editor-in-chief: marshall hall, jr.g. b. preston department of mathematics monash university clayton...

14
Journal of Algebra EDITOR-IN-CHIEF: Graham Highman Mathematical Institute 24-29, St. Giles Oxford, England EDITORIAL BOARD: Richard Brauer Department of Mathematics Harvard University 2 Divinity Avenue Cambridge, Massachusetts 02138 R. H . Bruck Department of Mathematics Van Vleck Hall University of Wisconsin Madison, Wisconsin 53706 D. A. Buchsbaum Department of Mathematics Brandeis University Waltham, Massachusetts 02154 P. M . Cohn Department of Mathematics Bedford College Regents Park London N.W. 1, England J. Dieudonn6 Universite D y Aix-Marseille Faculte Des Sciences Parc Valrose Nice, France Walter Feit Department of Mathematics Yale University Box 2155 Yale Station New Häven, Connecticut 06520 A. Fröhlich Department of Mathematics King's College London, W. C. 2, England A. W. Goldie Mathematics Department The University of Leeds Leeds, England J. A. Green Mathematics Institute University of Warwick Coventry, England Marshall Hall, Jr. Sloan Laboratory of Mathematics and Physics California Institute of Technology Pasadena, California 91109 I. N. Herstein Department of Mathematics University of Chicago Chicago, Illinois 60637 B. Huppert Mathematisches Institut der Universität Tübingen, Germany Nathan Jacobson Department of Mathematics Yale University Box 2155 Yale Station New Häven, Connecticut 06520 E. Kleinfeld Department of Mathematics University of Iowa Iowa City, Iowa 52240 Saunders MacLane Department of Mathematics University of Chicago Chicago, Illinois 60637 G. B. Preston Department of Mathematics Monash University Clayton Victoria 3168 Australia H. J. Ryser Department of Mathematics California Institute of Technology Pasadena, California 91109 J. Tits Mathematisches Institut der Universität Wegelerstrasse 10 Bonn, Germany Guido Zappa Istituto Matemätico « U l i s s e Dini» Universitä degli Studii Viale Morgani, 671A Firenze, Italy Published monthly at 37 Tempelhof, Bruges, Belgium, by Academic Press, Inc., 111 Fifth Avenue, New York, N. Y . 10003 Volumes 17-19, 1971 (4 issues per volume) Institutional subscriptions: $26.00 per volume Private subscriptions (for the subscriber's personal use only): $10.00 per volume All correspondence and subscription Orders should be addressed to the office of the Publishers, 111 Fifth Avenue, New York, N . Y . 10003 Send notices of change of address to the office of the Publishers at least 4 weeks in advance. Please include both old and new addresses. Second class postage paid at Jamaica, N. Y . 11431 © 1971 by Academic Press, Inc. Printed in Bruges, Belgium, by the St Catherine Press, Ltd.

Upload: others

Post on 31-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EDITOR-IN-CHIEF: Marshall Hall, Jr.G. B. Preston Department of Mathematics Monash University Clayton Victoria 3168 Australia H. J. Ryser Department of Mathematics ... A Characterization

Journal of Algebra E D I T O R - I N - C H I E F :

Graham Highman M a t h e m a t i c a l I n s t i t u t e 2 4 - 2 9 , S t . G i l e s O x f o r d , E n g l a n d

EDITORIAL B O A R D :

Richard Brauer D e p a r t m e n t of M a t h e m a t i c s H a r v a r d U n i v e r s i t y 2 D i v i n i t y A v e n u e C a m b r i d g e , M a s s a c h u s e t t s 0 2 1 3 8

R. H . Bruck D e p a r t m e n t of M a t h e m a t i c s V a n V l e c k H a l l U n i v e r s i t y of W i s c o n s i n M a d i s o n , W i s c o n s i n 53706

D . A . Buchsbaum D e p a r t m e n t of M a t h e m a t i c s B r a n d e i s U n i v e r s i t y W a l t h a m , M a s s a c h u s e t t s 0 2 1 5 4

P. M . Cohn D e p a r t m e n t of M a t h e m a t i c s B e d f o r d C o l l e g e Regents P a r k L o n d o n N . W . 1 , E n g l a n d

J. Dieudonn6 U n i v e r s i t e D y A i x - M a r s e i l l e

F a c u l t e D e s Sciences P a r c V a l r o s e N i c e , F r a n c e

Walter Feit D e p a r t m e n t of M a t h e m a t i c s Y a l e U n i v e r s i t y B o x 2155 Y a l e S t a t i o n N e w Häven, C o n n e c t i c u t 0 6 5 2 0

A. Fröhlich D e p a r t m e n t of M a t h e m a t i c s K i n g ' s C o l l e g e L o n d o n , W . C. 2 , E n g l a n d

A. W . Goldie M a t h e m a t i c s D e p a r t m e n t T h e U n i v e r s i t y of Leeds

Leeds, E n g l a n d J. A . Green

M a t h e m a t i c s I n s t i t u t e U n i v e r s i t y of W a r w i c k C o v e n t r y , E n g l a n d

Marshall Hall , Jr. S l o a n L a b o r a t o r y of M a t h e m a t i c s a n d P h y s i c s C a l i f o r n i a I n s t i t u t e of T e c h n o l o g y P a s a d e n a , C a l i f o r n i a 9 1 1 0 9

I. N . Herstein D e p a r t m e n t of M a t h e m a t i c s U n i v e r s i t y of C h i c a g o C h i c a g o , I l l i n o i s 6 0 6 3 7

B. Huppert M a t h e m a t i s c h e s I n s t i t u t der Universität Tübingen, G e r m a n y

Nathan Jacobson D e p a r t m e n t of M a t h e m a t i c s Y a l e U n i v e r s i t y

B o x 2155 Y a l e S t a t i o n N e w Häven, C o n n e c t i c u t 0 6 5 2 0

E . Kleinfeld D e p a r t m e n t of M a t h e m a t i c s U n i v e r s i t y of I o w a

I o w a C i t y , I o w a 5 2 2 4 0 Saunders MacLane

D e p a r t m e n t of M a t h e m a t i c s U n i v e r s i t y of C h i c a g o C h i c a g o , I l l i n o i s 6 0 6 3 7

G . B. Preston D e p a r t m e n t of M a t h e m a t i c s M o n a s h U n i v e r s i t y C l a y t o n V i c t o r i a 3168 A u s t r a l i a

H . J. Ryser D e p a r t m e n t of M a t h e m a t i c s C a l i f o r n i a I n s t i t u t e of T e c h n o l o g y P a s a d e n a , C a l i f o r n i a 9 1 1 0 9

J. Tits M a t h e m a t i s c h e s I n s t i t u t der Universität W e g e l e r s t r a s s e 10 B o n n , G e r m a n y

Guido Zappa I s t i t u t o Matemätico « U l i s s e Dini» Universitä d e g l i S t u d i i V i a l e M o r g a n i , 6 7 1 A

F i r e n z e , I t a l y

Published monthly at 37 Tempelhof, Bruges, Belgium, by Academic Press, Inc., 111 Fifth Avenue, New York, N . Y . 10003

Volumes 17-19, 1971 (4 issues per volume) Institutional subscriptions: $26.00 per volume

Private subscriptions (for the subscriber's personal use only): $10.00 per volume All correspondence and subscription Orders should be addressed to

the office of the Publishers, 111 Fifth Avenue, New York, N . Y . 10003 Send notices of change of address to the office of the Publishers at least 4 weeks

in advance. Please include both old and new addresses. Second class postage paid at Jamaica, N . Y. 11431

© 1971 by Academic Press, Inc. P r i n t e d i n Bruges, B e l g i u m , by t h e S t C a t h e r i n e Press, L t d .

Page 2: EDITOR-IN-CHIEF: Marshall Hall, Jr.G. B. Preston Department of Mathematics Monash University Clayton Victoria 3168 Australia H. J. Ryser Department of Mathematics ... A Characterization

JOURNAL OF

Algebra

J E D I T O R - I N - C H I E F : Graham Higman

J E D I T O R I A L B O A R D :

R. H . Bruck D . A. Buchsbaum P. Cohn J. Dieudonne Walter Feit A. Fröhlich A. W. Goldie J. A. Green Marshall Hall, Jr.

I. N . Herstein B. Huppert Nathan Jacobson E. Kleinfeld Saunders MacLane G . B. Preston H . J. Ryser J. Tits Guido Zappa

Volume 18 • 1971

ACADEMIC PRESS New York and London

Page 3: EDITOR-IN-CHIEF: Marshall Hall, Jr.G. B. Preston Department of Mathematics Monash University Clayton Victoria 3168 Australia H. J. Ryser Department of Mathematics ... A Characterization

C O P Y R I G H T © 1971, B Y A C A D E M I C PRESS, INC.

A L L R I G H T S RESERVED

N O PART OF THIS V O L U M E M A Y B E REPRODUCED IN A N Y

F O R M , B Y PHOTOSTAT, MICROFILM, B Y RETRIEVAL SYSTEM,

OR A N Y OTHER MEANS, W I T H O U T W R I T T E N PERMISSION

F R O M T H E PUBLISHERS.

A C A D E M I C PRESS, N E W Y O R K A N D L O N D O N

Bay^rhche Staat.;. othek München

P r i n t e d by t h e S t C a t h e r i n e Press, L t d . , Bruges, B e l g i u m

Page 4: EDITOR-IN-CHIEF: Marshall Hall, Jr.G. B. Preston Department of Mathematics Monash University Clayton Victoria 3168 Australia H. J. Ryser Department of Mathematics ... A Characterization

CONTENTS OF VOLUME 18

NUMBER 1, M A Y 1971

JEAN CARCANAGUE. Ideaux bilateres d'un anneau de polynomes non commutatifs sur un corps 1

M . A N D R E . Hopf Algebras with Divided Powers 19 S. M . GERSTEN. On Mayer-Vietoris Functors and Algebraic i£-Theory 51 A. R. M A G I D . Galois Groupoids 89 K E V I N M C C R I M M O N . A Characterization of the Radical of a Jordan

Algebra 103 MITSUHIRO T A K E U C H I . A Simple Proof of Gabriel and Popesco's

Theorem 112 M I C H A E L ASCHBACHER. Doubly Transitive Groups in Which the

Stabilizer of Two Points is Abelian 114 ANDREAS DRESS. The Ring of Monomial Representations I. Structure

Theory 137

NUMBER 2, J U N E 1971

M . J. K A L L A H E R A N D T . G . OSTROM. Fixed Point Free Linear Groups, Rank Three Planes, and Bol Quasifields 159

M . SLATER. Alternative Rings with D . C . C . , III 179 STANLEY E . P A Y N E . Nonisomorphic Generalized Quadrangles . . . 201 NICOLAE POPESCU. Le spectre ä gauche d'un anneau 213 B. A. F. WEHRFRITZ. Remarks on Centrality and Cyclicity in Linear

Groups 229 C. B. T H O M A S . Frobenius Reciprocity of Hermitian Forms . . . . 237 ZVONIMIR JANKO. The Nonexistence of a Certain Type of Finite

Simple Group 245 J. T . ARNOLD A N D J. W . BREWER. On Fiat Overrings, Ideal Trans-

forms and Generalized Transforms of a Commutative Ring . . 254 PETER CRAWLEY AND A L F R E D W . H A L E S . The Structure of Abelian

^-Groups Given by Certain Presentations. II 264 L A N C E W . S M A L L . Localization in PI-Rings 269 SIGURD ELLIGER. Interdirekte Summen von Moduln 271 ERWIN KLEINFELD. Generalization of Alternative Rings, 1 304 ERWIN KLEINFELD. Generalization of Alternative Rings, II . . . . 326 GUNTER F. PILZ. Direct Sums of Ordered Near-Rings 340

Page 5: EDITOR-IN-CHIEF: Marshall Hall, Jr.G. B. Preston Department of Mathematics Monash University Clayton Victoria 3168 Australia H. J. Ryser Department of Mathematics ... A Characterization

N U M B E R 3, J U L Y 1971

D O R I N POPESCU. Categories de Faisceaux 343

J. A. GERHARD. The Number of Polynomials of Idempotent Semi-groups 366

JAMES M C C O O L AND A L F R E D PIETROWSKI. On Free Products with

Amalgamation of Two Infinite Cyclic Groups 377 M A R I O FIORENTINI. On Relative Regulär Sequences 384 GABRIEL SABBAGH. Embedding Problems for Modules and Rings

with Application to Model-Companions 390 W I L L I A M R. N I C O . Homological Dimension in Semigroup Algebras 4 0 4 R. H . D Y E . On the Conjugacy Classes of Involutions of the Simple

Orthogonal Groups over Perfect Fields of Characteristic Two . 414 G I O V A N N I ZACHER. Determination of Locally Finite Groups with

Duals 426 P A U L C A M I O N , L . S. L E V Y , AND H . B. M A N N . Linear Equations over

a Commutative Ring 432 C E M A L K O C . On a Generalization of ClifTord Algebras 474 J O H N R. D U R B I N AND M E R R Y M C D O N A L D . Groups with a Character­

istic Cyclic Series 453 Earl J. T A F T . On the Splitting of Hopf Algebra Modules 461 A R O N SIMIS. Projective Modules of Certain Rings and the Existence

of Cyclic Basis 468 M A R T H A S M I T H . Group Algebras 477

N U M B E R 4, A U G U S T 1971

M . OJANGUREN AND R. SRIDHARAN. Cancellation of Azumaya Algebras 501 P A U L C H A B O T . Some Sylow 2-Groups W^hich Cannot Occur in Simple

Groups 506 K A R L E G I L AUBERT. Additive Ideal Systems 511

A. D O N E D D U . Sur les extensions quadratiques des corps non com-mutatifs 529

J. C. L E N N O X . On a Centrality Property of Finitely Generated Torsion Free Soluble Groups 541

D. B. C O L E M A N AND JOEL C U N N I N G H A M . Harrison's Witt Ring of a

Commutative Ring 549 K E V I N M C C R I M M O N . A Characterization of the Jacobson-Smiley

Radical 565 C. J. G R A D D O N . J^-Reducers in Finite Soluble Groups 574 BODO PAREIGIS. When Hopf Algebras Are Frobenius Algebras . . 588 B. L . OSOFSKY. On Twisted Polynomial Rings 597 S. B. C O N L O N . A Short Communication 608 A U T H O R INDEX 609

Page 6: EDITOR-IN-CHIEF: Marshall Hall, Jr.G. B. Preston Department of Mathematics Monash University Clayton Victoria 3168 Australia H. J. Ryser Department of Mathematics ... A Characterization

JOURNAL OF ALGEBRA 18, 588~596 (1971)

When Hopf Algebras Are Frobenius Algebras

BODO PAREIGIS

M a t h e m a t i s c h e s I n s t i t u t der Universität München 8 München J3, Schellingstrasse 2-8, G e r m a n y

C o m m u n i c a t e d by A . Fröhlich

Received August 19, 1970

R. Larson and M . Sweedler recently proved that for free finitely generated Hopf algebras H over a principal ideal domain R the following are equivalent: (a) H has an antipode and (b) H has a nonsingular left integral. In this paper 1 give a generalization of this result which needs only a minor restriction, which, for example, always holds if p i c ( R ) — 0 for the base ring R . A finitely generated projective Hopf algebra H over R has an antipode if and only if H is a Frobenius algebra with a Frobenius homomorphism ifi such that 2 h ( i ) t/j(h(2)) = tp(h) - 1 for all h e H . We also show that the antipode is bijective and that the ideal of left integrals is a free rank 1, i?-direct summand of H .

L In Ref. [4], Larson and Sweedler proved the equivalence for a finite-dimensional Hopf algebra over a principal ideal domain to have a (necessarily unique) antipode and to have a nonsingular left integral. It is easy to see that this result implies that a finite-dimensional Hopf algebra over a principal ideal domain is a Frobenius algebra, which generalizes the well-known fact that a group ring of a finite group is Frobenius as well as the result of Berkson [1], that the restricted universal enveloping algebra of a finite-dimensional restricted Lie algebra is Frobenius. This result has consequences with respect to a cohomology theory of Hopf algebras which will be exhibited in a subsequent paper.

In this paper we want to generalize the main result of [4] to arbitrary commutative rings R and finitely generated projective Hopf algebras H . We need only a slight restriction on H or on R y viz., pic(i?) = 0 to get the equivalence between the existence of an antipode and the fact that H is a Frobenius algebra with a Frobenius homomorphism I/J, such that Z(Ä) Ä(I)0(A<2>) = ' 1 f o r a 1 1 he H, where £<Ä) Ä ( i ) (X) Ä< 2 ) = A(h) is the

Sweedler notation. We do not know whether the imposed restrictions on R or H are necessary for the above result.1 In this context we also prove that the

1 See footnote at the end.

588

Page 7: EDITOR-IN-CHIEF: Marshall Hall, Jr.G. B. Preston Department of Mathematics Monash University Clayton Victoria 3168 Australia H. J. Ryser Department of Mathematics ... A Characterization

WHEN HOPF ALGEBRAS ARE FROBENIUS ALGEBRAS 589

antipode of a finitely generated projective Hopf algebra is bijective. This holds without any further restrictions.

Since integrals are also of interest in this general Situation, we shall prove that in a Hopf algebra H which is Frobenius with a Frobenius homomorphism I/J such that Ä(i)0(Ä(2)) = ${h) ' 1 for all he H the two-sided H ideal of left integrals is an iWree rank 1 i?-direct summand of H .

2. Let R be a commutative ring (associative with unit). All modules are assumed to be unitary R modules. All algebras are assumed to be associative R algebras with unit.

A c o a l g e b r a C is a module C together with homomorphisms A : C —> C ® C (the tensor product is taken over R ) y the diagonal, and e : C —> R y the counit or augmentation, such that

c — ^ — * c ® c

c®c^c®c®c commute where we identify C ® R , C, and R ® C. We adopt the Sweedler notation A ( c ) = Y , ( c ) c ( i ) ® c ( 2 ) a s explained in [7, p. 10].

A H o p f a l g e b r a H is an algebra H with structure maps [x : H ® H —• H and r) : R - + H , which is also a coalgebra with structure maps A : H ^ H ® H and € : H - + R such that A and e are algebra homomorphisms. As in [7, Proposition 3.1.1] one shows that fx and rj are coalgebra homomorphisms.

Let C be a coalgebra. A C r i g h t comodule is a module M together with a homomorphism ^ : M —• M ® C such that

M * >M®C M^M®C

M ® C ̂ > M ® C ® C M

commute, where we identify M and M (x) R . Here again we use the Sweedler notation x i m ) = m ( o ) ® m ( i ) • Observe that the ^( '̂s for i ^ 1 are elements in C, whereas the W(0)'s are in M .

Let // be a Hopf algebra. An H r i g h t H o p f m o d u l e is an H right module M which is also an H right comodule such that

x ( m h ) = £ m i 0 ) h { l ) ® m ( l ) h { 2 ) . ( m ) , ( h )

Page 8: EDITOR-IN-CHIEF: Marshall Hall, Jr.G. B. Preston Department of Mathematics Monash University Clayton Victoria 3168 Australia H. J. Ryser Department of Mathematics ... A Characterization

590 PAREIGIS

Let H be a Hopf algebra. Then h o m R ( H , H ) is an associative R algebra with unit 77c, if we define the multiplication by f * g :.== t x ( f ( x ) g ) A , i.e.,

f * g { h ) = Z(A)/ (^(I))#(2)) 17 > P- ^O, exercise 1]. The a n t i p o d e S of H is (if it exists) the two-sided inverse of the identity \ H of H in homÄ(//,

3* L E M M A 1. L e t A , B , a n d C be R m o d u l e s . I f C is finitely

generated a n d p r o j e c t i v e , t h e n X : hom(^4, B ® C ) —> hom(C* ® A , B ) w i t h

Kf)ic* ® a ) 0 ® c * ) f ( a ) " a n i s o m o r p h i s m .

P r o o f . X defines a natural transformation

hom(^, B ® — ) - + h o m ( - * ® A , B ) ,

which is an isomorphism for C — R . By [6, 4.11. Lemma 2] the above lemma holds.

PROPOSITION 1. L e t C be a f i n i t e l y generated p r o j e c t i v e R c o a l g e b r a a n d M be a n R m o d u l e . T h e n x M —>• M ® C defines a C r i g h t comodule if a n d o n l y if X ( x ) : C * ® M —• M defines a C* left m o d u l e , w h e r e X is defined as i n L e m m a 1.

P r o o f . C * is an R algebra by c*d*(c) = X(c) c*( cd)) ^*(^(2))- Assume X : M —> M ® C defines a C right comodule. Then

(Cl*c2*)m = £ ™<o)(*i*c2*0«<i)))

i m )

i m )

= Z C1*W(0)(^2*(^(1)))

= c^{c^m)

and

^ = Z m ( o A m d ) ) = m > (m)

so M is a C * left module. Now let M be a C * left module. The natural transformation

p : M ( g ) C ® D - > hom(C* ® Z>* M )

defined by /)(/« ® c ® d)(c* ® d*) = c*(c) d * { d ) m is an isomorphism for finitely generated projective modules C and £>, since it is an isomorphism for C = D = R [6, 4.11. Lemma 2]. So M ® C ® C hom(C* ® C * M ) for our finitely generated projective coalgebra C.

Page 9: EDITOR-IN-CHIEF: Marshall Hall, Jr.G. B. Preston Department of Mathematics Monash University Clayton Victoria 3168 Australia H. J. Ryser Department of Mathematics ... A Characterization

W H E N HOPF ALGEBRAS ARE FROBENIUS ALGEBRAS 591

Let x = ((x ® l) x - (1 ® J)x)(m) e M ® C ® C. Then ® ' 2*) =

c i * ( c 2 * m ) ~ ( c i*^2*) m = 0 for all C!*, c 2* e C * , so x = 0, i.e., x is coasso-

ciative. Furthermore, we have (1 ® <0x(m) = S(m) m ( o ) e ( m ( i ) ) = em = m , since € is the unit element in C * . So M is a C right comodule.

PROPOSITION 2. Le£ H be a finitely generated p r o j e c t i v e H o p f a l g e b r a w i t h a n t i p o d e S. Then H * is a n H r i g h t H o p f m o d u l e .

Proof. H * is an H * left module, so it is an H right comodule. We have

for g*9 h* e H * , and h e H and the comodule map x • H * —> H * ® H with

X(**) =Z<»> *<*o)® *(*!,-

£*A* = X (1)

and

(A) ( h * )

H * is also an H right module by A* • h = S{h) o A*, where (A o A*)(a) = h * ( a h ) for all fle£ For g*, A* e / / * , and a, 6 6 ff and x : ff* - * #* ® H hom(//*, //*), we have

X(A* • «)(**)(*) = ( S * ( h * • a ) ) { b )

(b)

= I |-*(*<D«(«ö)))A*(*ö)S(«<i>)) (a)(&)

= I («(3)^*)(*(i)5(«tt)))A*(*(«)S(«ü))) (a ) (b)

= Z ( ( % ) » l ^ * ) ( 4 % i ) ) ) (a)

= 1 ( ( ( « ( 2 ) »**)**) '«(DK*) (a)

= Z ((A(o)(ö(2) °^*)(A(*i))) ' *<!>)(*) ( a ) ( Ä * )

= Z ((*(*) ' fld))(fl(2) °<§r*)(A(*i)))(^) ( a ) ( A * )

= Z ((Ä*o) ' fl(i)k*(A*i)«(2)))W-( 0 ) ( Ä * )

Page 10: EDITOR-IN-CHIEF: Marshall Hall, Jr.G. B. Preston Department of Mathematics Monash University Clayton Victoria 3168 Australia H. J. Ryser Department of Mathematics ... A Characterization

592 PAREIGIS

This implies x(A* ' )̂ = £<a)U*) hfo) ' a d ) ® h * i ) a ( 2 ) which proves the proposition.

Let M and AT be ff right Hopf modules over a Hopf algebra ff with antipode S. We define an R module P ( M ) = { m e M \ x { m ) = m ® 1}. L e t / : M - > N be a module and comodule homomorphism. We define P ( f ) as restriction of/

to P ( M ) . Then # ( / ) ( « ) ) = X(/(m)) = ( / ® \ ) X { m ) = / ( m ) ® 1 € P(iV). Obviously P is a functor from the category of ff right Hopf modules to the category of R modules.

L E M M A 2. L e t M be a H o p f m o d u l e o v e r a H o p f a l g e b r a H with a n t i p o d e S. T h e n M ^ P ( M ) ® H as r i g h t H o p f m o d u l e s . F u r t h e r m o r e , P ( M ) is a n R d i r e c t s u m m a n d of M .

P r o o f . The natural injection P ( M ) —> M has a retraction M S W I H -

Now OL : P ( M ) ® ff-> Af and ß : P ( M ) ® H y defined by oc(m ® h ) = m h and ß(m) = Y*(m) m ( o ) S ( m d ) ) ® m ( 2 ) » a r e inverse R homomorphisms of each other. OL being an H module homomorphism, ß is an H module homo­morphism. Furthermore, xß(m) = (ß ® A)x(w) implies that ß and, conse-quently, also a is a comodule homomorphism.

PROPOSITION 3. L e t H be a finitely g e n e r a t e d p r o j e c t i v e H o p f a l g e b r a zvith a n t i p o d e S. T h e n P ( H * ) is a finitely g e n e r a t e d p r o j e c t i v e r a n k 1 R m o d u l e .

P r o o f . For each prime ideal p in R the isomorphism ff* ^ P(ff*) ® ff implies ffp* ^ P(ff*) p ® Ä ffp . Now ffp* ^ ffp as free finite-dimensional P p modules. So dim(P(ff*)p) = 1 for all prime ideals p in R . Thus, P(ff*) has rank 1. Furthermore, it is finitely generated projective as a direct summand

4* An R algebra ff is a F r o b e n i u s a l g e b r a if ff is a finitely generated projective R module and if there is an isomorphism 0 : H H ^ H H * , where we consider ff* as an ff left module via h o h * ( a ) = h * ( a h ) for all A e ff, A* G ff* [2]. 3> is called a F r o b e n i u s i s o m o r p h i s m . & ( \ ) = : 0 is a free generator of ff* as an ff left module called F r o b e n i u s h o m o m o r p h i s m . By [3, p. 220, (4)], 0 is also a free generator of ff* as an ff right module, where A* o : == h * { h a ) for all A* e ff*, and h y A G ff. This is a consequence of the proof that the

Z(™) m ( 0 ) 4 S ( ™ ( l ) ) e P ( M ) f o r

= Z w(o)S("*(i>) ® 1.

of ff*.

Page 11: EDITOR-IN-CHIEF: Marshall Hall, Jr.G. B. Preston Department of Mathematics Monash University Clayton Victoria 3168 Australia H. J. Ryser Department of Mathematics ... A Characterization

WHEN HOPF ALGEBRAS ARE FROBENIUS ALGEBRAS 593

conditions for a Frobenius algebra are independent of the choice of the sides, i.e., H H ^ H H * implies H H ^ H H * (if ff is finitely generated and projective). \jj is unique up to multiplication with an invertible element of ff [5, Satz 1].

If a Frobenius algebra ff has an augmentation e, then the element TV with A~ o i/j — e is called a left n o r m of ff. A left norm N is also unique up to multiplication with an invertible element of ff from the right side. We have { ( h N ) o i/j)(a) = ifj{ahN) = ( N ° i/j)(ah) = € ( a h ) = e ( a ) e ( h ) = ( N o </0(a)e(A) = ( e ( h ) N o $ ) { a ) for all a, A e ff. This implies

AAf = e ( h ) N for all A e ff.

A n element # e ff of an augmented algebra ff with A<z = e(A)a for all A e ff is called a /e// i n t e g r a l of the augmented algebra H . So a left norm is in particular a left integral.

PROPOSITION 4. L e t H be a finitely g e n e r a t e d p r o j e c t i v e H o p f a l g e b r a with a n t i p o d e S. T h e n S is b i j e c t i v e .

P r o o f . S is injective: Let 6 : H * ^ P ( H * ) ® H be the isomorphism of H right modules defined by Proposition 2 and Lemma 2. Let £(A) — 0 and p®aeP(H*) ® H y then

d~\p ® a h ) = 6-\p ® a ) • A = 5(A) o ® a) = 0.

So p ® a h = 0 for all >̂ ® a e P(//*) ® ff and the P endomorphism of P(H*) ® ff, defined by the multiplication with A, is the zero endomorphism.

Let m be a maximal ideal of R . If we localize with respect to m, we get an R m Hopf algebra ffm with antipode Sm . Furthermore, (ff*) m ^ (#m)*> where the second * means dualization with respect to R m . Also, P { M ) m ^ P ( M m ) for an ff Hopf module M since P ( M ) is the kernel of x — I M ® V and localization is an exact functor. So (P(ff *) ® ff)m ^ P((ffm)*) ® / ? m -^ m . As in Proposition 3, P((ffm)*) is a free P m module on one generator so P((ffm)*) ® R ffm ^ ffm . The multiplication of ffm with h on the right is a zero morphism for all maximal ideals m of R . So multiplication of ff with h on the right must be zero which implies A — 0. So S is injective.

S is surjective: Let 0 —>- ff —> ff —> £) — > 0 be an P exact sequence. Then for all maximal ideals m Q P, we have 0 —> ffm -> ffm -> Q m — > 0 is P m exact. So ffm/mffni ffm/mffTU —• ö m / m ö m 0 is P m / m P m exact, where T is the antipode of the P m / m P m Hopf algebra ffm/mffm . Since this Hopf algebra is finitely generated, T is injective so that T is bijective and ö m / m ö m = 0* Since g and ^ m are finitely generated, £ ) m = 0 for all maximal ideals m C R . So Q = 0 and 5 is surjective.

T H E O R E M 1. L e t ff be a finitely g e n e r a t e d p r o j e c t i v e H o p f a l g e b r a with

Page 12: EDITOR-IN-CHIEF: Marshall Hall, Jr.G. B. Preston Department of Mathematics Monash University Clayton Victoria 3168 Australia H. J. Ryser Department of Mathematics ... A Characterization

594 PAREIGIS

a n t i p o d e S. L e t P(ff *) _ i R as R modules. T h e n ff is a F r o b e n i u s a l g e b r a w i t h a F r o b e n i u s homomorphism $ such that

Z*(i#ti))=r<*)l M all h e H . ( h )

P r o o f . By Proposition 2 and Lemma 2 there exists an isomorphism ff* P(ff*) ® ff of ff right modules where (A* • h ) ( a ) = h * ( a S ( h ) ) or h * - h = S ( h ) o A* is the definition of the module structure on ff*. Since P(ff *) ^ P, let 0 : ff* _^ ff be an isomorphism of ff right modules. Define 0 = 0-i<>-i : ff ^ ff*, where we use Proposition 4. Then 0 ( h a ) = e-*S-\ha) = fl-^S-^S-^A)) = fl-i(^a)) • S-X(A) = *(a) • *S_1(A) = A o 0 ( a ) > so ff is a Frobenius algebra. Before we prove the formula on the Frobenius homomorphism we prove the following:

L E M M A 3. L e t ff be a finitely g e n e r a t e d p r o j e c t i v e H o p f a l g e b r a with a n t i p o d e S with P(ff*) P. L e t 0 : ff _< ff* be t h e F r o b e n i u s isomorphism c o n s t r u c t e d above a n d let ip = 0 ( 1 ) be a F r o b e n i u s h o m o m o r p h i s m . T h e n ift e P(ff*) a n d ift is a left i n t e g r a l i n ff*.

Proof. 0 ( \ ) = ifj implies S 6 ( i p ) = 1 and also 0(</>) = 1. 0 is a comodule homomorphism so E 0(0<o>) ® 0<D = (0 ® l)xW0 = ^WO) = ^0) = 1 ® 1 = Q{xjj) ® 1. 0 ® 1 being an isomorphism this implies x(<A) = <A ® 1 soi/reP(ff*). Now

A* (ZA ( 1 ) ^(A ( 2 ) ) ) =EA*(A ( l ) )0 (A ( 2 ) )

= ( * * # ( * )

= Itoo»(*) **(*&>) (by(i)) (<A)

= 0(A)A*(1)

= A*(0(A)1) for all A G ff and A* G ff*. This implies

Z A ( 1 ) ^(A ( 2 ) ) = </<A)l for all A G ff. ( h )

This also means (A*</r)(A) = A*(l)</f(A), which proves that 0 is a left integral in ff*.

COROLLARY 1. L e t R be a c o m m u t a t i v e r i n g with pic(P) = 0. T h e n e a c h finitely g e n e r a t e d p r o j e c t i v e H o p f a l g e b r a with a n t i p o d e is a F r o b e n i u s a l g e b r a .

Page 13: EDITOR-IN-CHIEF: Marshall Hall, Jr.G. B. Preston Department of Mathematics Monash University Clayton Victoria 3168 Australia H. J. Ryser Department of Mathematics ... A Characterization

W H E N HOPF ALGEBRAS ARE FROBENIUS ALGEBRAS 595

5* L E M M A 4. L e t P be a finitely generated p r o j e c t i v e R m o d u l e and l e t f : P —• P be a n e p i m o r p h i s m . Then f is a n i s o m o r p h i s m .

Proof. The sequences

0 - + A - > P - U P - > 0 ,

0 —> A m —> P m — > P m —• 0,

0 -> A m J Y x A m - > P m / m P m -4 P m / m P m -> 0

are all split exact. But / is an isomorphism by reasons of dimension so A m l m A m = 0. A m is finitely generated so that A m = 0 for all maximal ideals m C P, so that A — 0 and/is an isomorphism.

T H E O R E M 2. Le£ H be a H o p f a l g e b r a and a Frobenius a l g e b r a w i t h a Frobenius h o m o m o r p h i s m ift such t h a t £ (A) A(1)^(A(2)) = ^(A)l /or #// h e H . Then H has a n a n t i p o d e S.

Proof. We define S : H - > H by S(A) = Z ( N ) N^hN®), where iVis a left norm, i.e., ATo $ = € . Then

Z h ( D S ( h ( 2 ) ) = I h(i)N(i)*l>(h(2)N{2)) <A) ( h ) { N )

= < h ) l

= V < ( h )

for all he F l b y definition of N . So 1 * S = 77c

Now homÄ(ff, ff) is an associative P algebra with multiplication f * g = H>(f®g)A. HomÄ(ff, ff) is also finitely generated and projective since ff is. The map

hom^ff, ff)9/H>/*Se hom^ff, ff)

is an P epimorphism for (/* 1) * S = / * (1 * S) = /* rje = / . By the preceeding lemma, — * 5 is an isomorphism with inverse map — * 1. So S * 1 = * $ * 1 = T)€, i.e., *S is an antipode.

T H E O R E M 3. L e t ff be a H o p f a l g e b r a and a Frobenius a l g e b r a . Then t h e t w o - s i d e d i d e a l of left i n t e g r a l s he H ( w i t h a h = e ( a ) h f o r a l l a e H ) is a free R d i r e c t summand of H of r a n k 1 w i t h basis { N } y a left norm of ff.

Proof. Let h be a left integral, then i/j(ah) = i/j(e(a)h) = ifj(h)€(a) = W W a N ) = <l>(aij>(h)N) for all a e H , so that h o 0 = 0(Ä)AT o $ or A = flA)iV.

Page 14: EDITOR-IN-CHIEF: Marshall Hall, Jr.G. B. Preston Department of Mathematics Monash University Clayton Victoria 3168 Australia H. J. Ryser Department of Mathematics ... A Characterization

596 PAREIGIS

Furthermore, € is an epimorphism since er) = l R . So e* : R —> ff* is a

monomorphism. Also p : R—> ff* ^ ff is a monomorphism. But e*(r)(A) —

re*(l)(A) = re(h) = i / j ( h r N ) , so that p(r) = r N . Since p is injective,

P 9 r e ff is injective. Thus, RN is free of rank 1.

Finally, ff 9 A h -> i f j ( h ) N e RN is a retraction for the inclusion i W C ff,

in which case i W splits off as a direct summand.

By Theorem 1, I/J is a left integral and H 3 h\-> h o ifj e ff* as well as

H3h\->i/johe ff* are isomorphisms, so that 0 is a nonsingular left integral

in ff*. Now let pic(JR) = 0. If ff is a finitely generated projective Hopf

algebra with an antipode, then so is ff*. Furthermore, ff** —< ff as Hopf

algebras with antipode and also ff has a nonsingular left integral. This

implies the main result of (see remark on page 588) [4] for the case that R

is a principal ideal domain, for then pic(P) = 0 holds.

N o t e added i n proof. P . Gabriel gave an example of a finitely generated projective Hopf algebra with antipode which is not a Frobenius algebra, showing that pic(i?) = 0 is a necessary condition for Corollary 1. We have however the following

T h e o r e m . Let H b e a finitely generated projective Hopf algebra over a commutative ring R . H has an antipode if and only if H is a quasi Frobenius algebra and ff* has a finite set of generators ipi i/rn as an H left module ( h ° h * ( a ) = h * ( a h ) ) such that for all k = 1,..., n

£ A(i>lMA<.>) = U h ) \ for all h e ff.

Here a quasi Frobenius algebra is taken in the sense of B. Müller, Quasi-Frobenius-Erweiterungen, M a t h . Z e i t s c h r . 85, 345-368 (1964). This theorem guarantees that the cohomology theory of Hopf algebras can be developed without the restrictive condition pic(i?) = 0.

REFERENCES

1. A . BERKSON, Proc. Amer. Math. Soc. 15 (1964), 14, 15.

2. F. K A S C H , Sitzungsber. Heidelberg. Akad. Wiss. (1960/61), 89-109 .

3. F. K A S C H , Math. Z. 77 (1961), 219-227.

4. R . G . L A R S O N AND M . E. SWEEDLER, Amer. J. Math. 91 (1969), 75-94.

5. B. PAREIGIS, Ann. Math. 153 (1964), 1-13.

6. B. PAREIGIS, "Kategorien und Funktoren," Teubner, Stuttgart, 1969. 7. M . E. SWEEDLER, "Hopf Algebras," W. A. Benjamin Inc., New York, 1969.