e p = 920 gev, e e = 27.5 gev, # bunches = 189 i p = 110 ma, i e = 40 ma

43
Small-x and Diffraction in DIS at HERA I Henri Kowalski DESY 12 th CTEQ Summer School Madison - Wisconsin June 2004

Upload: alvin-bond

Post on 31-Dec-2015

36 views

Category:

Documents


1 download

DESCRIPTION

Small-x and Diffraction in DIS at HERA I Henri Kowalski DESY 12 th CTEQ Summer School Madison - Wisconsin June 2004. H1 detector. ZEUS detector. E p = 920 GeV, E e = 27.5 GeV, # bunches = 189 I p = 110 mA, I e = 40 mA L inst = 2 x 10 31 cm -2 s - 1. ZEUS detector. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

Small-x and Diffraction in DIS at HERAI

Henri KowalskiDESY

12th CTEQ Summer School Madison - Wisconsin

June 2004

Page 2: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

Ep = 920 GeV, Ee = 27.5 GeV, # bunches = 189Ip = 110 mA, Ie = 40 mALinst= 2 x 1031 cm-2 s-1

ZEUS detector

H1 detector

Page 3: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

Q2 ~ 2 –100 GeV2

Q2 ~ 0.05-0.6 GeV2

Q2 - virtuality of the incoming photonW - CMS energy of the incoming photon-proton system

ZEUS detector

x - Fraction of the proton momentum carried by struck quark x ~ Q2/W2

Page 4: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

2

2L

223

224

2em

2

eP2

y)(11Y

)]Q(x,Fy)Q(x,xFY )Q(x,F[Y xQ

απ 2

dxdQ

σd

y – inelasticityQ2 = sxy

Infinite momentum frame

Proton looks like a cloud of noninteracting quarks and gluons

F2 measures parton density in proton at scale Q2

F2 = f e2f x q(x,Q2)

Page 5: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

there is a change of slope at small-x, near Q2 = 1 GeV2

Page 6: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

Gluon density

Gluon density dominates F2 for x < 0.01

Page 7: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

Gluon density known with good precision at larger Q2. For Q2 ~1 GeV2 gluons tends to go negative.

NLO, so not impossible

BUT – cross sections such as L also negative !

Page 8: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

MX - invariant mass of all particles seen in the central detector t - momentum transfer to the diffractively scattered proton

Page 9: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

Non-Diffraction Diffraction

- Rapidity

uniform, uncorrelated particle emission along the rapidity axis => probability to see a gap Y is ~ exp(-<n>Y) <n> - average multiplicity per unit of rapidity

Diffractive Signature

dN/ dM 2X ~ 1/ M 2

X => dN/dlog M 2

X ~ const

Non-diff

diff

Y ~ log(W2 / M 2X)

Page 10: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

fm 10001011

qq

xmE p

Slow Proton Frame

Transverse size of the quark-antiquark cloudis determined by r ~ 1/Q ~ 2 10-14cm/ Q (GeV)

Diffraction is similar to the elastic scattering: replace the outgoing photon by the diffractive final state , J/ or X = two quarks

incoming virtual photon fluctuates into a quark-antiquark pair which in turn emits a cascade-like cloud of gluons

0)t,(WImAW

1σ 2

el2γptot )Q(x, F

Q

α π4 )Q(W,σ 2

2 2em

22Pγ

tot

*

Rise of ptot with W is a measure of radiation intensity

Page 11: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

Radiation process

),()3

( 202

1

21

121

21

1 Qydyk

dkdy

k

dkdyC nn

tn

tnn

t

tn

n

sptot

emission of gluons is ordered in rapidities

)/1ln()/ln(0 22121 xQWyyyy nn

QCD Toy Model:integrals over transverse momenta are independent of each other

)(

2

222max

20

3 Qk

Qit

its

k

kd

n

n

ny

n

x yn

n

ptot x

nCdydydyC

n

))/1(ln(!

11

0

)/1ln(

0 0

21

)(~)/1())/1ln(exp( 2WxCxCptot

Rise of ptot with W is a measure of radiation intensity

Page 12: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

Dipole description of DIS

),,(),(),,(ˆ 22*21

0

2*

rzQrxrzQdzrd qqp

tot

2222*1

0

20 |),,(),(),,(|

16

1|

*

rzQrxrzQdzrddt

dqqVMt

pVM

)section cross (dipolproton on pair qq

of scatteringfor section cross ),(

function waveQCD qq ),(2rx

rz

qq

),,(),(),,(16

1| 2222*

1

0

20

*

rzQrxrzQdzrddt

dqqt

pdiff

Page 13: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

22220

22222

22

20

221

22222

22

22,

1

00

22,

)1( )}()1(4{2

3),,(

)}()(])1({[2

3),,(

),(),,(),(*

qqemf

L

qqemf

T

qqf

fLT

PLT

mQzzrKzzQeQzr

rKmrKzzeQzr

rxQzrdzrdQx

Q2~1/r2

1for /1)(1 rrrK

1for ) exp(2/)(1 rrxrK

exp(-mq r)

Page 14: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

)]4

exp(1[ ),(20

2

0 R

rrxqq

GBW ModelK. Golec-Biernat, M. Wuesthoff

02

20

1)(

x

x

GeVxR

Parameters fitted to DIS F2 data:0 = 23 mb = 0.29 x0 = 0.0003

Scaling in

20

2 / Rr

Geometrical Scaling A. Stasto & Golec-Biernat J. Kwiecinski

Page 15: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

Parameters fitted to HERA DIS data: 2 /N ~ 1 0 = 23 mb = 0.29 x0 = 0.0003

Page 16: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

Saturation Model Predictions for Diffraction

Page 17: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

)(20

2 xRQ

Geometrical Scaling A. Stasto & Golec-Biernat J. Kwiecinski

02

20

1)(

x

x

GeVxR

Page 18: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

GBW model, in spite of its compelling success has some obvious shortcomings:

The treatment of QCD evolution is only rudimentary remedy => incorporate DGLAP into dipole cross-section J. Bartels, K. Golec-Biernat, H. Kowalski

The dipole cross section is integrated over the transverse coordinatealthough the gluon density is expected to be a strongly varying functionof the impact parameter.

)))/,(3

exp(1(),(

1 ));exp(1(),(

20

222

0

2

0

02

202

0

2

0

rCxxgrrx

x

x

GeVR

R

rrx

sqq

qq

GBW

Recently: BFKL motivated Ansatz proposed by Iancu, Itakura, Munier

Page 19: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

Proton

b – impact parameter

Impact Parameter Dipole Saturation Model

T(b) - proton shape 1)( 2

0

bdbT

well motivated:

GlauberMueller LevinCapellaKaidalov

))(),()(

32exp(12

),( 2222

2bTxxgr

bd

rxds

qq

H. Kowalski D. Teaney hep-ph/0304189

Page 20: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

Derivation of the GM dipole cross section

probability that a dipole at b does not suffer an inelastic interaction passing through one slice of a proton1),(

),(),()(1)(

2

2222

zbbdzd

dzzbxxgrN

bP sC

),()(

)(),()(exp)( 2222

2

zbdzbT

bTxxgrN

bS sC

))(),()(32

exp(12

))(Re1(2

2222

2

2

bTxxgrbd

d

bSbd

d

sqq

qq

S2 -probability that a dipole does not suffer an inelastic interaction passing through the entire proton

<= Landau-Lifschitz

Page 21: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

d)-(2 parameter impact - d)-(2 momentum transv.- 2 bt

t-dependence of the diffractive cross sections determines the b distribution

22222

2*1

0

22 |),,())(),(32

exp(1),,(|16

1*

rzQbTxxgrrzQdzebdrddt

dsVM

bip

VM

)2/exp(~)(

)exp(~

2 BbbT

tBdt

d diff

)/()2/)(exp()(

GeV 25.4 )2/exp()(

022

-22

EGGY

GGG

wbKwbbbdbT

wwbbT

Page 22: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

Q2 > 0.25 GeV2

mu = 0.05 GeV mc = 1.30 GeV

Fit parameters g= -0.12 C= 4.0 Q0

2 = 0.8 GeV2

2/N = 0.8

x < 10-2

6.520

202

2

)1(1

),( xx

Axxg

r

C

g

g

),,())(),(32

exp(1),,( 2222

2*1

0

22*

rzQbTxxgrrzQdzbdrd ff

sfp

Page 23: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

)]4

exp(1[ ),(20

2

0 R

rrxqq

GBW Model

))()/,(32

exp(12 ),( 2

022

2

2bTQrCxxgr

bd

rxds

qq

IP Saturation Model

Page 24: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

))((22

)/1(~),( reffxxxg

Smaller dipoles steeper rise Large spread of eff characteristic for Impact Parameter Dipole Models

)()(2 22*

)/1(~)(~ QQp tottot xW

----- universal rate of rise of all hadronic cross-sections

Page 25: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

Saturation region-------------------------------------------------------------------------------------------------------

))(),(

32exp(12

),( 222

2bTxxgr

bd

rxds

qq

Page 26: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

All quarks Charmed quark

GeV 3.1 MeV 100

),(),,(2

,,

22,

1

0

csdu

qqf

fLT

mm

rxQzrdzr

GeV 3.1

),,(),(2 22,

1

0

c

cLTqq

m

Qzrrxdzr

Page 27: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

Gluon density Charm structure function

Page 28: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

Photo-production of Vector Mesons

Page 29: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

Absolute values of cross sections are strongly dependent on mc

Page 30: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA
Page 31: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA
Page 32: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA
Page 33: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

Absorptive correction to F2

from AGK rules

....4/))2/exp(1(2 22

bd

d Example in Dipole Model

F2 ~ -

Single inclusive pure DGLAP

Diffraction

)(),()( 2222

bTxxgrN s

C

A. Martin M. RyskinG. Watt

Page 34: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

Fit to diffractive data using MRST Structure Functions A. Martin M. Ryskin G. Watt

Page 35: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

A. Martin M. Ryskin G. Watt

Page 36: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

)())(,())((3

2 222

bTrxxgrD s Density profile

2exp

22 r

DS

grows with diminishing x and r

approaches a constant value Saturated State - Color Glass Condensate

multiple scattering

Saturated state = = high interaction probability S2 => 0

rS - dipole size for which proton consists of one int. length

12 eS

S2 -probability that a dipole does not suffer an inelastic interaction passing through the entire proton

Page 37: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

Saturation scale = Density profile at the saturation radius rS 22 2

SS r

Q 2SQ

S = 0.15

S = 0.25

Page 38: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

Saturation in the un-integrated gluon distribution

kT factorisation formula

dipole formula

Page 39: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

GBW - - - - - - - - - - - - - - - - - - - - -

BGBK ___________________________________

GBW - - - - - - - - - - - - - - - - - - - - -

BGBK ___________________________________

- numerical evaluation

x = 10-6

x = 10-2

x = 10-4

x = 10-2

Page 40: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

Diffractive production of a qq pair_

Page 41: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA
Page 42: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

Inclusive Diffraction LPS - Method

Page 43: E p   = 920 GeV,   E e  = 27.5 GeV,     # bunches = 189 I p  = 110 mA,  I e  = 40 mA

END of Part I