曲面の微分幾何 - kobe...

25
曲面の微分幾何 計算から眺めるいくつかの話題Masatoshi KOKUBU Tokyo Denki University January 09 2009 START ´

Upload: others

Post on 03-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • 曲面の微分幾何—計算から眺めるいくつかの話題—

    Masatoshi KOKUBU

    Tokyo Denki University

    January 09 2009

    START Â

    dviout: !ANFN5!pdf;!bdviout: je

  • One of (my) motivations:Wish to discover new surfaces which are interesting from

    the (differential-)geometric viewpoint.

    MenuPart 1 From Classical Minimal Surface Theory

    Before Weierstrass-Enneper

    After Weierstrass-Enneper

    After Osserman

    Part 2 Flat fronts and their analogue

    Flat fronts in H3

    W-fronts in H3

    ª¢ 1(Â)

    dviout: jfdviout: d6dviout: je

  • Part 1 From Minimal Surface Theory

    Definition

    A surface S ⊂ E3 is said to be minimal if∀p ∈ S, ∃ a nbd U s.t. U has least area

    among surfaces whose boundary equals ∂U.

    A plane is a trivial example.

    —18th century—

    1740s Euler catenoidy = cosh(x)(catenary)

    ª¢ 2(Â)

    dviout: jfdviout: d6dviout: je

  • Theorem 1 (Meusnier 1770s)

    minimal ⇐⇒ mean curvature H = 0

    1770s Meusnier catenoid, helicoid

    (s cos t, s sin t, t)

    ª¢ 3(Â)

    dviout: jfdviout: d6dviout: je

  • –the first half of 19th century–

    1835 Scherk Scherk’s surface, Scherk’s second surface

    ez cos x − cos y = 0

    sin z − sinh x sinh y = 0

    ª¢ 4(Â)

    dviout: jfdviout: d6dviout: je

  • Weierstrass-Enneper formula–the latter half of 19th century–

    Theorem 2

    Suppose a surface is given by an isometric immersion

    x = (x1, x2, x3) : (M2, ds2) → E3.x is minimal ⇐⇒ each xi is harmonic.

    ∃ local isothermal parameter (u, v), i.e., ds2 = λ(du2 + dv2),Setting z = u + iv, a minimal immersion x is given by a

    real part of a null holomorphic immersion w.r.t z.

    ª¢ 5(Â)

    dviout: jfdviout: d6dviout: je

  • Theorem 3 (Weierstrass, Enneper 1860s)

    x(z) = Re∫ z

    z0

    (1 − g2, i(1 + g2), 2g

    )f dz

    where g, f holomorphic in z.

    Crucial formula for pieces of minimal surface!

    g is the Gauss map, i.e.,

    g = (stereographic projection) ◦ N

    pN

    N(p)

    ª¢ 6(Â)

    dviout: jfdviout: d6dviout: je

  • 1864 Enneper

    g = z, f = 1

    Re

    z − z3

    3i(z + z

    3

    3 )z2

    1878 Henneberg

    g = z, f = 1 − z−4

    x(z) = Re

    −z3

    3 + z −1z +

    13z3

    iz33 + iz +

    iz +

    i3z3

    z2 + 1z2

    x(−1/z̄) = x(z) is satisfied!x defines x̌ : RP2 \ {[0]} → E3well. (branched at [1], [i].)

    ª¢ 7(Â)

    file:figures/henneberg-2.nbdviout: jfdviout: d6dviout: je

  • Global study due to Osserman (1960s —)–the latter half of 19th century–

    Theorem 4 (Osserman)

    M: Riemann surface, g: meromorphic function on M,ω: a holomorphic 1-form on M.(i) {zeros of ω} = {poles of g} where ordpω = 2ordpg(ii)

    ∫1 − g2ω,

    ∫i(1 + g2)ω,

    ∫2gω have no real period

    ⇒Re

    ∫ (1 − g2, i(1 + g2), 2g

    )ω (⋆)

    is a conformal minimal immersion M → E3.“⇐” also holds.

    (i′) {zeros of ω} ⊃ {poles of g} where ordpω ≥ 2ordpg(ii)⇒ (⋆) gives a branched minimal immersion M → E3.ª¢ 8(Â)

    dviout: jfdviout: d6dviout: je

  • Theorem 5 (Osserman)

    x : M → E3 a complete minimal surface of finite totalcurvature

    ⇒M ∼= M̄ \ {p1, . . . , pn}Gauss map g extends meromorphically on M̄total curvature = −4π deg(g)

    Theorem 6 (Osserman)

    total curvature ≤ 4π(1 − genus(M) − #{ends})

    When one wishes to construct an example of a complete

    minimal surface of finite total curvature, one has to take

    care about genus and punctured points of M, degree of g,and, of course, completeness.

    ª¢ 9(Â)

    dviout: jfdviout: d6dviout: je

  • 1983 Jorge-Meeks M = Ĉ \ {1, ζ, ζ2} (ζ3 = 1)g = z2, ω = (z3 − 1)−2dz

    (i) At z = 0, ω = 0 of order 4At z = 0, g = 0 of order 2

    (ii)(

    1−z4(z3−1)2 , i(

    1+z4(z3−1)2),

    2z2(z3−1)2

    )has residue

    (−49, 0, 0) at z = 1(29,

    23√

    3, 0) at z = ζ

    (29,−2

    3√

    3, 0) at z = ζ2

    (iii) ds2 = (|z|4+1)2

    |z3−1|2

    ∃k-noid for ∀k ≥ 2.

    ª¢ 10(Â)

    file:figures/weierstrass-test.nbdviout: jfdviout: d6dviout: je

  • ℘: Weierstrass’ ℘ function on C/{Z ⊕ Zi} (square torus)1981 Chen-Gackstatter

    g =√

    3π/2g2 ℘′/℘, ω = ℘ dz

    M = T2 \ {1 point}tot. curv. = −8πexplict formula

    1982 Costa

    g = 2√

    2π e1℘′ , ω = ℘ dz

    M = T2 \ {3 points}tot. curv. = −12πembedded

    explict formula

    ª¢ 11(Â)

    file:chenga.dvifile:costa.dvidviout: jfdviout: d6dviout: je

  • 1980s – 90s After Jorge-Meeks, Chen-Gackstatter and

    Costa, So many new minimal surfaces are discovered

    (Hoffman, Meeks, Karcher, Kusner, Rosenberg, Lopez,

    Ros, Rossman, Miyaoka, Sato, ..........)

    2000s – Discovery is continuing! (Fujimori, Shoda, Traizet,

    Weber, ..........)

    ª¢ 12(Â)

    dviout: jfdviout: d6dviout: je

  • Part 2 Flat Front in H3H3: hyperbolic 3-space, i.e., simply-connected, complete

    Riemannian 3-manifold of constant sectional curvature −1H3 is represented as Poincaré ball, upper half-space, etc.

    flat front · · ·{flat = “Gauss curvature = 0”,front = “surface with ‘good’ singularities”

    ª¢ 13(Â)

    dviout: jfdviout: d6dviout: je

  • Remarks

    Fact [Volkov-Vladimirova(1972); S. Sasaki(1973)]

    A complete flat surface immersed in H3 is a horosphereor a (hyperbolic) cylinder.

    Hyperbolic Gauss maps G, G∗is defined for fronts (across the

    singularities).

    f (M2)

    p

    G(p)

    G∗(p)

    Theorem 7

    flat ⇐⇒ G, G∗ : holomorphic w.r.t. holomorphicstructure compatible to the 2nd fundamental form

    ª¢ 14(Â)

    dviout: jfdviout: d6dviout: je

  • Representation formula

    Theorem 8 ((G, G∗)-formula)f : M2 → H3 = SL(2, C)/ SU(2) : a flat front with hyper-bolic Gauss maps G, G∗.⇐⇒ f = EE ∗ where

    E =(

    G/ξ ξG∗/(G − G∗)1/ξ ξ/(G − G∗)

    )with ξ := exp

    (∫ dGG − G∗

    )

    period condition for f = EE ∗

    ⇐⇒∫

    γ

    dGG − G∗

    ∈√−1R, ∀[γ] ∈ π1(M)

    ª¢ 15(Â)

    dviout: jfdviout: d6dviout: je

  • Example 9 (flat fronts of revolution)

    horosphere

    hyperbolic cylinder

    hourglass

    snowman

    M :=

    {Ĉ \ {0} if α = 0Ĉ \ {0, ∞} otherwise,

    G(z) = z,G∗(z) = αz (α ∈ R \ {1})

    ª¢ 16(Â)

    dviout: jfdviout: d6dviout: je

  • Example 10 (n-noid)M := Ĉ \ {z|zn = 1}, G(z) = z, G∗(z) = z−n+1 (n = 2, 3, . . . )

    Example 11 ((n + 2)-noid)M := Ĉ \ {0, ∞, zn = 1}, G(z) = z, G∗(z) = zn+1 (n = 1, 2, . . . )

    Theorem 12 (KUY)

    For a weakly complete flat front with regular ends,

    deg G + deg G∗ ≥ #{ends}‘ =′ ⇐⇒ All ends are embedded.

    ª¢ 17(Â)

    dviout: jfdviout: d6dviout: je

  • Construction of ”with ends at arbitrary positions”

    Let p1, . . . , pn−1, ∞ be distinct points in ∂H3 = C ∪ {∞}.Choose non-zero real numbers a1, . . . , an−1 such that a1 +· · · + an−1 ̸= 0, 1.

    M = C \ {p1, . . . , pn−1}G = z

    G∗ =

    (z ∑n−1k=1

    {ak ∏j ̸=k

    (z − pj

    )}− ∏n−1j=1 (z − pj)

    )∑n−1k=1

    {ak ∏j ̸=k

    (z − pj

    )}⇒ a weakly complete flat front with embedded regular

    ends at p1, . . . , pn−1, ∞.

    Problem ∃ flat front having two different ends accu-mulating at the same point in ∂H3?

    ª¢ 18(Â)

    dviout: jfdviout: d6dviout: je

  • Examples of higher genus

    Example 13

    Let ℘ denote the Weierstrass ℘ function on T = C/{Z1⊕Zi}(squared torus).

    M = T \ {z ; ℘(3℘2 − e21) = 0}

    G =1℘′

    G∗ = −8e213

    ℘′

    ⇒ a weakly complete flat front of genus one, with fiveembedded regular ends.

    Figure

    ª¢ 19(Â)

    file:figures/torusfront.nbdviout: jfdviout: d6dviout: je

  • Example 14

    Consider a hyperelliptic Riemann surface

    R : w2 = z(

    z2k − 2czk−1 − 1)

    =: zϕ(z)

    where c =

    {0 if k = 1k/(k − 1) if k > 1

    of genus k.Set M := R \ {z ; z(zϕ(z))′ = 0}(= R \ {4k + 1 pts}).Then

    G = w, G∗ =1

    (2k + 1)w(2kzϕ(z) − z2ϕ′(z))

    ⇒ a weakly complete flat front of genus k, with 4k + 1embedded regular ends.

    ª¢ 20(Â)

    dviout: jfdviout: d6dviout: je

  • Open Problem

    Consider weakly complete flat fronts of genus k with nregular ends.

    ➀ For each k, What is the least number nmin(k) of n?➁ How about the same problem assuming ends must be

    embedded?

    In particular,

    ∃ genus-1 front with four embedded ends?

    Genus-0 case is solved.

    For positive genus case, we know nmin(k) ≤ 4k + 1 byprevious example; moreover, we know nmin(k) ≤ 2k + 3 byexistence therem (non-computational argument).

    ª¢ 21(Â)

    dviout: jfdviout: d6dviout: je

  • An analogueWe consider Weingarten surfaces in H3 satisfying

    α(H − 1) = βK for some [α : β] ∈ RP1, (⋆)called a W-surface, for short, in this talk.

    The class of W-surfaces includes

    • flat surfaces (K = 0)• CMC-1 surfaces (H = 1)

    It is natural to consider W-fronts rather than W-surfaces.

    But CMC-1 fronts necessarily CMC-1 (regular) surface.

    ª¢ 22(Â)

    dviout: jfdviout: d6dviout: je

  • Theorem 15 (Representation formula)M : Riemann surface; G : meromorphic functionds2ϵ : metric on M with constant curvature ϵ⇒∃ W-front f : M → H3 with α(H − 1) = βK, α/(α − 2β) = ϵ

    More precisely,

    ∃ a holomorphic map h : M̃ → S2 or C or D s. t. ds2ϵ =4|dh|2

    (1+ϵ|h|2)2Using this h, define

    G = (−Gh)−3/2[−GGh GGhh/2 − G2h−Gh Ghh/2

    ]and H =

    [1+ϵ2|h|21+ϵ|h|2 −ϵh̄−ϵh 1 + ϵ|h|2

    ],

    and set

    f = GHG∗.Then f : M′(⊂ M) → H3 = PSL(2, C)/ PSU(2) is a Weingarten frontwith α(H − 1) = βK, α/(α − 2β) = ϵ.Here, M′ = M \ {π(pi), π(qi)} ;pi is the common zero of dh and {G; h}dh, qi is a pole of dh or{G; h}dh;and vise versa.

    ª¢ 23(Â)

    dviout: jfdviout: d6dviout: je

  • End of slides. Click [END] to finish the presentation.

    Thank you.

    ª END Bye ¢

    dviout: !A!n!f;!bdviout: jfdviout: !A!n!f;!bdviout: fqdviout: d6