e break – overview final results · ‐ improved bearing chambers design using numerical ......

29
EBREAK – Overview & Final Results Presenter: Manuel SILVA Presenter: Manuel SILVA (SAFRAN HELICOPTER ENGINES) h l kh FORUM AE CO2 Mitigation Technology Workshop 10 th 11 th of May 2017 Reims France Reims, France

Upload: others

Post on 26-Mar-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: E BREAK – Overview Final Results · ‐ Improved bearing chambers design using numerical ... Standard method CFD model of simple chamber for oil oxidation Thin-film CFD model CFD

E‐BREAK – Overview & Final ResultsPresenter: Manuel SILVAPresenter: Manuel SILVA 

(SAFRAN HELICOPTER ENGINES)

h l k hFORUM AE ‐ CO2 Mitigation Technology Workshop10th‐11th of May 2017

Reims FranceReims, France

Page 2: E BREAK – Overview Final Results · ‐ Improved bearing chambers design using numerical ... Standard method CFD model of simple chamber for oil oxidation Thin-film CFD model CFD

Improving Powerplant System 

l

Efficiency E‐BREAK is a significant contribution to next generation powerplant system

performances regarding operating cost and environmental impact.‐ Performance objectives are driven by the fuel consumption and CO2/NOx/noise

emissions reduction (ACARE FlightPath 2050)‐ Two main drivers can be used to improve the powerplant system’s efficiency:

Improve thermodynamic efficiency of core engine by increasing  Technologies for higher OPR corep y y g y gthe Overall Pressure Ratio (OPR)

Technical constraints: more pressure, more temperature

Technologies for higher OPR core engine: 

Smaller core, higher pressures, higher temperature

T b h ftShort/Medium Range

E‐BREAK benefitsTurboshaft

Regional Turbofan

Open Rotor

Long Range Turbofan

Improve propulsive efficiency by increasing the Bypass Ratio (BPR)

Technical constraints: more mass, installation

New materials (lighter and HT resistant) for easier integration 

and better robustness

210th‐11th of May 2017 E‐BREAK Overview & results FORUM AE Workshop Reims (France)

Page 3: E BREAK – Overview Final Results · ‐ Improved bearing chambers design using numerical ... Standard method CFD model of simple chamber for oil oxidation Thin-film CFD model CFD

E‐BREAK Enablers for high 

i h O d l d ff d i i f i

OPR and BPR Cycles High OPR and BPR cycles generate unwanted effects during operation of engines.

310th‐11th of May 2017 E‐BREAK Overview & results FORUM AE Workshop Reims (France)

Page 4: E BREAK – Overview Final Results · ‐ Improved bearing chambers design using numerical ... Standard method CFD model of simple chamber for oil oxidation Thin-film CFD model CFD

E‐BREAK Enablers for high 

b j kl d ff i h d di d h l i l

OPR and BPR Cycles E‐BREAK subprojects tackle unwanted effects with dedicated technological

solutions.

410th‐11th of May 2017 E‐BREAK Overview & results FORUM AE Workshop Reims (France)

Page 5: E BREAK – Overview Final Results · ‐ Improved bearing chambers design using numerical ... Standard method CFD model of simple chamber for oil oxidation Thin-film CFD model CFD

E BREAK OrganisationE‐BREAK Organisation

SP7 - Project ManagementProject Office : Coordinator : Manuel Silva

General Assemblyall partners

( t t )

EUROPEAN COMMISSION

Project Office : Julie Charbonneau

Coordinator : Manuel Silva

Executive Management Board -- SP Coordinators --

(one partner one vote)

IPR Advisory TeamKnowledge Portfolio

Exploitation & Dissemination Plan

SP1 LeaderN. Tantot

SP2 LeaderM. Walsh

UK

SP3 LeaderE. Johann

Deutschland

SP4 LeaderS. Selezneff

SP5 LeaderM.Coppola

SP6 LeaderA. Kando

Overall Specification and Engine Assessment

Advanced Sealing systems

Engine variability and

thermomechanicalbehaviour

Higher temperature material for

breakthrough components

Lightweight materials for breakthrough components

Health monitoring

41 partners contributing to SPs

510th‐11th of May 2017 E‐BREAK Overview & results FORUM AE Workshop Reims (France)

Page 6: E BREAK – Overview Final Results · ‐ Improved bearing chambers design using numerical ... Standard method CFD model of simple chamber for oil oxidation Thin-film CFD model CFD

E BREAK ConsortiumE‐BREAK Consortium

AB AE HE

610th‐11th of May 2017 E‐BREAK Overview & results FORUM AE Workshop Reims (France)

Page 7: E BREAK – Overview Final Results · ‐ Improved bearing chambers design using numerical ... Standard method CFD model of simple chamber for oil oxidation Thin-film CFD model CFD

E BREAK Consortium

E‐BREAK involved 41 partners during 54 months with a 30 M€ budget

E‐BREAK Consortium

E‐BREAK involved 41 partners during 54 months with a 30 M€ budget.‐ Start date: 1st of October 2012‐ Kick‐off Meeting: 24th‐25th of October 2012

Duration: 54 Months (until the 31/03/2017)‐ Duration: 54 Months (until the 31/03/2017)‐ Grant Agreement Number : 314366 (FP7 Call5 ‐ AAT‐2012‐RTD‐1)

Sweden4 organisations

Netherlands41 partners from 10 EU countries:

‐ 12 industrial companies amongst which 101 organisation

Belgium4 organisations

Poland2 organisations

12 industrial companies amongst which 10 aero‐engine OEMs

‐ 4 SMEs (3% of funding)‐ 18 academic institutes‐ 7 research institutes

17 partners involved in LEMCOTEC

France7 organisations

UK5 organisations

Germany8 organisations

Switzerland2 organisations

‐ 17 partners involved in LEMCOTEC‐ 19 partners involved in ENOVAL

30M€ gross budget (18,25M€ EU funding)Note: Many SMEs (12% of budget) are involved as 

subcontractor or as supplier of consumables2246 PM (187 PY ) 7 organisations

Spain3 organisations

2 organisations

Italy5 organisations

2246 PMs (187 PYs)201 Deliverables185 Milestones

710th‐11th of May 2017 E‐BREAK Overview & results FORUM AE Workshop Reims (France)

Page 8: E BREAK – Overview Final Results · ‐ Improved bearing chambers design using numerical ... Standard method CFD model of simple chamber for oil oxidation Thin-film CFD model CFD

E‐BREAK ‐ Consistency with EC 

E‐BREAK will carry out technological improvement on components and subsystems

Funded Projectsy g p p y

for future high OPR engines, with a specific concern on LP and HP components.

810th‐11th of May 2017 E‐BREAK Overview & results FORUM AE Workshop Reims (France)

Page 9: E BREAK – Overview Final Results · ‐ Improved bearing chambers design using numerical ... Standard method CFD model of simple chamber for oil oxidation Thin-film CFD model CFD

E BREAK Global Objectives Over existing EC projects, E‐BREAK will shift TRL to 4‐5 for ultra high OPR

E‐BREAK Global Objectivesg p j , g

technology bricks, and provide a further 1‐2% CO2 improvement.

Reference: EIS1 in 2000

FP5 FP6 FP7

CO2 NOx

NOx

CO2

EFFAE

ANTLE-DDTF

CLEAN-GTF

TRL

4-6

-11%-60%

(1) EIS : Entry Into Service(2) Depending on engine

architecture

CO2

CO2

CLEAN-IRA TR

L 2

VITAL

DDTFGTF

CRTF TRL

4-5

NEWAC

IC 4-5

-16%

-7%-18%

-11% -60%

DREAM

CO2

NOx

ACFCCIRA

TRL

LEMCOTEC

UHOPRLean Burn R

L 4

-5

E-BREAK

5

-6%-16%-18%

-27%

-64%

NOx

CO2

DREAM

Optimised Open Rotor

TRL

4-5

-9%-65%

CO2

NOx

CO2 TR

Sub-systems

TRL

4-5-8%

-1 to 6 %2

-1 to 2 %

-20 to30%2

-65 to 70%2

-21 to 32%2

910th‐11th of May 2017 E‐BREAK Overview & results FORUM AE Workshop Reims (France)

Page 10: E BREAK – Overview Final Results · ‐ Improved bearing chambers design using numerical ... Standard method CFD model of simple chamber for oil oxidation Thin-film CFD model CFD

E‐BREAK Enablers for high 

h b f h

OPR and BPR Cycles Three main objectives for the E‐BREAK project:

‐ To develop enabling technologies for subsystems and components to makeintegration and operability of new engines come true

o Lower fuel consumption and noise leads global research trend to develop higher OPR and BPRaero‐engine.

o E‐BREAK is the complement to already launched projects on “Thermodynamic CycleInnovation” for high OPR and BPR engines (LEMCOTEC, NEWAC, DREAM, VITAL, ENOVAL).Innovation for high OPR and BPR engines (LEMCOTEC, NEWAC, DREAM, VITAL, ENOVAL).

‐ To develop generic technologies for subsystems or components with a specialattention on Low and High Pressure partsg p

o Sealing technologies, higher temperature components including abradables, lightercomponents, robust subsystems, more variable geometries, …

T th t th hi h f f t i l t‐ To ensure that these high performance future core engine also guarantee ahigh level operability, availability and maintainability

o Robustness of material, reliability of subsystems, anticipate sub‐system degradation...

1010th‐11th of May 2017 E‐BREAK Overview & results FORUM AE Workshop Reims (France)

Page 11: E BREAK – Overview Final Results · ‐ Improved bearing chambers design using numerical ... Standard method CFD model of simple chamber for oil oxidation Thin-film CFD model CFD

SP Overview Descriptions&&

Enabling Technologies ResultsEnabling Technologies Results

1110th‐11th of May 2017 E‐BREAK Overview & results FORUM AE Workshop Reims (France)

Page 12: E BREAK – Overview Final Results · ‐ Improved bearing chambers design using numerical ... Standard method CFD model of simple chamber for oil oxidation Thin-film CFD model CFD

SP1 ‐ Overall Specification and Engine Assessment

Main Goals:Summarize technology applicability to a wide range ofengine architectures from Ultra High OPR platforms tolow OPR TS:

Provide requirements and objectivesMonitor activity progress through technical indicatorsConsolidate project outcomesExplore new concept studies

h h &Ensure exchanges with LEMCOTEC & ENOVALSP2

Advanced sealing systems

SP3

Engine variability and thermomecha

nicalbehaviour

SP4

Higher temperature materials

SP5

Lightweight materials

SP6

Health monitoring

Applicable SP outcomes

Partially applicable SP outcomes

Not applicable SP outcomes

~

(tip ( il

WP1.1Specification phase

Components “environmental requirements”

Regional Turbofan ~

~~~~

~

~

~ (booster 

(VSV systems maybe N/A)

(air sealings : few high radius parts)

(moderate compressors temperature 

levels)

(tip clearances controls)

(system installation 

constraints on small engines)

~(cost/benefit

(oil systems)

Turboshaft

SP3 ‐ Engine variability and thermomechanical behaviour

SP4SP4 Higher temperature

SP2 ‐ Advanced Sealing systems

WP1.2Variable engine concept

requirements

WP1.1M i i

Medium range open rotor

Long range turbofan

~ vanes vs bird ingestion)

(cost/benefit trade)

SP4 ‐ Higher temperature materialSP5  ‐ Lightweight 

materials

SP6 ‐ Health monitoring

concept studies Monitoring 

(Technical Indicators)

Long range turbofan

~(high temperature 

engine)

WP1.1Assessment phase

Technology achievements (weight, efficiency …)

1210th‐11th of May 2017 E‐BREAK Overview & results FORUM AE Workshop Reims (France)

Page 13: E BREAK – Overview Final Results · ‐ Improved bearing chambers design using numerical ... Standard method CFD model of simple chamber for oil oxidation Thin-film CFD model CFD

SP1 ‐ Overall Specification and Engine Assessment

Components environmental requirements definition Components environmental requirements definition

Requirements from Aircraft definitionf f

Overall engine cycle definition (sizing points)

Thrust,Power extraction,Flight conditions,Installation constraints

Engine basic architecture (geometry corner points, weight)( g p )Installation constraints … (g y p g )

Component environmental requirements (massflows, 

OPR  21

OPR 50 temperature, pressure, operability …)OPR  50

OPR  54

SP2, SP3, SP4, SP5, SP6For each of the 4 target architectures

Level of detail and parameters definition adjusted to SPs needs

OPR  70

1310th‐11th of May 2017 E‐BREAK Overview & results FORUM AE Workshop Reims (France)

Page 14: E BREAK – Overview Final Results · ‐ Improved bearing chambers design using numerical ... Standard method CFD model of simple chamber for oil oxidation Thin-film CFD model CFD

SP2 ‐ Air Sealing Systems and Oil Systems

WP2.1 ‐ Secondary air system : TRL Objective: 3/4/5WP2.1  Secondary air system :‐ Optimisation of stator by‐pass flow‐ Cavity flow optimisation and heat shield for LP turbine 

disks‐ Improving dynamic behaviour of labyrinth piston seals‐ Development of a larger diameter, ultra low flow air‐

riding flexible sealDevelopment of advanced bearing chamber seals‐ Development of advanced bearing chamber seals, including wet face carbon seals

WP2.2 ‐ Oil system :‐ Advanced air/oil separation: Breather technology and

TRL Objective: 3/4/5

Advanced air/oil separation: Breather technology and modelling

‐ Improved bearing chambers design using numerical approaches. Validate thermal models against experimental data (engine validation)experimental data (engine validation)

‐ Oil lifeing and prediction

1410th‐11th of May 2017 E‐BREAK Overview & results FORUM AE Workshop Reims (France)

Page 15: E BREAK – Overview Final Results · ‐ Improved bearing chambers design using numerical ... Standard method CFD model of simple chamber for oil oxidation Thin-film CFD model CFD

SP2 ‐ Air Sealing Systems

WP2.1 – Air Sealing System Achievements : Piston seal stability rig

Achievements Stator bypass flows optimised using physics models and experiment  Validated conjugate flow models of LP Turbine disks heat shielding New stability analysis methods for piston and air riding seals

f d d l f lid d d l f i idi l

WP2.1 Air Sealing System Achievements : Piston seal stability rig

Test of concept and development of validated models of air riding seals Development of advanced seals – brush and face.

Advanced wet face seals

Advanced brush seals

Conjugate 3D CFD

Air riding seal validation rig

j ganalysis & rig design of shielded rotor1

Stator-bypass CFD and experimental conceptexperimental concept

1510th‐11th of May 2017 E‐BREAK Overview & results FORUM AE Workshop Reims (France)

Page 16: E BREAK – Overview Final Results · ‐ Improved bearing chambers design using numerical ... Standard method CFD model of simple chamber for oil oxidation Thin-film CFD model CFD

SP2 – Oil SystemsAchievements

WP 2.2 Oil Systems Achievements Breather technology 

‐ Measurement of oil capture efficiency‐ Development of CFD models of breathers ‐

Macro scale modelso Macro‐scale modelso Micro‐scale (pore) models.

Bearing chambers ‐ Experiments on oil films – measurement of thickness and heat transfer coefficient

KIT Bearingchamber rig

SPH model of simple chamber

ULB breather rig

‐ Thermal modelling and validation (external engine test)‐ Modelling CFD – thin film model (ported into Fluent), mixture model and SPH

Improved understanding of oil degradation 

Thermal model validation Micro-scale (pore)

CFD model ofCFD model of simple chamberStandard method

for oil oxidationThin-film CFD

model

CFD model of breather

model

1610th‐11th of May 2017 E‐BREAK Overview & results FORUM AE Workshop Reims (France)

Page 17: E BREAK – Overview Final Results · ‐ Improved bearing chambers design using numerical ... Standard method CFD model of simple chamber for oil oxidation Thin-film CFD model CFD

SP3 Variable Engine SystemsSP3 ‐ Variable Engine Systems

Aero‐engines are usually optimised for cruise conditions

take/off climb

Aero engines are usually optimised for cruise conditions

cruise descent / landing

but have to work also at different conditions:

cold weather high altitudeairports

hot conditions rain & hail

www.airbus.com

anti-icingcabinpressurisation

turbine cooling air,b i

www.airbus.com www.airbus.com www.flytime.ca

www.aeronatics.nasa.govwww.avmed.in

pressurisation bearingpressurisation+

1710th‐11th of May 2017 E‐BREAK Overview & results FORUM AE Workshop Reims (France)

Page 18: E BREAK – Overview Final Results · ‐ Improved bearing chambers design using numerical ... Standard method CFD model of simple chamber for oil oxidation Thin-film CFD model CFD

SP3 Variable Engine SystemsSP3 ‐ Variable Engine Systems

Variable system options to improve engine operability andVariable system options to improve engine operability andefficiency :

Variable fan area nozzle SP1

Variable bleed systemSP3

Variable pitch fan

Tip clearance control SP3

Variable stator vanesSP3 High temp. abradable materials SP4

1810th‐11th of May 2017 E‐BREAK Overview & results FORUM AE Workshop Reims (France)

Page 19: E BREAK – Overview Final Results · ‐ Improved bearing chambers design using numerical ... Standard method CFD model of simple chamber for oil oxidation Thin-film CFD model CFD

SP3 ‐ Engine Variability and Thermomechanical Behaviour

WP3 1 ‐ Variables mechanical systems : TRL Objective: 4/5WP3.1  Variables mechanical systems :‐ Improved Variable Bleed Vane and Variable Stator Vane 

systems (more precise), including new bushing l

TRL Objective: 4/5

material‐ Bird strike robustness (effects on VSV and design 

requirements)‐ Ultra high OPR robust blading

WP3.2 ‐ Tip clearance control :  TRL Objective: 4/5

‐ Sensor and process for tip clearance control on compressor and turbine applications

WP3 3 ‐ Thermomechanical behaviour of mainTRL Objective: 4/5

WP3.3  Thermomechanical behaviour of main structures :‐ Active (variable) cooling of turbine radial structure

1910th‐11th of May 2017 E‐BREAK Overview & results FORUM AE Workshop Reims (France)

Page 20: E BREAK – Overview Final Results · ‐ Improved bearing chambers design using numerical ... Standard method CFD model of simple chamber for oil oxidation Thin-film CFD model CFD

SP3 Variable Engine SystemsSP3 ‐ Variable Engine Systems

+70°K Temperature capability

Improved accuracy, 6% weight reduction

AB

Improved accuracy, 6% weight reduction

+1.25° more vane accuracy

5% surge margin improvement

AE0 6 kg Weight reduction

AE

Improved load prediction weight reduction

AE

0.6 kg Weight reduction

AE

d d l f l b0.25 kg Weight reduction Reduced wear rate  less fuel burn

2010th‐11th of May 2017 E‐BREAK Overview & results FORUM AE Workshop Reims (France)

Page 21: E BREAK – Overview Final Results · ‐ Improved bearing chambers design using numerical ... Standard method CFD model of simple chamber for oil oxidation Thin-film CFD model CFD

SP4 ‐ Higher Temperature Material for Breakthrough Components

Improve aircraft engine efficiency : Improve aircraft engine efficiency :‐ increase the admissible running temperature into the engine gas flow‐ Optimise and limit the clearance between rotating and static parts

Three technologies that can conduct to such improvement :‐ abradable for sealing application: contact tolerance at rotor stator interface‐ thermal barrierthermal barrier‐ super alloys

E‐BREAK scope :‐ Develop these technologies from the process optimization to the modeling of the 

t b h i

Fan abradable [Safran AE] TBC system [Safran HE]

part behaviour

2110th‐11th of May 2017 E‐BREAK Overview & results FORUM AE Workshop Reims (France)

Page 22: E BREAK – Overview Final Results · ‐ Improved bearing chambers design using numerical ... Standard method CFD model of simple chamber for oil oxidation Thin-film CFD model CFD

SP4 ‐ Higher Temperature Material for Breakthrough ComponentsBreakthrough Components ‐

AchievementsFundamental knowledgeFundamental knowledge

Mechanical dataFull scale validation test

Improvements from the E BREAK project S ifi d l f

TRL 4/5TRL 1/3

MTU Germany

Specific models for contact

Ageing results

contact dynamic data

MTU, Germany

contact dynamic dataHeating flux

TUD, Germany

New abradables and optimised specifications for coating manufacturing

0.5

1

1.5 Contact forces

0 Element Berlin, Germany

2210th‐11th of May 2017 E‐BREAK Overview & results FORUM AE Workshop Reims (France)

Page 23: E BREAK – Overview Final Results · ‐ Improved bearing chambers design using numerical ... Standard method CFD model of simple chamber for oil oxidation Thin-film CFD model CFD

SP5 ‐ Lightweight Materials for Breakthrough ComponentsComponents 

‐ New TiAl Alloy development for LPT Blade application ‐

h i l bl d ?Why TiAl blade?Because of weight saving in the LPT section, leading to: reduced fuel burn and CO2 consumption each rotor stage can have about 30% weight 

reduction by using TiAl blades taking also advantage by the lighter disk and casing.

weight saving on LPT module depends on the hengine architecture.

WP 5.1 ‐Material properties testing WP 5.3 ‐ Improvement to manufacturing processWP 5.1  Material properties testing‐ Material testing for 2nd and 3rd generation TiAl alloys‐ Heat Treatment and relevant Microstructure definition ‐ Assessment on defects and trace elements influence on 

materials properties‐ Best design criteria selection for TiAl alloys

WP 5.3  Improvement to manufacturing process‐ Raw material recycling‐ Affordable and robust TiAl manufacturing processes 

(casting and EBM)‐ Electrochemical machining process developed as 

alternative machining process for TiAl blades  Defect detectability : NDTs

WP 5.2 ‐ Coatings for TiAl components ‐ Wear coatings and intermediate layers‐ Oxidation and corrosion resistant coatings for turbine blades‐ Surface treatments (shot peening)

‐ Defect detectability : NDTs

WP 5.4 ‐ Component rig tests and engine test‐ Blade validation at small size (turboshaft) and higher size 

(medium range engine)

2310th‐11th of May 2017 E‐BREAK Overview & results FORUM AE Workshop Reims (France)

Page 24: E BREAK – Overview Final Results · ‐ Improved bearing chambers design using numerical ... Standard method CFD model of simple chamber for oil oxidation Thin-film CFD model CFD

SP5 ‐ Lightweight Materials for Breakthrough Components ‐Main achievements

New alloy development (TNM)Mechanical characterization  Defects  assessment and trace 

New alloy development (TNM) elements influence 

i d f

Manufacturing Process development (Centrifugal Casting and Additive) +

Anti‐wear coating, anti‐oxidation/corrosion coating, shot peening developed for new alloy 

Engine and component test for technology validation 

(Centrifugal Casting and Additive)  + pertinent recycling process 

Casting bladesafter engine test

2410th‐11th of May 2017 E‐BREAK Overview & results FORUM AE Workshop Reims (France)

Page 25: E BREAK – Overview Final Results · ‐ Improved bearing chambers design using numerical ... Standard method CFD model of simple chamber for oil oxidation Thin-film CFD model CFD

SP6 ‐Why Engine Health 

B k h h d b h l i

Monitoring ? Breakthrough components and subsystem technologies

also bring new challenges in design and operation‐ Safety margins in design and operation vs

weight reduction and engine lifeweight reduction and engine life‐ Acceptance due to reliability concerns‐ Life cycle costs

Health Monitoring is a key to Health Monitoring is a key to‐ Allow for lower weight designs without

compromise on safety‐ Better anticipate and mitigate reliability concernsBetter anticipate and mitigate reliability concerns

in operation‐ Maintain engine performance over the life cycle:

From educated guessing to informed decisions‐ Bring turbofan technology to turboshaft engines

2510th‐11th of May 2017 E‐BREAK Overview & results FORUM AE Workshop Reims (France)

Page 26: E BREAK – Overview Final Results · ‐ Improved bearing chambers design using numerical ... Standard method CFD model of simple chamber for oil oxidation Thin-film CFD model CFD

SP6 Engine Health Monitoring Achievements

Structures Health Monitoring• Demonstrator: Fan Outlet

Prognostics• Forecasting of remaining useful life based on

Guide Vane• Embedded wireless

architecture• Reduces weight• Improves safety and

li bilit

Forecasting of remaining useful life based on performance degradation

• Extension of life of non-Life-limited-parts• Shop visit planning Long Range Turbofan and Turboshaft – TRL4

reliability Long Range Turbofan– TRL4

Fan OGV with embedded SHM Hardware.GKN Aerospace Proprietary

P f P i MTU A E i AGEarly Detection and Diagnosis of Events andPerformance Degradation• Physics-based and big data analytics• Reduced wear and tear, improved reliability Long Range Turbofan and Turboshaft – TRL4 to 6

Predictive/Prescriptive Maintenance• Adaptive prediction of optimum part mix during

shop visit• Optimum SFC recovery @ maximum usage of

used parts = conservation of ressources

Performance Prognosis. MTU Aero Engines AG

urem

ent

used parts = conservation of ressources Long Range Turbofan – TRL3/4

Measurement #1Measurement #1

Measurement #2

Mea

su#3

Pattern recognition of fouling in turboshaft axial#1#1#2 Pattern recognition of fouling in turboshaft axial compressor. Safran HE

MTU Aero Engines AG

2610th‐11th of May 2017 E‐BREAK Overview & results FORUM AE Workshop Reims (France)

Page 27: E BREAK – Overview Final Results · ‐ Improved bearing chambers design using numerical ... Standard method CFD model of simple chamber for oil oxidation Thin-film CFD model CFD

Preliminary final resultsPreliminary final results

dd l b f

Significant overall

Additional CO2 benefits, mostly in line with

expectationsTRL progress

OPR  21 ‐1.2 to ‐1.5 % CO2

OPR  50

OPR  54

‐1.1 to ‐1.4 % CO2

OPR  70

‐1.2 to ‐1.8 % CO2

Number of technologies per TRL growth category (= arrow width)

5 9 3 3 11 2 2 3 2 ‐2.8 to ‐4.1 % CO2

2710th‐11th of May 2017 E‐BREAK Overview & results FORUM AE Workshop Reims (France)

Page 28: E BREAK – Overview Final Results · ‐ Improved bearing chambers design using numerical ... Standard method CFD model of simple chamber for oil oxidation Thin-film CFD model CFD

E BREAK ConclusionE‐BREAK Conclusion

E‐BREAK is complementary to already launched European projects which focused on “Thermodynamic Cycle Innovation” for high OPR and high BPR engines (LEMCOTEC, NEWAC, DREAM, VITAL, ENOVAL).

Those innovations can only be enabled if the current subsystems capabilities are significantly improved.

Th fi E BREAK h b h l bl f The first E‐BREAK target was then to be a technology enabler for subsystems and components.

This was achieved by developing generic technologies for subsystems or y p g g g ycomponents with a special attention on Low and High Pressure parts, and guaranteeing a high level operability, availability and maintainability. 

Technologies developed in the other projects will be applicable at an Technologies developed in the other projects will be applicable at an engine level thanks to E‐BREAK’s contribution.

2810th‐11th of May 2017 E‐BREAK Overview & results FORUM AE Workshop Reims (France)

Page 29: E BREAK – Overview Final Results · ‐ Improved bearing chambers design using numerical ... Standard method CFD model of simple chamber for oil oxidation Thin-film CFD model CFD

Any questions ?Any questions ?

E-BREAK – Overview & Final ResultsE BREAK Overview & Final ResultsContact : [email protected]

Find out more on : http://www.e-break.eu/Acknowledgement: The research in E-BREAK leading to these results has received funding from the European Union`s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement ACP1-GA-2011-n° 314366.

2910th‐11th of May 2017 E‐BREAK Overview & results FORUM AE Workshop Reims (France)