ecen 3320 semiconductor devices class mee

36
ECEN 3320 Semiconductor Devices Class Mee9ng Number 1 Semiconductors and Semiconductor La>ces

Upload: others

Post on 09-Feb-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

ECEN  3320  Semiconductor  Devices  Class  Mee9ng  Number  1      

Semiconductors  and  Semiconductor  La>ces  

Today’s  Topics  

•  Course  Overview  •  Semiconductors  and  Semiconductor  La>ces  

Today’s  Topics  

•  Course  Overview  •  Semiconductors  and  Semiconductor  La>ces  

The  Course  

•  Purpose  •  Par9culars  • Objec9ves  •  The  Text  • Workload/Expecta9ons/Grading    • Website  hMp://ecee.colorado.edu/ecen3320/    

The  Course  

•  Purpose  •  Par9culars  • Objec9ves  •  The  Text  • Workload/Expecta9ons/Grading    • Website  hMp://ecee.colorado.edu/ecen3320/    

The  Website  

hMp://ecee.colorado.edu/ecen3320/  Contains  all  of  the  informa9on  we  are  about  to  review  plus  some  things  more    

The  Course  

•  Purpose  •  Par9culars  • Objec9ves  •  The  Text  • Workload/Expecta9ons/Grading    • Website  hMp://ecee.colorado.edu/ecen3320/    

Course  Purpose  

Integrated  circuits  permeate  every  aspect  of  our  present  day  lives.  This  course  introduces  the  basic  concepts  of  the  opera9on  of  the  semiconductor  devices  that  comprise  today’s  integrated  circuits.  Topics  to  be  discussed  include  semiconductor  materials,  basic  device  physics,  p-­‐n  junc9ons,  metal-­‐semiconductor  junc9ons  and  transistors,  both  bipolar  and  metal-­‐oxide-­‐semiconductor  (MOS).    

The  Course  

•  Purpose  •  Par9culars  • Objec9ves  •  The  Text  • Workload/Expecta9ons/Grading    • Website  hMp://ecee.colorado.edu/ecen3320/    

Par9culars  I  

•  Prerequisite:  ECEN  3250  –  Introduc9on  to  Microelectronic  Circuits  •  Instructor:  Alan  Mickelson  • Office:  ECEE  130  •  Phone:  (303)492-­‐7539  •  Email:  [email protected]  

Par9culars  II  •  Lecture:  MWF  11:00  a.m.–  11:50  a.m.  • Office  hours:  WTh  4:00  –  5:00  p.m.  •  Exams:  3  midterms    •  (Tenta9ve)  Exam  Dates:  10/2,  11/5  and  12/6    •  Project:  Due  last  day  of  class  12/13/13  

The  Course  

•  Purpose  •  Par9culars  • Objec9ves  •  The  Text  • Workload/Expecta9ons/Grading    • Website  hMp://ecee.colorado.edu/ecen3320/    

Objec9ves  

1.   To  understand  the  opera9on  of  the  most  ubiquitous  of  semiconductor  devices,  

2.   To  use  models  of  semiconductor  devices  to  predict  terminal  characteris9cs  under  diverse  opera9ng  condi9ons,  

3.   To  judiciously  design  devices  that  avail  themselves  of  presently  available  technology.  

The  Course  

•  Purpose  •  Par9culars  • Objec9ves  •  The  Text  • Workload/Expecta9ons/Grading    • Website  hMp://ecee.colorado.edu/ecen3320/    

The  Text  

•  Text:  B.  Van  Zeghbroeck,  Principles  of  Semiconductor  Devices    • Website  for  text:    hMp://ece-­‐www.colorado.edu/~bart/book/      •  Referred  to  as  “VZ”  followed  by  chapter  and  sec9on  

The  Course  

•  Purpose  •  Par9culars  • Objec9ves  •  The  Text  • Workload/Expecta9ons/Grading    • Website  hMp://ecee.colorado.edu/ecen3320/    

Workload/Expecta9ons/Grading  

• Workload:  9  hours  per  week  –  3  in  class  and  6  hours  outside    •  Expecta9ons:  Reading  will  be  done  before  class,  ques9ons  will  be  prepared  before  problem  sessions  and  assignments  will  be  handed  in  on  9me  • Grading:  20%  HW,  20%  project  and  20%  for  each  midterm    

 

The  Course  

•  Purpose  •  Par9culars  • Objec9ves  •  The  Text  • Workload/Expecta9ons/Grading    • Website  hMp://ecee.colorado.edu/ecen3320/    

The  Website  

hMp://ecee.colorado.edu/ecen3320/  Also  includes  a  schedule  of  topics  (as  does  the  syllabus)  and  (in  the  syllabus)  material  on  disability,  religious  observance,  classroom  behavior,  honor  code  and  discrimina9on  and  harassment  

Today’s  Topics  

•  Course  Overview  •  Semiconductors  and  Semiconductor  La>ces  

Semiconductors  

•  Are  everywhere!  •  A  brief  history  •  Are  driven  by  Moore’s  law  (or  ITRS)  • What  are  semiconduc9ng  elements  and  what  are  semiconductors  

Semiconductors  are  Everywhere!  

A  Brief  History  I  

•  Rec9fica9on  in  metal-­‐semiconductor  contact  (Braun,  1874)  

•  Theory  of  thermionic  emission  (Bethe  1942)  •  Transistor  (point-­‐contact  transistor)  using  polycrystalline  germanium  (Shockley,  Bardeen  and  BraMain,  1947)  

•  Bipolar  junc9on  transistor  (Shockley,  1947)  •  Integrated  circuit  (Kilby  and  Noyce,  1958)  using  bipolar  junc9on  transistors    

A  Brief  History  II  

•  Prac9cal  metal-­‐oxide-­‐semiconductor  (MOS)  devices  (1960s)  

•  SSI  (~10  Trs.chip)  -­‐>  MSI  (~100  Trs/chip)  -­‐>  LSI  (10,000  Trs/chip)  in  the  1970s)  

•  VLSI  (~10^5  TRs/chip)  -­‐>  ULSI  (10^6  TRs/chip)  in  the  1990s  

•  Mul9core  chip  processors  -­‐>  10^8  TRs/core  up  to  8  processors  by  2010  

•  ITRS  predicts  8  nm  feature  size  with  1000  cores  in  2020  

Why  the  increases?  -­‐  Moore’s  Law  

La>ces  

•  Types  of  condensed  maMer  •  2-­‐D  Bravais  la>ces  •  3-­‐D  Bravais  la>ces  •  Miller  planes  •  La>ces  with  bases  •  Crystal  growth      

Forms  of  Condensed  MaMer  

2-­‐D  Bravais  La>ces  

3-­‐D  Bravais  –  Cubic,  FCC  and  BCC  

Diagrams  of  all  the  3-­‐D  Bravais  

Wurzite  –  ZnS,  GaN    

Diamond  

Zinc  Blende  

Miller  Planes  –  Characterize  Facet  

Bulk  Crystal  Growth  I  

Bulk  Crystal  Growth  II