ecen620: network theory broadband circuit design fall...

118
Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN620: Network Theory Broadband Circuit Design Fall 2019 Lecture 3: Phase-Locked Loop Systems

Upload: others

Post on 10-Mar-2020

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Sam PalermoAnalog & Mixed-Signal Center

Texas A&M University

ECEN620: Network TheoryBroadband Circuit Design

Fall 2019

Lecture 3: Phase-Locked Loop Systems

Page 2: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Announcements

2

• HW1 due Sept 24

Page 3: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Reading/References

3

• Chapter 2, 3, 5, & 12 of Phaselock Techniques, F. Gardner, John Wiley & Sons, 2005. • https://onlinelibrary.wiley.com/doi/book/10.1002/0471732699

• Chapter 1-3.4 of “Low-Power Low-Jitter On-Chip Clock Generation,” M. Mansuri, Ph.D. thesis, UCLA, 2003.• Posted on website

• Other references• M. Perrott, High Speed Communication Circuits and Systems Course, MIT

Open Courseware• Chapter 2 of Phase-Locked Loops, 3rd Ed., R. Best, McGraw-Hill, 1997.• Chapter 4 of Phase-Locked Loops for Wireless Communications, D. Stephens,

Kluwer, 2002.

Page 4: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Agenda

4

• PLL Overview

• PLL Linear Model

• PLL Stability

• PLL Units

• PLL Noise Transfer Functions

• PLL Transient Behavior

Page 5: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

PLL Block Diagram

5

[Perrott]

• A phase-locked loop (PLL) is a negative feedback system where an oscillator-generated signal is phase AND frequency locked to a reference signal

Page 6: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

PLL Applications

• PLLs applications• Frequency synthesis

• Multiplying a 100MHz reference clock to 10GHz

• Skew cancellation• Phase aligning an internal clock to an I/O clock

• Clock recovery• Extract from incoming data stream the clock frequency and

optimum phase of high-speed sampling clocks

• Modulation/De-modulation• Wireless systems• Spread-spectrum clocking

6

Page 7: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Forward Clock I/O Circuits

7

• TX PLL

• TX Clock Distribution

• Replica TX Clock Driver

• Channel

• Forward Clock Amplifier

• RX Clock Distribution

• De-Skew Circuit• DLL/PI• Injection-Locked Oscillator

Page 8: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Embedded Clock I/O Circuits

8

• TX PLL

• TX Clock Distribution

• CDR• Per-channel PLL-based• Dual-loop w/ Global PLL &

• Local DLL/PI• Local Phase-Rotator PLLs• Global PLL requires RX

clock distribution to individual channels

Page 9: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Xilinx 0.5-32Gb/s Transceiver Clocking

9

• LC-PLL with 2 LC-VCOs used to cover high data rates (8-32Gb/s)

• Ring-PLL used for lower data rates• CML clock distribution with active inductive loads used

for low jitter

Active Inductor based Clock Distribution

Frac-N LC PLL1, 2

Ring PLL

DCCIQ CAL

Receiver

DCCTransmitter

Channels 1-4

I/Q1, I/Q2

VCOLB

PPF

VCOHB

2PI (D,X,S)

Technology CMOS 16nm FinFET Power Supply (Vavcc, Vavtt, Vaux) 0.9 V, 1. 2V, 1.8 V

Frequency range 500 Mb/s – 32.75 Gb/s Transceiver Quad area 2.625 mm × 2.218 mm

LC PLL range 8-16.375 GHz Ring PLL range 2-6.25 GHz

TX PRBS7 jitter at 32.75Gb/s TJ: 5.39 ps, RJ: 190 fs 32.75Gb/s RX JTOL @ 30MHz

@ 100MHz 0.45 UI 0.6 UI

Channel loss at 32.75Gb/s 30 dB Measured BER at 32.75Gb/s < 10-15

Power at 32.75Gb/s with DFE 577mW/ch (17.6pJ/b)

[Upadhyaya VLSI 2016]

Page 10: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Agenda

10

• PLL Overview

• PLL Linear Model

• PLL Stability

• PLL Units

• PLL Noise Transfer Functions

• PLL Transient Behavior

Page 11: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Linear PLL Model

11

• Phase is generally the key variable of interest• Linear “small-signal” analysis is useful for understand PLL dynamics if

• PLL is locked (or near lock)• Input phase deviation amplitude is small enough to maintain operation in

lock range

Page 12: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Phase Detector

• Detects phase difference between feedback clock and reference clock• The loop filter will filter the phase detector output, thus to characterize

phase detector gain, extract average output voltage (or current for charge-pump PLLs)

12

ref

fb

e

Page 13: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Loop Filter

• Lowpass filter extracts average of phase detector error pulses

13

I

I

VCO ControlVoltage

C1

R

C2

Charging

Discharging

VDD

VSSF(s)

Page 14: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Voltage-Controlled Oscillator

• Time-domain phase relationship

14

VDDVDD/20

0 1KVCO

tvKtt cVCOoutout 00

dtdt tvKtt cVCOoutout Laplace Domain Model

out(t)

Page 15: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Loop Divider

• Time-domain model

15

tN

t outfb 1

tN

tN

t outoutfb 1dt1

[Perrott]

out(t) fb(t)

Page 16: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Phase & Frequency Relationships

16

• Phase Step

t

o

t

tdt

d

td

phaseoftime)vschange of (ratederivativefirst theisFrequency Angular

ttu

tu

111

111

tsint

phaseandtfrequency angular with tsinusoid aConsider

frequencyin change No

sin 11

1

tuttu

tut

[Best]

Page 17: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Phase & Frequency Relationships

17

• Frequency Step

phasein ramp a produces stepfrequency A

where

sinsin

1

1001

01

tt

tttttu

t

[Best]

tt 1

Page 18: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

phasein change quadratic a produces rampfrequency A

2 where

sin2

sinsin

21

102

00

01

01

tt

ttttdtu

tt

t

Phase & Frequency Relationships

18

[Best]

• Frequency Ramp

0 t

0

21 2

tt

Page 19: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Understanding PLL Frequency Response

• Linear “small-signal” analysis is useful for understand PLL dynamics if• PLL is locked (or near lock)• Input phase deviation amplitude is small enough to maintain operation in

lock range

• Frequency domain analysis can tell us how well the PLL tracks the input phase as it changes at a certain frequency

• PLL transfer function is different depending on which point in the loop the output is responding to

19

Input phase response VCO output response

[Fischette]

Page 20: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Open-Loop PLL Transfer Function

20

s

sFKKsssG VCOPD

e

out

• Open-loop response generally decreases with frequency

Page 21: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Closed-Loop PLL Transfer Function

21

NsFKKs

sFKK

NsG

sGsssH

VCOPD

VCOPD

ref

out

1

NsG

NsG

NsG

sNsFKKl

sG

VCOPD

101t Determinan System

101t DeterminanPath Forward

Gain Loop

GainPath Forward

1

1

• Low-pass response whose overall order is set by F(s)

Page 22: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

PLL Error Transfer Function

22

NsFKKs

s

NsGs

ssEVCOPDref

e

1

1

NsG

NsG

NsG

sNsFKKl VCOPD

101t Determinan System

101t DeterminanPath Forward

Gain Loop

1GainPath Forward

1

1

• Ideally, we want this to be zero• Phase error generally increases with

frequency due to this high-pass response

Page 23: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

PLL Order and Type

• The PLL order refers to the number of poles in the closed-loop transfer function• This is typically one greater than the number of loop

filter poles

• The PLL type refers to the number of integrators within the loop• A PLL is always at lease Type 1 due to the VCO

integrator

• Note, the order can never be less than the type

23

Page 24: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

First-Order PLL

• Simple first-order low-pass transfer function

• Closed-loop bandwidth is equal to the DC loop gain magnitude

24

DCdBVCOPD

DCVCOPD

dB

DC

DC

dB

dB

VCOPD

VCOPD

VCOPDs

DC

DCVCOPD

Kss

ss

NKKKs

ssE

KN

KKK

KsNK

sN

NKKKs

KKKsH

NKKK

NssGK

sNK

sKKKsG

KsF

31

13

3

3

1

1

10

1

1

:FunctionError

:Bandwidth Loop-Closed

:FunctionTransfer

lim :MagnitudeGain Loop DC

:GainPath Forward

• Note, the “DC Loop Gain Magnitude” is not simply the PLL open-loop gain evaluated at s=0. It is

.lim0 N

ssGKs

DC

• This expression cancels the VCO DC pole and allows a comparison between PLLs of different orders and types. It is useful to predict the steady-state phase error. See Gardner 2.2.3 and 5.1.1.

Page 25: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

First-Order PLL Tracking Response• The PLL’s tracking behavior, or how the phase error responds to an input

phase change, varies with the PLL type

25

• Phase Step Response

frequencyin change No

sin 11

1

tuttu

tut

[Best]

• The final value theorem can be used to find the steady-state phase error

0limlim00

DC

ss KssssE

s

• All PLLs should have no steady-state phase error with a phase step error• Note, this assumes that the frequency of operation is the same as the VCO

center frequency (Vctrl=0). Working at a frequency other than the VCO center frequency is considered having a frequency offset (step).

Page 26: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

First-Order PLL Tracking Response

• Frequency Offset (Step)

26

• The final value theorem can be used to find the steady-state phase error

DCDC

ss KKsssE

s

020limlim

• With a frequency offset (step), a first-order PLL will lock with a steady-state phase error that is inversely proportional to the loop gain

phasein ramp a produces stepfrequency A

where

sinsin

1

1001

01

tt

tttttu

t

[Best]

Page 27: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

First-Order PLL Issues

• The DC loop gain directly sets the PLL bandwidth• No degrees of freedom

• In order to have low phase error, a large loop gain is necessary, which implies a wide bandwidth• This may not be desired in applications where we would like to filter

input reference clock phase noise

• First-order PLLs offer no filtering of the phase detector output• Without this filtering, the PD may not be well approximated by a

simple KPD factor• Multiplier PDs have a “second-harmonic” term• Digital PDs output square pulses that need to be filtered

27

Page 28: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Second-Order Type-1 PLL w/ Passive Lag-Lead Filter

28

CRCR

sssF

2211

21

2

11

Passive Lag-Lead Loop Filter[Allen]

Page 29: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

29

CRCR

sssF

2211

21

2

11

Second-Order Type-1 PLL w/ Passive Lag-Lead Filter

22

2

2

21

2121

22

221

2

22

2

2121

22

221

2

0

21

221

2

21

2

2 :FunctionError

2 :Factor Damping

:Frequency Natural

1

1

2

2

1

1

:FunctionTransfer

lim :MagnitudeGain Loop DC

1

1

11 :GainPath Forward

nn

VCOPD

n

VCOPD

n

VCOPDn

DCDC

DC

nn

nVCOPD

nn

VCOPDVCOPD

VCOPD

VCOPDs

DC

DCVCOPD

ss

KKNss

sE

KKN

NKK

KsKs

sKN

ss

sKK

N

N

NKKsNKKs

sKK

sH

NKK

NssGK

ss

sNK

sssKKsG

Q21 :Note

Page 30: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

30

• Phase Step Response

step phase a with zero be shoulderror phase Again,

02

limlim 22

2

00

nn

VCOPD

n

ss ssKK

NssssE

s

• A second-order type-1 PLL will still lock with a phase error if there is a frequency offset!

Second-Order Type-1 PLL Tracking Response

• Frequency Offset (Step)

DCnn

VCOPD

n

ss KssKK

NsssE

s

22

2

020 2limlim

Page 31: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Second-Order Type-1 PLL Properties

• While the second-order type-1 PLL will still lock with a phase error with a frequency offset, it is much more useful than a first-order PLL

• There are sufficient design parameters (degrees of freedom) to independently set n, , and KDC

• The loop filter conditions the phase detector output for proper VCO control

• Loop stability needs to be considered for the second-order system

31

Page 32: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

• Note, this type of loop filter is typically used with a charge-pump driving it. Thus, the filter transfer function is equal to the impedance.

Second-Order Type-2 PLL w/ Passive Series-RC Lag-Lead Filter

32

s

RCsR

sF

1

Passive Series-RC Loop Filter

Page 33: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

33

22

2

222

0

2

2 :FunctionError

2 :Factor Damping

:Frequency Natural

22

21

:FunctionTransfer

lim :MagnitudeGain Loop DC

1

:GainPath Forward

nn

n

VCOPDn

nn

nn

VCOPDVCOPD

VCOPD

sDC

VCOPD

ssssE

RC

NCKK

ss

sN

NCKKs

NRKKs

RCsRKK

sH

NssGK

sRC

sRKKsG

Second-Order Type-2 PLL w/ Passive Series-RC Lag-Lead Filter

s

RCsR

sF

1

Page 34: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

34

• Phase Step Response

step phase a with zero be shoulderror phase Again,

02

limlim 22

2

00

nn

ss sssssE

s

• A second-order type-2 PLL will lock with no phase error with a frequency offset!

Second-Order Type-2 PLL Tracking Response

• Frequency Offset (Step)

02

limlim 22020

nn

ss sssssE

s

Page 35: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Second-Order Type-2 PLL Properties

• A big advantage of the type-2 PLL is that it has zero phase error even with a frequency offset• This is why type-2 PLLs are very popular

• A type-2 PLL requires a zero in the loop filter for stability.• Note, this is not required in a type-1 PLL

• This zero can cause extra peaking in the frequency response• Important to minimize this in some applications, such

as cascaded CDR systems

35

Page 36: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Agenda

36

• PLL Overview

• PLL Linear Model

• PLL Stability

• PLL Units

• PLL Noise Transfer Functions

• PLL Transient Behavior

Page 37: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Feedback Configuration

37

ACL(s)

Here f = feedback factor (B(s) in previous slides)

[Karsilayan]

fpaf

Aa pCL 100 10 :large is If

Page 38: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

38

[Karsilayan]Note: a(s) can have higher-order poles

Page 39: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

39

[Karsilayan]

Page 40: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

40

[Karsilayan]

Page 41: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

First-Order PLL

41

DCdBVCOPD

DCVCOPD

dB

DC

DC

dB

dB

VCOPD

VCOPD

VCOPDs

DC

DCVCOPD

Kss

ss

NKKKs

ssE

KN

KKK

KsNK

sN

NKKKs

KKKsH

NKKK

NssGK

sNK

sKKKsG

KsF

31

13

3

3

1

1

10

1

1

:FunctionError

:Bandwidth Loop-Closed

:FunctionTransfer

lim :MagnitudeGain Loop DC

:GainPath Forward

Page 42: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

First-Order PLL Stability

• Open-loop Bode plots are useful for checking stability via the phase margin

• A first-order PLL is inherently stable and always has 90phase margin

42

(dB) log20 10 NjG

s

NKs

KKKsG DCVCOPD 1

Page 43: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

43

22

2

2

21

2121

22

221

2

22

2

2121

22

221

2

0

21

221

2

21

2

2 :FunctionError

2 :Factor Damping

:Frequency Natural

1

1

2

2

1

1

:FunctionTransfer

lim :MagnitudeGain Loop DC

1

1

11 :GainPath Forward

nn

VCOPD

n

VCOPD

n

VCOPDn

DCDC

DC

nn

nVCOPD

nn

VCOPDVCOPD

VCOPD

VCOPDs

DC

DCVCOPD

ss

KKNss

sE

KKN

NKK

KsKs

sKN

ss

sKK

N

N

NKKsNKKs

sKK

sH

NKK

NssGK

ss

sNK

sssKKsG

CRCR

sssF

2211

21

2

11

Second-Order Type-1 PLL w/ Passive Lag-Lead Filter

Page 44: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Second-Order Type-1 PLL w/ Lag-Lead Filter Stability

44

Norm. KDC Zeta PM0.1 0.38 42.51 1 7710 3.09 88.7

• Assuming a decade spacing between filter pole and zero

Normalizing KDC for =1

• A larger KDC provide a more stable system

21

221

2

1

1

ss

sNKsG

DC (dB) log20 10 NjG

Page 45: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Second-Order Type-1 PLL w/ Lag-Lead Filter Output Response w/ Phase Step

45

Norm. KDC Zeta PM0.1 0.38 42.51 1 7710 3.09 88.7

• Note, time axis is scaled by sqrt(KDC) in order to view the phase step plots on one graph

Page 46: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Root Locus

• A Root-Locus Plot is a plot of the closed-loop poles in the complex s-plane as the loop gain changes from zero to very large

• Useful in visualizing system stability and sensitivity to variations in loop gain

• For stability, all poles should lie within the left-half plane, i.e no poles should be in the right-half plane

• A good design ensures that the poles have sufficient margin from the imaginary axis for proper stability, damping, and acceptable gain peaking

46

Page 47: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

47

Second-Order Type-1 PLL w/ Passive Lag-Lead Filter Root Locus

2121

22

221

2

21

221

2

1

1

:Loop-Closed 1

1

N:Loop-Open

DCDC

DCDC

KsKs

sKNsH

ss

sKsG

2=1, 1=9• Initial pole values with

zero loop gain are the open-loop poles

1.01 021

21

pp

• Final pole values with infinite loop gain are the open-loop zeros

22

1 1 1 pp

Page 48: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

48

Second-Order Type-1 PLL w/ Passive Lag-Lead Filter Root Locus

2121

22

221

2

21

221

2

1

1

:Loop-Closed 1

1

N:Loop-Open

DCDC

DCDC

KsKs

sKNsH

ss

sKsG

2=1, 1=9

K1 for =10.1*K1 =0.38

10*K1 =3.09

For ≤1

Page 49: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

49

Second-Order Type-1 PLL w/ Passive Lag-Lead Filter Closed-Loop Response

2121

22

221

2

21

221

2

1

1

:Loop-Closed 1

1

N:Loop-Open

DCDC

DCDC

KsKs

sKNsH

ss

sKsG

20*log10|H(j)|

/n t*sqrt(KDC)

Normalized Phase Step Response

Norm. KDC Zeta PM0.1 0.38 42.51 1 7710 3.09 88.7

• A larger KDC provide a more stable system and wider loop bandwidth

Page 50: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

50

22

2

222

2

22

2 :FunctionError

21

2 :Factor Damping

:Frequency Natural

1

22

21

:FunctionTransfer

11

:GainPath Forward

factor gain loop a Define

nn

n

VCOPDn

nn

nn

VCOPDVCOPD

VCOPD

VCOPD

VCOPD

ssssE

KRCRC

RCK

NCKK

RCKKss

RCsNK

ss

sN

NCKKs

NRKKs

RCsRKK

sH

sRC

sNK

sRC

sRKKsG

NRKKK

Second-Order Type-2 PLL w/ Passive Series-RC Lag-Lead Filter

s

RCsR

sF

1

Page 51: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

51

R=1, C=1• Initial pole values with

zero loop gain are the open-loop poles

0 0 21 pp

• Final pole values with infinite loop gain are the open-loop zeros

21 1 1 pRC

p

Second-Order Type-2 PLL w/ Passive Series-RC Lag-Lead Filter Root Locus

RCKKss

RCsNK

sHs

RCsK

sG

2

2

1

:Loop-Closed

1

N :Loop-Open

Page 52: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

52

R=1, C=1

Second-Order Type-2 PLL w/ Passive Series-RC Lag-Lead Filter Root Locus

RCKKss

RCsNK

sHs

RCsK

sG

2

2

1

:Loop-Closed

1

N :Loop-Open

K1 for =10.1*K1 =0.38

10*K1 =3.09

Page 53: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

53

Normalizing K for =1

• A larger K provide a more stable system

(dB) log20 10 NjG

Second-Order Type-2 PLL w/ Passive Series-RC Lag-Lead Filter Stability

2

1

sRC

sNKsG

Norm. KDC Zeta PM0.1 0.38 351 1 76.210 3.09 88.6

Page 54: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

54

20*log10|H(j)|

/n t*sqrt(KDC)

Normalized Phase Step Response

• A larger KDC provide a more stable system and wider loop bandwidth

Second-Order Type-2 PLL w/ Passive Series-RC Lag-Lead Filter Closed-Loop Response

RCKKss

RCsNK

sHs

RCsK

sG

2

2

1

:Loop-Closed

1

N :Loop-Open

Norm. KDC Zeta PM0.1 0.38 351 1 76.210 3.09 88.6

Page 55: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Typical Charge-Pump PLL Loop Filter

• A secondary capacitor C2 is often added for additional filtering to reduce reference spurs

• This introduces an extra pole and potential stability concerns

55

I

I

VCO ControlVoltage

C1

R

C2

Charging

Discharging

VDD

VSSF(s)

sRC

sRsF

1

1

21

21

12

11

CRCCCss

RCs

CsF

w/o C2

w/ C2

Page 56: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

56

11

11

1

2

1

2132

21

2122

212

2

21

213

21

212

1

2

1

2132

1

212

2

21

213

12

21

2122

1

21

212

12

21

2 :Factor Damping

:Frequency Natural

withsystemorder -second a as eapproximatcan frequency,high aat is pole- third theIf

:FunctionError

111

:FunctionTransfer

111

:GainPath Forward

factor gain loop a Define

KRCRC

RCK

NCKK

RCKKss

CCCsRC

CRCCCssRC

CNRCKKs

NCKKs

CRCCCs

CRCCCss

sE

RCKKss

CCCsRC

RCsNK

CNRCKKs

NCKKs

CRCCCs

RCs

CKK

sH

CRCCCssRC

RCsNK

CRCCCss

RCs

CKK

sG

NRKKK

n

VCOPDn

VCOPDVCOPD

VCOPDVCOPD

VCOPD

VCOPD

VCOPD

Third-Order Type-2 PLL w/ Passive Series-RC Lag-Lead Filter & Additional Pole

21

21

12

11

CRCCCss

RCs

CsF

Page 57: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

57

R=1, C1=1, C2=0.1• Initial pole values with

zero loop gain are the open-loop poles

11 0 021

21321

CRCCCppp

• Final pole values with infinite loop gain

jpRC

p 5 1 13,21

Third-Order Type-2 PLL w/ Passive Series-RC Lag-Lead Filter & Additional Pole Root Locus

Open Loop: N

1

Closed Loop:

1

Page 58: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

58

R=1, C1=1, C2=0.1

Third-Order Type-2 PLL w/ Passive Series-RC Lag-Lead Filter & Additional Pole Root Locus

K1 for =10.1*K1 =0.38

*A third-order system doesn’t formally have a value. Here we are using the same loop parameter values as the second-order type-2 PLL for a given .

Open Loop: N

1

Closed Loop:

1

Page 59: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

59

Normalizing K for =1

• A larger K provide a more stable system

(dB) log20 10 NjG

Second-Order Type-2 PLL w/ Passive Series-RC Lag-Lead Filter Stability

2

1

sRC

sNKsG

Norm. K Zeta PM0.1 0.38 351 1 76.210 3.09 88.6

Page 60: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

60

Normalizing K for =1

• A larger K may not provide a more stable system

(dB) log20 10 NjG

Third-Order Type-2 PLL w/ Passive Series-RC Lag-Lead Filter & Additional Pole Stability

21

2122

1

1

CRCCCssRC

RCsNK

sG

Norm. K Zeta* PM0.1 0.38 301 1 5510 3.09 27

*A third-order system doesn’t formally have a value. Here we are using the same loop parameter values as the second-order type-2 PLL for a given .

Page 61: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

61

20*log10|H(j)|

/n t*sqrt(KDC)

Normalized Phase Step Response

• If K is increased too high frequency peaking and transient ringing occurs!

Third-Order Type-2 PLL Closed-Loop Response

Norm. K Zeta* PM0.1 0.38 301 1 5510 3.09 27

Open Loop: N

1

Closed Loop:

1

Page 62: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Instability and the Nyquist Criterion

62

N1factor feedback by the multiplied gain forward theis PLL aFor

NsGsT

sGsT

[Karsilayan]

Page 63: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

63

Frequency Sweep of Loop Gain, T(s)[Karsilayan]

: PLL aFor NsGsT

Page 64: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Agenda

64

• PLL Overview

• PLL Linear Model

• PLL Stability

• PLL Units

• PLL Noise Transfer Functions

• PLL Transient Behavior

Page 65: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

PLL Units w/ Dimensionless Filter (Non-Charge-Pump PLL)

65

Page 66: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Phase Detector

• Detects phase difference between feedback clock and reference clock

• The loop filter will filter the phase detector output, thus to characterize phase detector gain, extract average output voltage

• The KPD factor can change depending on the specific phase detector circuit

66V/rad are units

:filterloop less-dimension w/ PLL

PDK

Page 67: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Dimension-Less Loop Filter

• Lowpass filter extracts average of phase detector signal

• No units for the dimension-less loop filter67

CRCR

sssF

2211

21

2

11

Example: Passive Lag-Lead Loop Filter[Allen]

Page 68: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Voltage-Controlled Oscillator

• Time-domain phase relationship

68

VDDVDD/20

0 1KVCO

tvKtt cVCOoutout 00

dtdt tvKtt cVCOoutout Laplace Domain Model

out(t)

Vsrad102

VMHz12

Vsrad are units

6

VCOK

Page 69: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Loop Divider

• Time-domain model

69

tN

t outfb 1

tN

tN

t outoutfb 1dt1

[Perrott]

out(t) fb(t)

• The loop divider is dimension-less in the PLL linear model

Page 70: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

PLL Units w/ Dimensionless Filter (Non-Charge-Pump PLL)

70less-unit isDivider Loop

Vsrad are units

less-unit isFilter LoopV/rad are units

VCO

PD

K

K

Page 71: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

71

[Mansuri]

PLL Units w/ Impedance Filter (Charge-Pump PLL)

2CP

PDDIKK

Page 72: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Phase Frequency Detector (PFD)• Phase Frequency Detector allows for wide

frequency locking range, potentially entire VCO tuning range

• 3-stage operation with UP and DOWN outputs• Net difference in pulse width represents phase error• UP longer = Positive • DN longer = Negative

• Edge-triggered results in duty cycle insensitivity

72

• The un-averaged PFD gain (ratio of net output pulse time width with input phase error time) is typically “1” and dimension-less

Page 73: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Averaged PFD Transfer Characteristic

• Constant slope and polarity asymmetry about zero phase allows for wide frequency range operation

• The averaged PFD gain is typically “1/(2*pi)” with units of rad-1

73

UP=1 & DN=-1

[Perrott]

Page 74: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Charge Pump

• Converts PFD output signals to charge

• Charge is proportional to PFD pulse widths

74

used isdetector phasedifferent a ifcan vary gain Thisrad

Amps 2

Gain Pump-Charge & PFD Total

radAmps

2 Gain Pump-Charge Averaged

Amps Gain Pump-ChargeAveraged-Un

CP

CP

CP

I

II

Page 75: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Loop Filter

• Lowpass filter extracts average of phase detector error pulses

• The units of the filter are ohms75

I

I

VCO ControlVoltage

C1

R

C2

Charging

Discharging

VDD

VSSF(s)

sRC

sRsF

1

1

21

21

12

11

CRCCCss

RCs

CsF

w/o C2

w/ C2

Page 76: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

76

[Mansuri]

PLL Units w/ Impedance Filter (Charge-Pump PLL)

2CP

PDDIKK

less-unit isdivider Loop

Vsrad are units , of units hasFilter Loop

radA of units hasgain combined Pump-Charge &Detector Phase Total

averaged if radA averaged,-un ifA are unitsGain Pump Charge

averaged if rad of units averaged,-un if less-unit is 1-

VCO

PD

K

KOnly Average

Once

Page 77: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Agenda

77

• PLL Overview

• PLL Linear Model

• PLL Stability

• PLL Units

• PLL Noise Transfer Functions

• PLL Transient Behavior

Page 78: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

PLL Noise Transfer Function

78

[Mansuri]

Page 79: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Input Noise Transfer Function

79

222 2

221

nn

nn

n

outn ss

sN

RCKKss

RCsNK

sHIN

IN

RCKKsss

RCsNKK

sK

vsT

oo

n

out

n

outn

ININ

IN2

1

sKo

Input Phase Noise:

Voltage Noise on Input Clock Source:

[Mansuri]

)1 (assumes 2

:factorgain loop aw/ PDVCOCP KN

RKIK

Page 80: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Input Noise Transfer Function

80

222 2

221

nn

nn

n

outn ss

sN

RCKKss

RCsNK

sHIN

IN

RCKKsss

RCsNKK

sK

vsT

oo

n

out

n

outn

ININ

IN2

1

Input Phase Noise:

Voltage Noise on Input Clock Source:

VCO0

VCOn

,10 ,12

26.1 ,253

1N ,12 ,rad 2

10

10*2 ,1 ,1*2

ParametersSimulation

bufdelay

VCOPD

VpsK

VMHzK

kRpFC

VGHzKAK

GHzMHz

Page 81: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

VCO Noise Transfer Function

81

22

2

2

2

2 nnn

outn ss

s

RCKKss

ssHVCO

VCO

RCKKss

sKs

Kv

sT VCOVCO

n

out

n

outn

VCOVCO

VCO

2

VCO Phase Noise:

Voltage Noise on VCO Inputs:

KVCO is different if the input is at the Vcntrl input (KVCO) or supply (KVdd)

[Mansuri]

Page 82: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

VCO Noise Transfer Function

82

22

2

2

2

2 nnn

outn ss

s

RCKKss

ssHVCO

VCO

RCKKss

sKs

Kv

sT VCOVCO

n

out

n

outn

VCOVCO

VCO

2

VCO Phase Noise:

Voltage Noise on VCO Inputs:

VCO0

VCOn

,10 ,12

26.1 ,253

1N ,12 ,rad 2

10

10*2 ,1 ,1*2

ParametersSimulation

bufdelay

VCOPD

VpsK

VMHzK

kRpFC

VGHzKAK

GHzMHz

Page 83: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Clock Buffer Noise Transfer Function

83

22

2

2

2

2 nnn

outn ss

s

RCKKss

ssHbuf

buf

RCKKss

sK

RCKKss

ss

Ks

Kv

sT VCOdelay

buf

VCOdelay

buf

VCOdelay

n

out

n

outn

bufbuf

buf

2

2

2

2

11

Output Phase Noise:

Voltage Noise on Buffer Inputs:

Kdelay units = (s/V)

[Mansuri]

1buf

VCOdelays

K

Page 84: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Clock Buffer Noise Transfer Function

84

22

2

2

2

2 nnn

outn ss

s

RCKKss

ssHbuf

buf

RCKKss

sK

RCKKss

ss

Ks

Kv

sT VCOdelay

buf

VCOdelay

buf

VCOdelay

n

out

n

outn

bufbuf

buf

2

2

2

2

11

Output Phase Noise:

Voltage Noise on Buffer Inputs:

VCO0

VCOn

,10 ,12

26.1 ,253

1N ,12 ,rad 2

10

10*2 ,1 ,1*2

ParametersSimulation

bufdelay

VCOPD

VpsK

VMHzK

kRpFC

VGHzKAK

GHzMHz

Page 85: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

28GHz PLL Phase Noise Example

85

• Charge pump noise dominates at low frequencies• VCO noise at mid-band and high frequencies• Output buffers outside loop dominate at high frequencies

With ~100fs target, no single dominant source -every component contributes

Phas

e N

oise

(dB

c/H

z)

Frequency Offset (Hz) [Turker ISSCC 2019]

Page 86: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

PLL Noise Transfer Function Take-Away Points

• The way a PLL shapes phase noise depends on where the noise is introduced in the loop

• Optimizing the loop bandwidth for one noise source may enhance other noise sources

• Generally, the PLL low-pass shapes input phase noise, band-pass shapes VCO input voltage noise, and high-pass shapes VCO/clock buffer output phase noise

86

Page 87: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Agenda

87

• PLL Overview

• PLL Linear Model

• PLL Stability

• PLL Units

• PLL Noise Transfer Functions

• PLL Transient Behavior

Page 88: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Linear PLL Model

88

• If the phase input amplitude is small, then the linear model can be used to predict the transient response

NsFKKs

s

NsGs

ssEVCOPDref

e

1

1

• Ideally, we want this to be zero• Phase error generally increases with

frequency due to this high-pass response

Page 89: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

89

• Phase Step Response

step decayingly exponentiaan is ResponseTransient

:ResponseTransient

step phase a with zero be shoulderror Phase

0limlim :Theorem Value Final theUsing

1

2

00

tK

DC

DCss

DCeKss

s

KsssssE

s

L

First-Order PLL Tracking Response

N

KKKKs

s

NKKKs

ssEKsF VCOPDdBDC

dBVCOPD

13

311 , ,

Page 90: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

90

• Frequency Offset (Step) Response

step risingly exponentiaan is ResponseTransient

1 :ResponseTransient

offsetfrequency again with loop the tonalproporitioinversely iserror phase The

limlim :Theorem Value Final theUsing

21

2

2

020

tK

DCDC

DCDCss

DCeKKs

ss

KKsssssE

s

L

First-Order PLL Tracking Response

N

KKKKs

s

NKKKs

ssEKsF VCOPDdBDC

dBVCOPD

13

311 , ,

Page 91: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

91

• Frequency Ramp Response

1 :ResponseTransient

finite is ifinfinity togrow error will phase The

limlim :Theorem Value Final theUsing

2

rad/sec of rate aat ith timelinearly w changing isfrequency input that theAssume

231

3

2

030

2

2

tKDC

DCDC

DC

DCss

ref

DCetKKKs

ss

K

KsssssE

s

tt

L

First-Order PLL Tracking Response

N

KKKKs

s

NKKKs

ssEKsF VCOPDdBDC

dBVCOPD

13

311 , ,

Page 92: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

NKKK

KsKs

ss

ssKK

NsssE

sssF VCOPD

DCDCDCnn

VCOPD

n

,

1

1

2 ,

11

2121

22

2122

2

21

2

92

• Phase Step Response

yourself thiscompute Try to

1

1

:ResponseTransient

step phase a with zero be shoulderror Phase

01

1

limlim :Theorem Value Final theUsing

2121

22

211

2121

22

21

2

00

DCDC

DCDCss

KsKs

ss

s

KsKss

ssssE

s

L

Second-Order Type-1 PLL Tracking Response

Page 93: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

NKKK

KsKs

ss

ssKK

NsssE

sssF VCOPD

DCDCDCnn

VCOPD

n

,

1

1

2 ,

11

2121

22

2122

2

21

2

93

• Frequency Offset (Step) Response

yourself thiscompute Try to

1

1

:ResponseTransient

offsetfrequency again with loop the tonalproporitioinversely iserror phase The

1

1

limlim :Theorem Value Final theUsing

2121

22

212

1

2121

222

21

2

020

DCDC

DCDCDCss

KsKs

ss

s

KKsKss

ssssE

s

L

Second-Order Type-1 PLL Tracking Response

Page 94: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

NKKK

KsKs

ss

ssKK

NsssE

sssF VCOPD

DCDCDCnn

VCOPD

n

,

1

1

2 ,

11

2121

22

2122

2

21

2

94

• Frequency Ramp Response

yourself thiscompute Try to

1

1

:ResponseTransient

finite is ifinfinity togrow error will phase The

1

1

limlim :Theorem Value Final theUsing

2121

22

213

1

2121

223

21

2

030

DCDC

DC

DCDCss

KsKs

ss

s

K

KsKss

ssssE

s

L

Second-Order Type-1 PLL Tracking Response

Page 95: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

95

• Phase Step Response

RCKKss

ss

RCKKsss

sssEs ss

2

21

2

3

00

:ResponseTransient

step phase a with zero be shoulderror Phase

0limlim :Theorem Value Final theUsing

L

Second-Order Type-2 PLL Tracking Response

N

RKKK

RCKKss

sss

ssEs

RCsR

sF VCOPD

nn

,2

,

1

2

2

22

2

Page 96: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

96

RCKKss

ss 2

21 :ResponseTransient L

Second-Order Type-2 PLL Phase Step Response

KRCRCn

21

2

Page 97: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

97

• Frequency Offset (Step) Response

RCKKss

ss

RCKKsss

sssEs ss

2

2

21

22

3

020

:ResponseTransient

PLL 2-Type a with zero togoeserror phase The

0limlim :Theorem Value Final theUsing

L

Second-Order Type-2 PLL Tracking Response

N

RKKK

RCKKss

sss

ssEs

RCsR

sF VCOPD

nn

,2

,

1

2

2

22

2

Page 98: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

98

Second-Order Type-2 PLL Frequency Step Response

KRCRCn

21

2

RCKKss

ss 2

2

21 :ResponseTransient L

Page 99: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

99

• Frequency Ramp Response

RCKKss

ss

RCKKsss

sssEs n

ss

2

2

31

223

3

030

:ResponseTransient

lag phase dynamic a with rampfrequency acan track PLL 2-order type-secondA

limlim :Theorem Value Final theUsing

L

Second-Order Type-2 PLL Tracking Response

N

RKKK

RCKKss

sss

ssEs

RCsR

sF VCOPD

nn

,2

,

1

2

2

22

2

Page 100: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

100

Second-Order Type-2 PLL Frequency Ramp Response

KRCRCn

21

2

RCKKss

ss 2

2

31 :ResponseTransient L

Page 101: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Ideal Phase Detector

• An ideal phase detector has the same gain (slope) over a 2 range

• This allows the linear PLL model to be used for all phase relationships

101

Page 102: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Real Phase Detectors

• Many phase detectors are nonlinear and do not display the same gain for a given phase relationship

• This implies that the PLL cannot be described by the linear model for large input phase deviations

102

Page 103: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

PLL Frequency Step Response:Linear vs Behavioral Model

103

ref(s)=Frequency Step Input: s2 = Mrad/sec

32s2

No Cycle Slips Observedwith Linear Model

Cycle Slips

• Due to non-linearities in loop components (primarily the PD), a real PLL’s response can vary significantly from the linear model

Page 104: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

PLL Hold Range (Sinusoidal PD)• A PLL Hold Range is the input frequency range over which the PLL can

maintain static lock

104

rad/sec :Range Hold

todconstraine isfrequency lock the,1 exceedcannot sine Since

sin

iserror phase thedetector, phase sinusoidal aWith

:2-TypeOrder -Second

:1-TypeOrder -Second

:Order-First

isError Phase State-Steady theModelLinear w/

1

DCH

DC

DCe

DC

VCOPDDC

VCOPDDC

DCe

K

K

K

K

NKKK

NKKKK

K

• The hold range is finite for a type-1 PLL, and theoretically infinite for a type-2 PLL. However in practice it will be limited by another PLL block, such as the VCO tuning range.

Page 105: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

First-Order PLL Phaselock Acquisition (Sinusoidal PD)

105

orefref

o

ePD

cVCOo

t

K

tvK

KsF

and is phaseinput

thesuch that , fromdifferent frequency aat is signalinput theAssume

sin :OutputDetector Phase Sinusoidal

:Frequency ousInstantane VCO

1

PDsinusoidalawith PLLorder -firstsimpleaAssuming

1

Page 106: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

First-Order PLL Phaselock Acquisition (Sinusoidal PD)

106

PDVCOee

out

t

oePDVCOorefoutrefe

out

t

oePDVCOoout

t

ocVCOoout

KKKtKdt

t

dKKt

dKKtdvKtt

wheresind

equation aldifferentinonlinear following theyields time w.r.t. thisatingDifferenti

0sin

iserror phase PLL The

0sin0

is phaseoutput PLLThe

Page 107: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

107

First-Order PLL Hold Range (Sinusoidal PD)

K

K

Kdt

t

e

ee

todconstraine isfrequency lock the,1 exceedcannot sine Since

sin

0sind

locked,isPLLtheIf

rad/sec :Range Hold KH

Page 108: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

108

First-Order PLL Phaselock Acquisition (Sinusoidal PD)

ee

KK sin

Kby equation aldifferentiPLLorder -first thegNormalizin

unstable are nulls slope-positive while

points,lock stable are nulls slope-Negative

0 wherenulls 2 are thereplot, plane-phase In the dtd e

• Every cycle (2 interval) contains a stable null, thus ecannot change by more than one cycle before locking

• There is no cycle slipping in the locking process• A cycle slip occurs when the phase error changes by more

than 2 without locking

Ke

Error,Frequency Normalized

e Error,Phase

Page 109: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

109

First-Order PLL Phaselock Acquisition Time (Sinusoidal PD)

tlysignifican increasecan andion approximatlinear thisfrom

deviate willresponse thelarge, is 0 if However,

0

response step phase modellinear theissolution eapproximat the

,sinsuch that small, is 0 and zero is If

0sin

solveformally toneed wetime,acquistionphaselock thefind order toIn

e

Ktoute

eee

out

t

oePDVCOe

et

dKKtt

Page 110: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

• If the frequency offset exceeds the PLL hold range, the phase error will oscillate asymmetrically as the PLL undergoes cycle slips

110

First-Order PLL Lock Failure (Sinusoidal PD)

First-Order PLL VCO Control Voltage

rad/sec :Range Hold KH

Page 111: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Second-Order Type-2 PLL PhaselockAcquisition (Sinusoidal PD)

111

0sin1sin0

is phaseoutput PLL The

sin1sin1

as expressed becan domain - timein the responsefilter The

11

PDsinusoidalawith PLL2-order type-secondaAssuming

0 010 1

2

011

2

011

2

11

2

1

2

out

t t

e

t

ePDVCOoout

t

ocVCOoout

t

ePDePD

t

eec

dddKKtdvKtt

dKKdvtvtv

ssssF

Page 112: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Second-Order Type-2 PLL PhaselockAcquisition (Sinusoidal PD)

112

eeePDVCOe

out

t t

e

t

ePDVCOorefoutrefe

KK

dddKKt

sin1cos

equation aldifferentinonlinear following theyields time w.r.t. twice thisatingDifferenti

0sin1sin

iserror phasePLLThe

11

2

0 010 1

2

Page 113: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Second-Order Type-2 PLL PhaselockAcquisition (Sinusoidal PD)

113

0sincos2

following theyieldsequation aldifferentinonlinear theinto thisngSubstituti

4 ,

arefactor dampingandfrequency naturalthePLL,2-TypeOrder -Second For this

2

1

22

1

2

eneene

VCOPDVCOPDn

KKKK

• No closed form solution exists, and numerical techniques are required to solve

Page 114: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Second-Order Type-2 PLL PhaselockAcquisition (Sinusoidal PD)

114

0sincos2 2

eneene

Acquisition with a phase error

time vs and

ee ee vs :Plot Plane Phase

Page 115: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Second-Order PLL Phase Plane Plots (Sinusoidal PD)

115

0sincos2 2

eneene

• An unstable singularity is called a Saddle Point

• A trajectory that terminates on a saddle point is called a “Separatrix”

• If a trajectory lies between the 2 separatrices, it will lock without cycle slipping

• If a trajectory lies outside the 2 separatrices, it will cycle slippling one or more times before locking (if at all)

Page 116: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Second-Order PLL Pull-Out Range and Lock Time (Sinusoidal PD)

116

(Hz) 41

2

,11 Assuming

(Hz)

bandwidth noise PLL theis Here,

10% than lesserror phasefor

2.44

as edapproximat becan timeacquistion PLL therange,out -pull than theless is stepfrequency a If

1.4 and 0.5between for

18.1

11

2

1

2

0

2

3

2

nL

L

L

Lnfreqphaseacq

nPO

B

ssssF

dffHB

B

Bfttt

• The Pull-Out Range is the maximum frequency step that can occur before the loop locks without cycle slipping

Page 117: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Second-Order PLL Locking Outside of the Pull-Out Range (Sinusoidal PD)

117

• Multiple cycle slips are observed before the loop locks

Page 118: ECEN620: Network Theory Broadband Circuit Design Fall 2019spalermo/ecen620/lecture03_ee620_pll_system.pdfUnderstanding PLL Frequency Response • Linear “small-signal” analysis

Next Time

• Phase Detector Circuits

118