écoulements diphasiques

Upload: joao-eduardo-campos

Post on 01-Jun-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 coulements Diphasiques

    1/34

    22.06

    Engineering

    of

    Nuclear

    Systems

    MIT

    Department

    of

    Nuclear

    Science

    and

    Engineering

    NOTES

    ON

    TWOPHASEFLOW,BOILINGHEATTRANSFER,ANDBOILINGCRISES

    IN

    PWRs

    AND

    BWRs

    Jacopo

    Buongiorno

    AssociateProfessorofNuclearScienceandEngineering

  • 8/9/2019 coulements Diphasiques

    2/34

    Definitionofthebasictwophaseflowparameters

    In

    this

    document

    the

    subscripts

    v

    and

    indicate

    the

    vapor

    and

    liquid

    phase,

    respectively.

    Thesubscriptsgandfindicatethevaporandliquidphaseatsaturation,respectively.

    AvVoidfraction: Av A

    M Av v vStatic

    quality: xst

    Mv M Avv A

    m

    v A

    v v v vFlow

    quality:

    x

    mv m vvAvv vAvSlip

    ratio: S

    v

    v

    Mixture

    density: m v (1)

    Flowquality,voidfractionandslipratioaregenerallyrelatedasfollows:

    1

    1xv1 S

    x

    Figures1and2showthevoidfractionvsflowqualityforvariousvaluesoftheslipratioandpressure,

    respectively,

    for

    steam/water

    mixtures.

  • 8/9/2019 coulements Diphasiques

    3/34

    In22.06weassumehomogeneousflow,i.e.vv=vorS=1. Thisassumptionmakesitrelativelysimpleto

    treattwophasemixtureseffectivelyassinglephasefluidswithvariableproperties. IfS=1,itfollows

    1

    x

    1

    ximmediatelythatxst=xand,aftersometrivialalgebra, .

    m v

    Notethattheassumptionofhomogeneousflowisveryrestrictive,andinfactaccurateonlyunder

    limited

    conditions

    (e.g.

    dispersed

    bubbly

    flow,

    mist

    flow).

    In

    general,

    a

    significant

    slip

    between

    the

    two

    phases

    is

    present,

    which

    requires

    the

    use

    of

    more

    realistic

    models

    in

    which

    vvv. Suchmodelswillbediscussedin22.312and22.313.

    Twophaseflowregimes

    With

    reference

    to

    upflow

    in

    vertical

    channel,

    one

    can

    (loosely)

    identify

    several

    flow

    regimes,

    or

    patterns,

    whoseoccurrence,foragivenfluid,pressureandchannelgeometry,dependsontheflowqualityand

    flowrate. ThemainflowregimesarereportedinTable1andshowninFigure3. Notethatwhatvalues

    offlowqualityandflowratearelow,intermediateorhighdependonthefluidandpressure. In

    horizontal

    flow,

    in

    addition

    to

    the

    above

    flow

    regimes,

    there

    can

    also

    be

    stratified

    flow,

    typical

    of

    low

    flowratesatwhichthetwophasesseparateundertheeffectofgravity.

    Table1. Qualitativeclassificationoftwophaseflowregimes.

    Flowquality Flowrate Flowregime

    Low Lowandintermediate Bubbly

    High

    Dispersed

    bubbly

    Intermediate Lowandintermediate Plug/slug

    High Churn

    High High Annular

    High

    (postdryout)

    Mist

  • 8/9/2019 coulements Diphasiques

    4/34

    Morequantitatively,onecandeterminewhichflowregimeispresentinaparticularsituationofinterest

    resortingtoanempiricalflowmap(seeFigure4). Notethatsuchmapsdependonthefluid,pressure

    andchannelgeometry,i.e.,thereisnouniversalmapfortwophaseflowregimes. However,there

    existmethodstogenerateaflowmapforaparticularfluid,pressureandgeometry. Thesemethodswill

    be covered in 22.312 and 22.313.

    Typical configuration of (a) bubbly flow, (b) dispersed bubbly (i.e. fine bubbles

    dispersed in the continuous liquid phase), (c) plug/slug flow, (d) churn flow,

    (e) annular flow, (f) mist flow (i.e. fine droplets dispersed in the continuous vapor

    phase) and (g) stratified flow. Note: mist flow is possible only in a heated channel;stratified flow is possible only in a horizontal channel.

    a b c

    g

    d e f

    Image by MIT OpenCourseWare.

  • 8/9/2019 coulements Diphasiques

    5/34

  • 8/9/2019 coulements Diphasiques

    6/34

    L 1 G 2

    Pfric

    0 f D 2

    dz

    (3)

    e m

    L

    Pgrav

    m gcosdz (4)0

    Notethattheaboveequationsareformallyidenticaltothesinglephasecasewiththemixturedensity,

    m=v+(1),usedinsteadofthesinglephasedensity. ThefrictionfactorinEq.3canbecalculated

    fromasinglephasecorrelationandusingtheliquidonlyReynoldsnumber,Reo=GDe/.

    For

    each

    abrupt

    flow

    area

    change

    in

    the

    channel

    (again

    including

    the

    inlet

    and

    outlet),

    the

    associated

    pressurelossisthesumofanaccelerationtermandanirreversiblelossterm:

    Pform Pform,acc Pform,irr 1

    (G22 G1

    2 )K G 2

    (5)2 2m m

    wherethesubscripts1and2refertothelocationimmediatelyupstreamanddownstreamofthe

    abrupt

    area

    change,

    respectively.

    Boilingheattransfer

    Boilingisthetransitionfromliquidtovaporviaformation(ornucleation)ofbubbles. Ittypically

    requiresheataddition. Whentheboilingprocessoccursatconstantpressure(e.g.intheBWRfuel

    assemblies,

    PWR

    steam

    generators,

    and

    practically

    all

    other

    heat

    exchangers

    in

    industrial

    applications),

    theheatrequiredtovaporizeaunitmassofliquidishfghghf,whichcanbefoundinthesteamtables.

    Writingthe(YoungLaplace)equationforthemechanicalequilibriumofabubblesurroundedbyliquid,it

    canbeshownthatthevaporpressurewithinthebubblemustbesomewhathigherthanthepressureof

    thesurroundingliquid. Itfollowsthatthevapor(andliquid)temperaturemustbesomewhathigher

    thanthesaturationtemperature,Tsat,correspondingtotheliquid(orsystem)pressure. Usingthe

    ClausiusClapeyron

    equation

    to

    relate

    saturation

    temperatures

    and

    pressures,

    it

    can

    then

    be

    shown

    that

    themagnitudeofthesuperheat(TnucleationTsat)requiredtosustainthebubbleisinverselyproportionalto

    theradiusofthebubbles,rbubble:

    1T

    nucleation Tsat (6)r

  • 8/9/2019 coulements Diphasiques

    7/34

    etc.)isfullofmicrocavities,naturallypresentduetoroughness,corrosion,etc. Therefore,airorvapor

    trappedinthosecavitiesserveasnucleationsitesforthebubblesandensureinitiationoftheboiling

    process.

    The

    bottom

    line

    is

    that

    one

    needs

    to

    raise

    the

    temperature

    of

    the

    surface

    a

    little

    bit

    above

    Tsatifboilingistobeinitiatedandsustained. ForarigorousderivationofEq.6andmoredetailsabout

    bubblenucleation,refertoanyboilingheattransfertextbook(e.g.Boiling,CondensationandGasLiquid

    FlowbyP.B.Whalley,OxfordSciencePublications,1987).

    PoolBoiling

    Considerasimpleexperimentinwhichwater(orotherfluid)boilsofftheuppersurfaceofaflatplate.

    The

    plate

    is

    connected

    to

    an

    electric

    power

    supply,

    and

    thus

    is

    heated

    via

    Joule

    effect.

    This

    situation

    is

    referredtoaspoolboiling(vsflowboiling)becausethepooloffluidabovetheheaterisstagnant. Inthis

    experimentwecontroltheheatfluxq"(viathepowersupply)andwemeasurethewalltemperatureTw

    (viaathermocouple). Thenaq"vsTwTsatcurvecanbeconstructedfromthedata. Thiscurveisknown

    astheboilingcurveandisshowninFig5.

    )/(

    2mWq

    505 1500

    106C

    O

    A

    B

    Tw Tsat (C)

    Figure5. Qualitativeboilingcurveforwateratatmosphericpressure(Tsat=100C)onaflatplate.

    Asoneprogressivelyincreasestheheatflux,severalregions(orheattransferregimes)canbeidentified

    from

    this

    curve.

    A

    depiction

    of

    the

    physical

    situation

    associated

    with

    these

    heat

    transfer

    regimes

    is

    shown

    in

    Fig

    6.

    OA

    ThewalltemperatureisnotsufficientlybeyondTsattoinitiatebubblenucleation. Inthisregiontheheat

    from the wall is transferred by single phase free convection

  • 8/9/2019 coulements Diphasiques

    8/34

    Manybubblesareformedandgrowatthewall,anddetachfromthewallundertheeffectofbuoyancy.

    Thisheattransferregimeiscallednucleateboiling. Thebubblescreatealotofagitationandmixingnear

    the

    wall,

    which

    enhances

    heat

    transfer.

    As

    a

    result,

    nucleate

    boiling

    is

    a

    much

    more

    effectivemechanismthanfreeconvection,assuggestedbythehigherslopeoftheboilingcurveinthisregion.

    BC

    Atacritical (high)valueoftheheat flux,therearesomanybubblescrowdingthewallthattheycan

    mergeandformacontinuousstablevaporfilm. Thus,thereisasuddentransitionfromnucleateboiling

    to

    film

    boiling.

    This

    sudden

    transition

    is

    called

    Departure

    from

    Nucleate

    Boiling

    (DNB),

    or

    Critical

    Heat

    Flux

    (CHF),

    or

    burnout,

    or

    boiling

    crisis,

    and

    is

    associated

    with

    a

    drastic

    reduction

    of

    the

    heat

    transfer

    coefficient

    because

    vapor

    is

    a

    poor

    conductor

    of

    heat.

    Consequently,

    the

    wall

    temperature

    increasesabruptlyanddramatically(to>1000C),whichmayresultinphysicaldestructionoftheheater.

    Candbeyond. Thisisthefilmboilingregion. Heattransferfromthewalloccursmostlybyconvection

    withinthevaporfilmandradiationacrossthevaporfilm.

    Intheabsenceofanexperiment,thevarioussegmentsof theboilingcurvecanalsobepredictedby

    Newtonslawofcooling, q"h(Tw

    Tsat

    ),withtheheattransfercoefficient,h,givenbythefollowing

    empiricalcorrelations:

    OA Si l h f ti f fl t l t b di t d b th Fi h d d S d

    Film boiling (C and beyond)

    The heat transfer regimes in pool boiling.

    Onset of nucleate boiling (A)

    Nucleate boiling (A B)

    Free convection (O A)

    Image by MIT OpenCourseWare.

  • 8/9/2019 coulements Diphasiques

    9/34

    In this correlation (valid for 107

  • 8/9/2019 coulements Diphasiques

    10/34

    Flowboiling

    The

    situation

    of

    interest

    in

    nuclear

    reactors

    is

    flow

    boiling.

    Consider

    a

    vertical

    channel

    of

    arbitrary

    cross

    sectional

    shape

    (i.e.

    not

    necessarily

    round),

    flow

    area

    A,

    equivalent

    diameter

    De,uniformlyheated

    (axiallyaswellascircumferentially)byaheatfluxq". LetTinbetheinlettemperature(Tin

  • 8/9/2019 coulements Diphasiques

    11/34

  • 8/9/2019 coulements Diphasiques

    12/34

    transfermostlyoccursthroughnucleationanddetachmentofbubblesatthewall,while intheforced

    evaporationsubregiontherearetypicallynobubbles,andheattransferoccursmainlythruconvection

    within

    the

    liquid

    film

    and

    evaporation

    at

    the

    liquid

    film/vapor

    core

    interface.

    The

    heat

    transfer

    coefficientishighinbothsubregions. ThephysicalsituationisshowninFig8.

    q"

    q"

    (a) (b)

    Figure

    8.

    (a)

    Nucleate

    boiling

    (typical

    of

    bubbly

    and

    plug

    flow),

    (b)

    Forced

    evaporation

    (typical

    of

    annularflow).

    Klimenkoscorrelationcomprisesthefollowingequations:

    Nucleateboilingdominatedsubregion:

    hLc

    4.9103

    Pem0.6

    Prf0.33

    PLc

    0.54

    (8)kf

    Forced

    evaporation

    subregion:

    0.2

    hLc 0.6 1/ 6

    g

    k

    0.087Rem Prf (9)

    f f

    Where

    in

    Eq.

    8,

    P

    is

    the

    operating

    pressure,

    PrfistheliquidPrandtlnumberandthefollowingdefinitions

    areusedforPem,RemandLc:

    q"Lcfcp,fPe m

    h fgg k f

  • 8/9/2019 coulements Diphasiques

    13/34

    Klimenko recommends use of the following criterion to determine if nucleate boiling or forced

    evaporation

    dominates

    at

    any

    given

    location

    in

    the

    channel:

    IfNCB1.6104,heattransferisforcedevaporationdominateduseEq.9

    h

    1/ 3

    whereN

    G

    q

    fg

    "

    1x

    g

    f 1

    g

    f

    CB

    Note thatKlimenkoscorrelation isvalidup to thepointofdryout,butnotbeyond it. Dryout isan

    undesirable

    condition

    (asocalledboilingcrisis)becausetheheattransfercoefficientdropsdrastically

    andthusthewalltemperaturerisesabruptly,whichcanresultindamageofthewall. SincePWRsand

    BWRsaredesignednottoreachthepointofdryout,Klimenkoscorrelationisagoodpredictivetoolto

    estimatetheheattransfercoefficientinourapplications.

    Forthesakeofsimplicity,theabovediscussionhasignoredthermalnonequilibriumeffects. Inreality,

    boiling

    starts

    at

    the

    wall

    for

    zTsat)whiletheliquiddropletsareatsaturation. ThisregionisimportantinBWRfuel

    assemblies ifthepointofdryout isexceeded(e.g.duringanaccident). Postdryoutwillbecoveredin

    22.312and22.313.

  • 8/9/2019 coulements Diphasiques

    14/34

    Boiling crises in LWRs

    Jacopo BuongiornoAssociate Professor of Nuclear Science and Engineering

    22.06: Engineering of Nuclear Systems

  • 8/9/2019 coulements Diphasiques

    15/34

    the thermal limits associated with the

    Ex lain how the thermal limits are verifiedin core design:

    - DNBR for PWR

    - CPR (for BWR)

    2

  • 8/9/2019 coulements Diphasiques

    16/34

    remove before it experiences a thermal crisis,i.e., a sudden and drastic deterioration of itsability to remove heat from the fuel.

    ,overheats and fails, thus releasing fission

    .

    To understand the thermal crisis we need tounderstand boiling.

    3

  • 8/9/2019 coulements Diphasiques

    17/34

  • 8/9/2019 coulements Diphasiques

    18/34

    Thermal-hydraulics of PWR Core (2)

    q

    Hot channel

    Temperature

    Subcooled boiling in

    Tsat

    Tco

    Tb

    z

    5

  • 8/9/2019 coulements Diphasiques

    19/34

  • 8/9/2019 coulements Diphasiques

    20/34

    Thermal-h draulics of PWR Core 4q (T ,G, P)Heat flux to cause DNB depends on Tb, G and P DNB b

    Heat flux Heat flux

    DNB

    z

    q

    qDNB . .

    q the US

    7

  • 8/9/2019 coulements Diphasiques

    21/34

    Thermal-h draulics of PWR Core 5Correlation (Tong 68) to calculate qDNB

    qDNB

    KTon

    G0.4

    0f

    .

    .6hfg

    e

    Where:

    KTong

    [1.767.433xe

    12.222xe

    2 ]

    p,

    sat

    bx

    < 0 in a PWRe

    hfg

  • 8/9/2019 coulements Diphasiques

    22/34

    Thermal-h draulics of BWR CoreFuel pin

    CoolantChannel

    16.2 mm

    12.3 mm

    geometryq

    Average or hot

    channel

    Temperature

    Saturated boiling inTco

    Tsat

    Tb

    z 9

  • 8/9/2019 coulements Diphasiques

    23/34

    Thermal-h draulics of BWR Core 2q

    Dryout (thermal crisis)in hot channel

    Dryout of the

    liquid film in

    annular flow

    Clad tem erature

    increases sharplywhen dryout occurs

    z

    10

    Temperature

    Tb

    co

    Tsat

  • 8/9/2019 coulements Diphasiques

    24/34

  • 8/9/2019 coulements Diphasiques

    25/34

    Thermal-h draulics of BWR Core 4

    Correlation (CISE-4) to calculatexcr

    Ph z

    x

    acrP zbw

    Where:

    cr

    1/ 3

    b0.199(Pcr

    / P1)0.4GDe

    1.4

    Note:

    P is the thermodynamic critical pressure of water (22.1 MPa)

    The units for G and De must be kg/m2-s and m, respectively

  • 8/9/2019 coulements Diphasiques

    26/34

  • 8/9/2019 coulements Diphasiques

    27/34

    Boiling demos

    Jacopo BuongiornoAssociate Professor of Nuclear Science and Engineering

    22.06: Engineering of Nuclear Systems

  • 8/9/2019 coulements Diphasiques

    28/34

    Boilin a sim le ex erimentPool boiling of water at 1 atm. The current delivered to

    .

    Power su l

    Electric resistance of the

    wire

    RIq 2

    Water q

    L

    Wire LrwHeat flux at the

    Wire radiuswire surface

    15

  • 8/9/2019 coulements Diphasiques

    29/34

    crisis N or

    Boiling a simple experiment (2)Plot of wire temperature vs. heat flux (the boiling curve)

    / 2mWq Boilin crisis or DNB or CHF

    Film Boiling106

    Burnout

    typically

    occurs

    Nucleate Boiling

    ONB

    )( CTT satw

    Main message: Nucleate boiling = good, DNB = bad 16

  • 8/9/2019 coulements Diphasiques

    30/34

    Lets run the demo!

    18

  • 8/9/2019 coulements Diphasiques

    31/34

  • 8/9/2019 coulements Diphasiques

    32/34

  • 8/9/2019 coulements Diphasiques

    33/34

    -Injection of air into column of water.

    Air compressor

    Injection valve

    Watch how the flow pattern changes as air flow is increased21

  • 8/9/2019 coulements Diphasiques

    34/34

    MIT OpenCourseWarehttp://ocw.mit.edu

    22.06 Engineering of Nuclear Systems

    Fall2010

    For information about citing these materials or our Terms of Use, visit:http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/