ece 598 js lecture 02 resistance, capacitance,...

44
Copyright © by Jose E. SchuttAine , All Rights Reserved ECE 598JS, Spring 2012 1 ECE 598 JS Lecture 02 Resistance, Capacitance, Inductance Spring 2012 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois [email protected]

Upload: others

Post on 10-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 1

ECE 598 JS Lecture 02Resistance, Capacitance, Inductance

Spring 2012

Jose E. Schutt-AineElectrical & Computer Engineering

University of [email protected]

Page 2: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 2

Faraday’s Law of Induction

Ampère’s Law

Gauss’ Law for electric field

Gauss’ Law for magnetic field

Constitutive Relations

BEt

H J D

t

D

0B

B H

D E

MAXWELL’S EQUATIONS

Page 3: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 3

Voltage=0No ChargeNo Current

1 2 3

Voltage build upCharge build upTransient Current

Voltage = 6VCharge=QNo Current

What is Capacitance?

Page 4: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 4

Voltage=6VCharge=QNo Current

Voltage decayingCharge decayingTransient Current

Voltage=0No ChargeNo Current

4 5 6What is Capacitance?

Page 5: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 5

( ) dv dQi t Cdt dt

Relation: Q = Cv

Q: charge stored by capacitorC: capacitancev: voltage across capacitori: current into capacitor

0

1( ) ( )t

v t i dC

Capacitance

Page 6: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 6

Capacitance = Total charge

Voltage

CAPACITANCE

Page 7: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 7

C = oAd

A : area

o : permittivity

Capacitance

d

V+

For more complex capacitance geometries, need to use numerical methods

Page 8: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 8

( ) ( , ') ( ') 'r g r r r dr

( ) ( )r potential known

( , ') ' (known)g r r Green s function

( ') arg ( )r ch e distribution unknown

Q=CV

Once the charge distribution is known, the total charge Q can be determined. If the potential =V, we have

To determine the charge distribution, use the moment method

Capacitance Calculation

Page 9: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 9

METHOD OF MOMENTSOperator equation

L(f) = g

L = integral or differential operator

f = unknown function

g = known function

Expand unknown function f

f nfnn

Page 10: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 10

Matrix equation

n nn

( f ) g L

n m n mn

w , f w ,g L

mn n mg l

in terms of basis functions fn, with unknown coefficients n to get

Finally, take the scalar or inner product with testing of weighting functions wm:

METHOD OF MOMENTS

Page 11: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 11

1 1 1 2

2 1 2 2mn

w , f w , f ...w , f w , f ............. ............. ...

l

L LL L

n 1

2

.

gm w1,gw2,g

.

Solution for weight coefficients

1n nm mg l

METHOD OF MOMENTS

Page 12: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012

Green’s function G: LG =

D

E

2

L (x,y,z) (x' ,y' ,z' )4R dx' dy' dz'

R (x x' )2 (y y' )2 (z z' )2

Moment Method Solution

Page 13: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012

Subdomain bases

P(xn ) 1 xn 2 x xn

2

0 otherwise

x1 x2 xn

T(xn ) 1 x xn x xn 0 otherwise

x1 x2 xn

Testing functions often (not always) chosen same as basis function.

Basis Functions

Page 14: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012

2a

2b

2b

2aSn

Z

Y

X

conducting plate

(x,y,z) dx'a

a dy' (x' ,y' )

4Ra

a

= charge density on plate

Conducting Plate

Page 15: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012

for |x| < a; |y| < a

R (x x' )2 (y y' )2 (z z' )2

V dx'a

a dy' (x' , y' )

4 (x x' )2 (y y' )2a

a

1 a a

a a

qC dx' dy' ( x, y )V V

Setting = V on plate

Capacitance of plate:

Conducting Plate

Page 16: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012

Basis function Pn

2 21

2 20

m m

n m n

n n

s sx x xP ( x , y )

s sy y y

otherwise

1

N

n nn

( x, y ) f

Representation of unknown charge

Conducting Plate

Page 17: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012

Matrix equation:

1

N

mn nn

V f

l

2 2

14n n

mn x ym m

dx' dy'( x x') ( y y')

l

1

1

1 N

n n mn nn mn

C s sV

l

Matrix element:

Conducting Plate

Page 18: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012

Operator form(x,y,z) dx'

a

a dy'

b

b

(x' ,y' )4R

f(x, y) (x,y)

g(x, y) V | x |< a; | y |< a

2 24

a a

a a

f ( x', y')( f ) dx' dy'( x x') ( y y')

L

a a

a af ,g dx dy f ( x, y )g( x, y )

Conducting Plate

Page 19: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012

Point matching

m m mw ( x x )( y y )

m

VV

g.

V

Conducting Plate

Page 20: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012

Calculation of matrix Elements

2 2

14

b b

nn b bdx dy

x y

l

2 1 2b ln( ) 2 0 8814b ( . ) 22 as b

N

(1) Self-term (diagonal element)

where

(2) Off-diagonal terms

2 2

4n

mnmn

2

m n m n

s m nR

b=( x x ) ( y y )

l

Conducting Plate

Page 21: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012

2a

2a

z

y

x

d

tt tb

bt bb

[ ] [ ][ ]

[ ] [ ]

l lll l

Using N unknowns per plate, we get 2N 2N matrix equation:

Subsript ‘t’ for top and ‘b’ for bottom plate, respectively.

Parallel Plates

Page 22: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012

2

2 2 2

tbmn

m n m n

b( x x ) ( y y ) d

l

20 282 2 14 2

tbnn

. d d( b )b b

l

gm gm

t gm

b

Right hand side

Symmetry of matrix element blocks

tt bb l l l

tb bt l l

Approximate expressions for matrix elements

Parallel  Plates

Page 23: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012

where

t bm m

VV

g g..

top plate at constant potential V and bottom at -V

Taking advantage of symmetry, the coefficients of top and bottom plates can be related as

t tn n

n b tn n

Parallel  Plates

Page 24: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012

lmntt lmn

tb nt gm

t Matrix equation becomes

Solution: 1t tt tb tm nmn

l l g

12

tn n

top

charge on top plateC2V

sV

tg V

122 tt tb

mnmn

C b

l l

Capacitance

Using s=4b2 and all elements of

Parallel  Plates

Page 25: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 25

2

1 ˆ4 o

qqF RR

q q'

0

R

rr'

F q U B

+

movingcharge q

Direction ofmagnetic field

B

F

v

Magnetic ForceElectric Force

Fields

Page 26: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 26

2

ˆ4Idl rdH

R

2

ˆ4Idl rH

R

Biot-Savart Law

Idl

R

dH

Page 27: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 27

I

I

Magnetic Flux

S

B dS

Page 28: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 28

Inductance

Inductance = Total flux linked

Current

z

rH

IdlR

Page 29: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 29

dL Ndi

LI

2v

B HdvLI

Inductance

Page 30: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 30

INDUCTANCE

L = N

I

N : number of turns

: flux per turn

Page 31: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 31

Radius ad/2

ba

1cosh ( / )2 2

oL d H ml a

ln ( / )2

oL b H ml a

Wire above ground plane Coaxial Line

Inductance Calculation

Page 32: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 32

( ) di dv t Ldt dt

Relation: = Li: flux stored by inductorL: inductancei: current through inductorv: voltage across inductor

0

1( ) ( )t

i t v dL

Inductance

Page 33: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012

ˆˆ 0t iz n V

ˆ sri t i

o

qn V

ˆˆ 0t ziz n A

1ˆ t zi o zri

n A J

CV Q LI

Electrostatics Magnetostatics

2-D Isomorphism

Page 34: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 34

I

I

I

akI

a

1 1loop

a a

L B da A daI I I

QUESTION: Can we associate inductance with piece of conductor rather than a loop? PEEC Method

Loop Inductance

Inductance Calculation

Page 35: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 35

Package Inductance & Capacitance

Component Capacitance Inductance(pF) (nH)

68 pin plastic DIP pin† 4 3568 pin ceramic DIP pin†† 7 2068 pin SMT chip carrier † 2 7

† No ground plane; capacitance is dominated by wire-to-wire component.

†† With ground plane; capacitance and inductance are determined by the distance between the lead frame and the ground plane, and the lead length.

Page 36: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 36

Component Capacitance Inductance(pF) (nH)

68 pin PGA pin†† 2 7256 pin PGA pin†† 5 15Wire bond 1 1Solder bump 0.5 0.1

† No ground plane; capacitance is dominated by wire-to-wire component.

†† With ground plane; capacitance and inductance are determined by the distance between the lead frame and the ground plane, and the lead length.

Package Inductance & Capacitance

Page 37: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 37

Metallic Conductors

Length

Area

Re sist an ce : R

Package level:W=3 milsR=0.0045 /mm

R = Le ng th Are a

Submicron level:W=0.25 micronsR=422 /mm

Page 38: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 38

Metal Conductivity -1 m 10-7)

Silver 6.1Copper 5.8Gold 3.5Aluminum 1.8Tungsten 1.8Brass 1.5Solder 0.7Lead 0.5Mercury 0.1

Metallic Conductors

Page 39: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 39

3.00 m 0.03 1 102.00 m 0.04 2 151.00 m 0.09 4 300.75 m 0.12 5 400.50 m 0.18 8 600.25 m 0.36 16 120

Wint Aluminum WSi2 Polysilicon( = 3-cm ) ( =130-cm) ( =1000-cm)

sq intR . = int

intH

intH = 3intW

Sheet Resistance of Interconnections

Page 40: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 40

+-

+

-E

Dielectrics contain charges that are tightly bound to the nucleiCharges can move a fraction of an atomic

distance away from equilibrium positionElectron orbits can be distorted when an

electric field is applied

Dielectrics

Page 41: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 41

sp

Dielectrics

Charge density within volume is zeroSurface charge density is nonzero

D=o(1+e)E=E

Page 42: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 42

1vLC

Dielectric Materials

tan

Germanium 2.2Silicon 0.0016Glass 10-10-10-14

Quartz 0.510-17

Material Conductivity (-1-m-1)

Page 43: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 43

Dielectric Materials

Polyimide 2.5-3.5 16-19Silicon dioxide 3.9 15Epoxy glass (FR4) 5.0 13Alumina (ceramic) 9.5 10

Material r v(cm/s)

r

1vLC

Page 44: ECE 598 JS Lecture 02 Resistance, Capacitance, Inductancejsa.ece.illinois.edu/ece598js/Lect_03.pdf · Title: Microsoft PowerPoint - Lect_03 [Compatibility Mode] Author: StoneCreek

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 44

Conductivity of Dielectric Materials

Material Conductivity ( -1 m-1)

Germanium 2.2

Silicon 0.0016

Glass 10-10 - 10-14

Quartz 0.5 x 10-17

Loss TANGENT : tan

r j i