ece651 digital signal processing i digital iir filter design

24
ECE651 Digital Signal Processing I Digital IIR Filter Design

Upload: nitsa

Post on 13-Feb-2016

55 views

Category:

Documents


13 download

DESCRIPTION

ECE651 Digital Signal Processing I Digital IIR Filter Design. Introduction Some Preliminaries on Analog Filters Digital IIR Filter Design (s – z) Impulse Invariance Transformation Bilinear Transformation Frequency Band Transformations Analog Domain (s – s ) - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: ECE651     Digital Signal Processing I Digital IIR Filter Design

ECE651 Digital Signal Processing IDigital IIR Filter Design

Page 2: ECE651     Digital Signal Processing I Digital IIR Filter Design

Introduction

Some Preliminaries on Analog Filters

Digital IIR Filter Design (s – z)

Impulse Invariance Transformation

Bilinear Transformation

Frequency Band Transformations

Analog Domain (s – s )

Digital Domain (z – z)

Page 3: ECE651     Digital Signal Processing I Digital IIR Filter Design

Introduction

Analog filter : Infinitely long impulse response

Digital IIR filter : Infinitely long impulse response

S – Z (complex-valued mapping)

Page 4: ECE651     Digital Signal Processing I Digital IIR Filter Design

Introduction

Page 5: ECE651     Digital Signal Processing I Digital IIR Filter Design

Introduction

Advantages• Analog filter design tables available

• Filter transformation (s – z) tables available

• Frequency band transformation (s – s / z – z) available

Disadvantages

• No control over the phase characteristics of the IIR filter

• Magnitude – only design

Page 6: ECE651     Digital Signal Processing I Digital IIR Filter Design

Introduction

Other Design Approaches• Simultaneously approximate both the magnitude and the phase response

• Require advanced optimization tools

• Not covered in the class

Page 7: ECE651     Digital Signal Processing I Digital IIR Filter Design

Preliminaries On Analog Filters

Analog lowpass filter specifications

: passband ripple parameter

A: stopband attenuation parameter

2

2

11)(

paH

22 1)(

AH sa

p : passband cutoff frequency (rad/sec)

s : stopband cutoff frequency (rad/sec)

Page 8: ECE651     Digital Signal Processing I Digital IIR Filter Design

Preliminaries On Analog Filters

Analog lowpass filter specifications

pR : passband ripple in dB

sA : stopband attenuation in dB

AAs 10log20 20/10 sAA

)1(log10 210 pR 110 10/ pR

Page 9: ECE651     Digital Signal Processing I Digital IIR Filter Design

Preliminaries On Analog Filters

Analog lowpass filter system function )(sH a

jsaaa HsHsH /2)()()(

• Poles and zeros of magnitude-squared function are distributed in a mirror-image symmetry with respect to the imaginary axis

• For real filters, poles and zeros occur in complex conjugate pairs ( mirror symmetry with respect to real axis)

Page 10: ECE651     Digital Signal Processing I Digital IIR Filter Design

Preliminaries On Analog Filters

Analog lowpass filter system function

1. Pick up poles On LHP

2. Pick up zeros on LHP or Imaginary axis

)(sH a

)(sH a

Stable Causal

Page 11: ECE651     Digital Signal Processing I Digital IIR Filter Design

Preliminaries On Analog Filters

Prototype analog filters1. Butterworth

2. Chebyshev (Type I and II)

3. Elliptic

Page 12: ECE651     Digital Signal Processing I Digital IIR Filter Design

Preliminaries On Analog Filters

Butterworth lowpass filters (Magnitude-Squared Response)

N

c

aH 22

1

1)(

c The Cutoff frequency (rand/sec)

N The order of the filter

Page 13: ECE651     Digital Signal Processing I Digital IIR Filter Design

Preliminaries On Analog Filters

Butterworth lowpass filters (System Function)

12,1,0 ,2)12(

Nkep NNk

j

ck

poles LHP

)()(

k

Nc

a pssH

Page 14: ECE651     Digital Signal Processing I Digital IIR Filter Design

Preliminaries On Analog Filters

Butterworth lowpass filters (Design equations)

)/(log2

)]110/()110[(log

10

10/10/10

sp

AR sp

N

NR

pc

p 21

10/ )110(

NA

pc

s 21

10/ )110(

Page 15: ECE651     Digital Signal Processing I Digital IIR Filter Design

Digital IIR Filter Design

S - Z transformation

• Complex-valued mappings

• Derived by preserving different aspects of analog filters and digital filters

Page 16: ECE651     Digital Signal Processing I Digital IIR Filter Design

Digital IIR Filter Design

Impulse Invariance transformation

• Preserve the shape of impulse response

sTez

Page 17: ECE651     Digital Signal Processing I Digital IIR Filter Design

Digital IIR Filter Design

Impulse Invariance transformation (Design Procedure) (MATLAB function: impinvar)

1. Choose T and determine the analog frequencies

2. Design an analog filter using specifications

3. Partial fraction expansion

4. Transform analog poles into digital poles to obtain

Tp

p

Ts

s

)(sH a spsp AR and ,,,

N

k k

ka ps

RsH1

)(

}{ kp }{ Tpke

N

kTpk

zeRzH

k1

11)(

Page 18: ECE651     Digital Signal Processing I Digital IIR Filter Design

Digital IIR Filter Design

Impulse Invariance transformation (Aliasing)

>> f=0:0.01:5;T=0.1;>> z=exp(j*2*pi*f*T);>> zH=(1-0.8966./z)./(1-1.5595./z+0.6065./z./z);>> s=j*2*pi*f;>> sH=(1+s)./(s.^2+5*s+6);>> plot(f,abs(zH),f,abs(sH)/T);legend('Digitital','Analog')>>title('Magnitude Response of Analog and Digital IIR Filters')

Page 19: ECE651     Digital Signal Processing I Digital IIR Filter Design

Digital IIR Filter Design

Impulse Invariance transformation

Advantages:

• Stable design

• Analog frequency and digital frequency are linearly related

Disadvantage

• Aliasing

• Useful only when the analog filter is band-limited (LPF and BPF)

Page 20: ECE651     Digital Signal Processing I Digital IIR Filter Design

Digital IIR Filter Design

Bilinear transformation

• Preserve the system function representation

2/)(12/)(1

STsTz

1

1

112

zz

Ts

Page 21: ECE651     Digital Signal Processing I Digital IIR Filter Design

Digital IIR Filter Design

Bilinear transformation (Design Procedure) (MATLAB function: bilinear)

1. Choose T (1)and determine the analog frequencies

2. Design an analog filter using specifications

3. Bilinear transformation

)2

tan(2 pp T

)(sH a spsp AR and ,,,

)2

tan(2 ss T

)112()( 1

1

zz

THzH a

Page 22: ECE651     Digital Signal Processing I Digital IIR Filter Design

Digital IIR Filter Design

Bilinear transformation

Advantages

• Stable design

• No aliasing

• No restriction on the type of filters that can be transformed

Page 23: ECE651     Digital Signal Processing I Digital IIR Filter Design

Frequency DomainTransformations

Analog Domain

Page 24: ECE651     Digital Signal Processing I Digital IIR Filter Design

Frequency DomainTransformations

Digital Domain