eccomas 2016 unibg - cenaero · 3 brief#code#summary •...

22
On the implementation of XLES in a highorder implicit DG solver 1 F. Bassi 1 , L. Botti 1 , A. Colombo 1 , A. Crivellini 2 , A. Ghidoni 3 , M. Lorini 3 , F. Massa 1 , G. Noventa 3 ECCOMAS CONFERENCE 2016 (MS9102) Crete (Crete) 10th June 2016 1 Università degli studi di Bergamo 2 Università politecnica delle Marche 3 Università degli studi di Brescia

Upload: others

Post on 03-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ECCOMAS 2016 UNIBG - Cenaero · 3 Brief#code#summary • Discontinuous$Galerkin$(DG)$method$on$hybrid$grids$ • Physical$frame$orthonormal$basis$functions$ • 2D/3D$steady$and$unsteady

On  the  implementation  of  X-­‐LES  in  a  high-­‐order  implicit  DG  solver

1

F.  Bassi1,  L.  Botti1,  A.  Colombo1,  A.  Crivellini2,  A.  Ghidoni3,    M.  Lorini3,  F.  Massa1,  G.  Noventa3

ECCOMAS  CONFERENCE  2016  (MS910-­‐2)  Crete  (Crete)  

10th  June  2016

1Università  degli  studi  di  Bergamo  2Università  politecnica  delle  Marche  

3Università  degli  studi  di  Brescia

Page 2: ECCOMAS 2016 UNIBG - Cenaero · 3 Brief#code#summary • Discontinuous$Galerkin$(DG)$method$on$hybrid$grids$ • Physical$frame$orthonormal$basis$functions$ • 2D/3D$steady$and$unsteady

2

…with  the  contribution  ofFrancesco Bassi1!Alessandro Colombo1 !Lorenzo Botti1!Francesco Carlo Massa1!

Marco Savini1!Nicoletta Franchina1 !!Antonio Ghidoni2 !Gianmaria Noventa2!Marco Lorini2!Stefano Rebay2!!Andrea Crivellini3 !!Carmine De Bartolo4 !Alessandra Nigro4 !!Daniele Di Pietro5 !!Pietro Tesini6

1 Università degli Studi di Bergamo !2 Università degli Studi di Brescia !3 Università Politecnica delle Marche !4 Università della Calabria !5 University of Montpellier, France !6 SKF, Sweeden

Towards Industrial LES/DNS in Aeronautics!Paving the Way for Future Accurate CFD!

grant agreement No.635962

Page 3: ECCOMAS 2016 UNIBG - Cenaero · 3 Brief#code#summary • Discontinuous$Galerkin$(DG)$method$on$hybrid$grids$ • Physical$frame$orthonormal$basis$functions$ • 2D/3D$steady$and$unsteady

3

Brief  code  summary• Discontinuous  Galerkin  (DG)  method  on  hybrid  grids  • Physical  frame  orthonormal  basis  functions  • 2D/3D  steady  and  unsteady  compressible  and  

incompressible  flows    • Explicit  and  implicit  time  accurate  integration  • Fixed  or  rotating  frame  of  reference

• Euler  • Navier–Stokes  • RANS  coupled  with  the  k-­‐ω  (EARSM)    • Hybrid  RANS/LES  (X-­‐LES)

• MPI  parallelism    • Fortran  language

Page 4: ECCOMAS 2016 UNIBG - Cenaero · 3 Brief#code#summary • Discontinuous$Galerkin$(DG)$method$on$hybrid$grids$ • Physical$frame$orthonormal$basis$functions$ • 2D/3D$steady$and$unsteady

4

Brief  code  summary• Discontinuous  Galerkin  (DG)  method  on  hybrid  grids  • Physical  frame  orthonormal  basis  functions  • 2D/3D  steady  and  unsteady  compressible  and  

incompressible  flows    • Explicit  and  implicit  time  accurate  integration  -­‐  variables  • Fixed  or  rotating  frame  of  reference

• Euler  • Navier–Stokes  • RANS  coupled  with  the  k-­‐ω  (EARSM)    • Hybrid  RANS/LES  (X-­‐LES)

• MPI  parallelism    • Fortran  language

Page 5: ECCOMAS 2016 UNIBG - Cenaero · 3 Brief#code#summary • Discontinuous$Galerkin$(DG)$method$on$hybrid$grids$ • Physical$frame$orthonormal$basis$functions$ • 2D/3D$steady$and$unsteady

5

• Modified  Extended  BDF  • Two  Implicit  Advanced  Step-­‐point  (TIAS)    • Explicit  Singly  Diagonally  Implicit  R-­‐K  (ESDIRK)    • linearly  implicit  Rosenbrock  method  

i)  Hi-­‐O  schemes  are  more  efficient  than  Lo-­‐O  ones  for  high  required  accuracy  ii)  Rosenbrock-­‐type  schemes  are  appealing  both  for  accuracy  and  efficiency

non-­‐linear    systems  solution

linear  systems  solution  (here  via  GMRES)

}

Implicit  accurate  time  integrationSeveral  high-­‐order  temporal  schemes  are  implemented

Convecbon  of    an  isentropic  

vortex  P6  solubon  on  50X50  el.

Bassi,  et  al.,  “Inves<ga<on  of  high-­‐order  temporal  schemes  for  the  discon<nuous  Galerkin  solu<on  of  the    Navier-­‐  Stokes  equa<ons”,  proceedings  of  11th  WCCM  2014,  5th  ECCM  2014,  6th  ECFD  2014  (2014)  pp.  5651–5662

Page 6: ECCOMAS 2016 UNIBG - Cenaero · 3 Brief#code#summary • Discontinuous$Galerkin$(DG)$method$on$hybrid$grids$ • Physical$frame$orthonormal$basis$functions$ • 2D/3D$steady$and$unsteady

6

only  a  linear  system  need  to  be  solved  for  each  stage    i.e.  the  Jacobian                                                    is  assembled  and  factored  only  once  per  time  step

For  other  sets  of  variables  their  DOFs  can  be  coupled  within                      thus  resulting  in  a  matrix  which  can  not  be  diagonal

Rosenbrock  schemes  in  a  nutshell    (I/II)From  the  DG  spatial  discretization  we  obtain  a    system  of  non-­‐linear  ODEs  or  DAEs

MP (W)dW

dt+R (W) = 0 eR = M�1

P R

Wn+1 = Wn +sX

j=1

mjYj

✓MP

��t+ J� @MP

@WeR◆n

Yi = �MnP

2

4eR

0

@Wn +i�1X

j=1

aijYj

1

A�i�1X

j=1

cij�t

Yj

3

5

i = 1, . . . , s

With  orthonormal  basis  functions  (physical  space)                      reduces  to  the  identity  for  compressible  flows  with  conservative  variables

MP

MP

J = @R/@W

Page 7: ECCOMAS 2016 UNIBG - Cenaero · 3 Brief#code#summary • Discontinuous$Galerkin$(DG)$method$on$hybrid$grids$ • Physical$frame$orthonormal$basis$functions$ • 2D/3D$steady$and$unsteady

7

Several  Rosenbrock  schemes,  from  order  two  to  order  six,  have  been  compared

No  need  to  “exactly”  solve  systems:  GMRES  tolerance  can  be  increased  with  confidence  with  a  significant  reduction  of  WU

For  a  given  order  of  accuracy,  among  the  schemes  considered,    those  with  more  stages  are  more  accurate  and  efficient,  e.g.  RO5-­‐8  vs.  RO6-­‐6

Rosenbrock  schemes  in  a  nutshell    (II/II)

Convecbon  of    an  isentropic  

vortex  P6  solubon  on  50X50  el.

Bassi  et  al.  “Linearly  implicit  Rosenbrock-­‐type  Runge-­‐Kutta  schemes  for  the  Discontinuous  Galerkin  solution  of  compressible  and  incompressible  unsteady  flows”  Computers  &  Fluids,  118  (2015)  pp.  305  –  320

Page 8: ECCOMAS 2016 UNIBG - Cenaero · 3 Brief#code#summary • Discontinuous$Galerkin$(DG)$method$on$hybrid$grids$ • Physical$frame$orthonormal$basis$functions$ • 2D/3D$steady$and$unsteady

Improved  code  robustness  with  a  low  implementabon  effort      

Primibve  variables  to  ensure  the  posibvity  of  all  thermodynamic  variables…

8

Working  variables

h

|err p|

0.05 0.1 0.1510-11

10-9

10-7

10-5

10-3

10-1

2

1

4

5

3

7

6

We  work  with  polynomial  approximabons  not  directly  for              and                but  for  their  logarithms              andep = log(p) e

T = log(T )Tp

In  this  way  the  computed  values       and            are  always  posibvep = eep T = eeT

ep(x) = �j

(x)W epj

, eT (x) = �j

(x)WeT

j

, j = 1, · · · , Nk

dof

(MP)

h

|err T|

0.05 0.1 0.1510-11

10-9

10-7

10-5

10-3

10-1

2

1

4

5

3

7

6

Bassi  et  al.  “Linearly  implicit  Rosenbrock-­‐type  Runge-­‐Kutta  schemes  for  the  Discontinuous  Galerkin  solution  of  compressible  and  incompressible  unsteady  flows”  Computers  &  Fluids,  118  (2015)  pp.  305  –  320

Page 9: ECCOMAS 2016 UNIBG - Cenaero · 3 Brief#code#summary • Discontinuous$Galerkin$(DG)$method$on$hybrid$grids$ • Physical$frame$orthonormal$basis$functions$ • 2D/3D$steady$and$unsteady

9

eXtra-­‐Large  Eddy  Simulation  (X-­‐LES)    in  a  nutshell    (I/II)Pros  • hybrid  RANS\LES  formulabon  independent  from  the  wall  distance  • use  in  LES  mode  of  a  clearly  defined  SGS  based  on  the  k-­‐equabon    • use  of  a  k-­‐ω  turbulence  model  integrated  to  the  wall

@

@t

(⇢k) +@

@xj(⇢ujk)=

@

@xj

(µ+ �

⇤µt)

@k

@xj

�+ Pk �Dk

@

@t

(⇢e!) + @

@xj(⇢uje!)=

@

@xj

(µ+ �µt)

@e!@xj

�+ (µ+ �µt)

@e!@xk

@e!@xk

+P! �D! + CD

Cons  the  filter  width  parameter  is  onen  related  to  the  local  element  size

…an  “original”  interpretaCon  for  the  X-­‐LES  implementaCon…

Bassi  et  al.  “Time  Integration  in  the  Discontinuous  Galerkin  Code  MIGALE  -­‐  Unsteady  Problems”    In  IDIHOM:  Industrialzation  of  High-­‐Order  Methods  -­‐  A  Top-­‐Down  Approach,  Vol.  128  of    

Notes  on  Numerical  Fluid  Me-­‐  chanics  and  Multidisciplinary  Design  Springer  International  Publishing

Page 10: ECCOMAS 2016 UNIBG - Cenaero · 3 Brief#code#summary • Discontinuous$Galerkin$(DG)$method$on$hybrid$grids$ • Physical$frame$orthonormal$basis$functions$ • 2D/3D$steady$and$unsteady

10

eXtra-­‐Large  Eddy  Simulation  (X-­‐LES)    in  a  nutshell    (II/II)

@

@t

(⇢k) +@

@xj(⇢ujk)=

@

@xj

(µ+ �

⇤µt)

@k

@xj

�+ Pk �Dk

RANS LES ILES

µt ↵⇤ ⇢k

ee!r↵⇤⇢

pkC1� 0

Dk �⇤⇢kee!r �⇤⇢k

32

C1�0

µt = ↵⇤ ⇢k

!̂Dk = �⇤⇢k!̂ k = max (0, k)

!̂ = max

ee!r ,

pk

C1�

!

Page 11: ECCOMAS 2016 UNIBG - Cenaero · 3 Brief#code#summary • Discontinuous$Galerkin$(DG)$method$on$hybrid$grids$ • Physical$frame$orthonormal$basis$functions$ • 2D/3D$steady$and$unsteady

11

• Inlet  boundary  conditions  

• p0i  =  92000Pa    

• T0i  =  300K  

• ReH  =  1.69  x  106  

• Outlet  static  pressure  used  to  impose  the  shock  position  (model  dependent!)  

• LBE(RO1-­‐1)  to  quickly  find  the  “right”                    pressure  ratio  

• RO3-­‐3  for  the  time-­‐accurate  solution      • Filter  width  Δ  =  5e-­‐2  (strong  influence!)  • parallel  computation  on  96  cores

P2  converged  computations  with  RANS+k-­‐ω  (also  in  its  low-­‐Re  version)  and  EARSM1  have  been  performed  and  used  as  initialization  for  X-­‐LES

 72960  hexahedral  elements  

X-­‐LES  of  a  shock  BL  interaction  on  a  swept  bump  (AR2  of  HiOCFD,  TC-­‐F3  of  TILDA)

Page 12: ECCOMAS 2016 UNIBG - Cenaero · 3 Brief#code#summary • Discontinuous$Galerkin$(DG)$method$on$hybrid$grids$ • Physical$frame$orthonormal$basis$functions$ • 2D/3D$steady$and$unsteady

X-­‐LES  of  a  shock  BL  interaction  on  a  swept  bump  (AR2  of  HiOCFD,  TC-­‐F3  of  TILDA)

12

• Inlet  boundary  conditions  

• p0i  =  92000Pa    

• T0i  =  300K  

• ReH  =  1.69  x  106  

• Outlet  static  pressure  used  to  impose  the  shock  position  (model  dependent!)  

• LBE(RO1-­‐1)  to  quickly  find  the  “right”                    pressure  ratio  

• RO3-­‐3  for  the  time-­‐accurate  solution      • Filter  width  Δ  =  5e-­‐2  (strong  influence!)  • parallel  computation  on  96  cores

P2  converged  computations  with  RANS+k-­‐ω  (also  in  its  low-­‐Re  version)  and  EARSM1  have  been  performed  and  used  as  initialization  for  X-­‐LES

Page 13: ECCOMAS 2016 UNIBG - Cenaero · 3 Brief#code#summary • Discontinuous$Galerkin$(DG)$method$on$hybrid$grids$ • Physical$frame$orthonormal$basis$functions$ • 2D/3D$steady$and$unsteady

13

The  profiles  are  in  reasonable  agreement  with  the  

experiments  and  the  numerical  results  of  Cahen  et  al.

Page 14: ECCOMAS 2016 UNIBG - Cenaero · 3 Brief#code#summary • Discontinuous$Galerkin$(DG)$method$on$hybrid$grids$ • Physical$frame$orthonormal$basis$functions$ • 2D/3D$steady$and$unsteady

14

X-­‐LES  P2

The  profiles  are  in  reasonable  agreement  with  the  

experiments  and  the  numerical  results  of  Cahen  et  al.

Page 15: ECCOMAS 2016 UNIBG - Cenaero · 3 Brief#code#summary • Discontinuous$Galerkin$(DG)$method$on$hybrid$grids$ • Physical$frame$orthonormal$basis$functions$ • 2D/3D$steady$and$unsteady

15

X-­‐LES  P2

The  profiles  are  in  reasonable  agreement  with  the  

experiments  and  the  numerical  results  of  Cahen  et  al.

Page 16: ECCOMAS 2016 UNIBG - Cenaero · 3 Brief#code#summary • Discontinuous$Galerkin$(DG)$method$on$hybrid$grids$ • Physical$frame$orthonormal$basis$functions$ • 2D/3D$steady$and$unsteady

X-­‐LES  of  the  transonic  flow  field  in  the  NASA  Rotor  37  (TC-­‐P6  of  TILDA)

16

• P2  computation  using  RO3-­‐3    • Filter  width  Δ=5e-­‐5  • Boundary  conditions  

• p01  =  101325Pa    

• T01  =  288K  

• ω=  1800rad/s    

• Tu1  =  3%  

• α1  =  0°  

• parallel  computation  on  96  cores

 iso-­‐surface  of  Q-­‐criterion  160512  hexahedral  elements  

According  to  our  first  experiences,  for  a  practical  usage  of    X-­‐LES,  initializing  

with  RANS  seems  mandatory  

Page 17: ECCOMAS 2016 UNIBG - Cenaero · 3 Brief#code#summary • Discontinuous$Galerkin$(DG)$method$on$hybrid$grids$ • Physical$frame$orthonormal$basis$functions$ • 2D/3D$steady$and$unsteady

17

RANS X-­‐LES  ave. X-­‐LES  inst.

Bassi  et  al.  “Assessment  of  a  high-­‐order  accurate  Discontinuous  Galerkin  method  for  turbomachinery  flows”  Accepted  for  publication  on  International  Journal  of  CFD  (2016)

X-­‐LES  of  the  transonic  flow  field  in  the  NASA  Rotor  37  (TC-­‐P6  of  TILDA)

Page 18: ECCOMAS 2016 UNIBG - Cenaero · 3 Brief#code#summary • Discontinuous$Galerkin$(DG)$method$on$hybrid$grids$ • Physical$frame$orthonormal$basis$functions$ • 2D/3D$steady$and$unsteady

18

RANS X-­‐LES  ave. X-­‐LES  inst.

Bassi  et  al.  “Assessment  of  a  high-­‐order  accurate  Discontinuous  Galerkin    method  for  turbomachinery  flows”  Accepted  for  publication  on  International  Journal  of  CFD  (2016)

X-­‐LES  of  the  transonic  flow  field  in  the  NASA  Rotor  37  (TC-­‐P6  of  TILDA)

Page 19: ECCOMAS 2016 UNIBG - Cenaero · 3 Brief#code#summary • Discontinuous$Galerkin$(DG)$method$on$hybrid$grids$ • Physical$frame$orthonormal$basis$functions$ • 2D/3D$steady$and$unsteady

19

RANS X-­‐LES  ave. X-­‐LES  inst.

Bassi  et  al.  “Assessment  of  a  high-­‐order  accurate  Discontinuous  Galerkin  method  for  turbomachinery  flows”  Accepted  for  publication  on  International  Journal  of  CFD  (2016)

X-­‐LES  of  the  transonic  flow  field  in  the  NASA  Rotor  37  (TC-­‐P6  of  TILDA)

Page 20: ECCOMAS 2016 UNIBG - Cenaero · 3 Brief#code#summary • Discontinuous$Galerkin$(DG)$method$on$hybrid$grids$ • Physical$frame$orthonormal$basis$functions$ • 2D/3D$steady$and$unsteady

20

X-­‐LES  of  the  transonic  flow  field  in  the  NASA  Rotor  37  (TC-­‐P6  of  TILDA)

Spanwise    distributions

Page 21: ECCOMAS 2016 UNIBG - Cenaero · 3 Brief#code#summary • Discontinuous$Galerkin$(DG)$method$on$hybrid$grids$ • Physical$frame$orthonormal$basis$functions$ • 2D/3D$steady$and$unsteady

X-­‐LES  of  the  transonic  flow  field  in  the  NASA  Rotor  37  (TC-­‐P6  of  TILDA)

21

Inibalizing  the  solubon  from  a  flow  field  corresponding    to  a  normalized  mass  flow,    resulbng  from  a  RANS  computabon,  of    ≈0.99    

X-­‐LES  moved  towards  ≈0.996

Page 22: ECCOMAS 2016 UNIBG - Cenaero · 3 Brief#code#summary • Discontinuous$Galerkin$(DG)$method$on$hybrid$grids$ • Physical$frame$orthonormal$basis$functions$ • 2D/3D$steady$and$unsteady

22

Conclusions…

• First  results  of  an  implicit  DG  solution  of  X-­‐LES  have  been  presented  

• Implicit  time  accurate  integration  coupled  with  X-­‐LES  has  shown  to  be  robust  

• Compute  the  solution  on  a  finer  grid  and\or  a  finer  polynomial  degree  

• The  influence  on  the  solution  of  filter  width  parameter  (∆)  need  further  investigation  

• Evaluation  of  the  numerical  dissipation  of  the  solver  by  computing  the  Decay  of  Isotropic  Turbulence  (DIT)  test  case  

…and  future  work