 2 3

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 9 / 11

Page 34: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

State-Dependent Queue: Horizontal Traffic Queue

fig8 fig9 fig8

σ(service) > 0 σ(service) > 0stability = N/A >

σ(service) = 0 σ(service) = 0

HTQ1 Release Control Policy

HTQ2HTQ1

HTQ2

(a) (b)

1x

2x

3x

1y 2y

3y0 L

' HTQ1

HTQ2

HTQ1Release Control

Policy

HTQ2

1x

2x

3x

1y 2y

3y0 L

1x

2x

3x

1y 2y

3y0 L

1x

2x

3x

1y 2y

3y0 L

1x

2x

3x

1y 2y

3y0 L

0 1�ix ix 1�ix L

0 1�ix ix 1�ix LHTQ

VTQ

ix�

minv

iv

' 'D iy

1x

2x

3x

1y2y

3y 0 L

arrM\

M

\

in

out

depM

service rate =∑i(xi+1 − xi)m

S1 S2

1x 2x 3x

1x 2x 3x

0 1

L0

10

1x 2x 3x

1x 2x

1I 1B 2I 2B

1 2 3

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 9 / 11

Page 35: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

TSP under Differential Constraints

n = λ− n

TSP(n)

Euclidean: TSP(n) = Θ(n1/2)

Dubins, Diff Drive, ...TSP(n) = Θ(n2/3)

fig5

Phase 1 Phase 2 Phase 3

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 10 / 11

Page 36: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

TSP under Differential Constraints

n = λ− n

TSP(n)

Euclidean: TSP(n) = Θ(n1/2)

Dubins, Diff Drive, ...TSP(n) = Θ(n2/3)

fig5

Phase 1

Phase 2 Phase 3

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 10 / 11

Page 37: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

TSP under Differential Constraints

n = λ− n

TSP(n)

Euclidean: TSP(n) = Θ(n1/2)

Dubins, Diff Drive, ...TSP(n) = Θ(n2/3)

fig5

Phase 1 Phase 2

Phase 3

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 10 / 11

Page 38: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

TSP under Differential Constraints

n = λ− n

TSP(n)

Euclidean: TSP(n) = Θ(n1/2)

Dubins, Diff Drive, ...TSP(n) = Θ(n2/3)

fig5

Phase 1 Phase 2 Phase 3

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 10 / 11

Page 39: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

Current and Future Work

fig16

Systems Science

Physical Science

operations research

network science

decision theory

Research

Theme

dynamics

human behavior

physics

Current and Future Work

{Cascades over Networks} +{Physics-based Failure and Recovery}{Game Theory} +{Geometric Strategy Space}{Compressed Sensing} +{Constrained Measurement Matrix}

Emphasis on fundamental performance limits

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 11 / 11

Page 40: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

Current and Future Work

fig16

Systems Science

Physical Science

operations research

network science

decision theory

Research

Theme

dynamics

human behavior

physics

Current and Future Work

{Cascades over Networks} +{Physics-based Failure and Recovery}

{Game Theory} +{Geometric Strategy Space}{Compressed Sensing} +{Constrained Measurement Matrix}

Emphasis on fundamental performance limits

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 11 / 11

Page 41: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

Current and Future Work

fig16

Systems Science

Physical Science

operations research

network science

decision theory

Research

Theme

dynamics

human behavior

physics

Current and Future Work

{Cascades over Networks} +{Physics-based Failure and Recovery}{Game Theory} +{Geometric Strategy Space}

{Compressed Sensing} +{Constrained Measurement Matrix}

Emphasis on fundamental performance limits

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 11 / 11

Page 42: Dynamics - CCIcci.usc.edu/wp-content/uploads/2017/06/main-savla.pdffNetwork Flows, Queues, Combinatorial Optimization, ... g + Dynamics CCI Mini-Workshop on Theoretical Foundations

Current and Future Work

fig16

Systems Science

Physical Science

operations research

network science

decision theory

Research

Theme

dynamics

human behavior

physics

Current and Future Work

{Cascades over Networks} +{Physics-based Failure and Recovery}{Game Theory} +{Geometric Strategy Space}{Compressed Sensing} +{Constrained Measurement Matrix}

Emphasis on fundamental performance limits

Ketan Savla (CEE, USC) Theoretical CPS April 14, 2017 11 / 11