ee 451 - velocity kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · angular vs...

31
Outline Velocity Kinematics EE 451 - Velocity Kinematics H.I. Bozma Electric Electronic Engineering Bogazici University November 11, 2019 H.I. Bozma EE 451 - Velocity Kinematics

Upload: others

Post on 13-Mar-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

EE 451 - Velocity Kinematics

H.I. Bozma

Electric Electronic Engineering

Bogazici University

November 11, 2019

H.I. Bozma EE 451 - Velocity Kinematics

Page 2: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

Velocity KinematicsIntroductionAngular Velocity: Fixed AxisSkew-Symmetric MatricesJacobianAngular VelocityLinear VelocityTool VelocityAnalytic JacobianSingularitiesForce-Torque RelationshipsInverse Velocity

H.I. Bozma EE 451 - Velocity Kinematics

Page 3: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

Introduction

Angular Velocity: Fixed Axis

Skew-Symmetric Matrices

Jacobian

Angular Velocity

Linear Velocity

Tool Velocity

Analytic Jacobian

Singularities

Force-Torque Relationships

Inverse Velocity

Velocity Kinematics

◮ Velocity in Configuration space C ⇔ Velocity in Workspace W

◮ Representation of velocities◮ Revolute – angular◮ Prismatic – linear

◮ Angular velocity about a fixed axis◮ Rotation around a moving axis

◮ Instantaneous transformations btw n-vector joint velocities inC ⇔ 6-vector of angular and linear velocities in W →Jacobian (6-n matrix)

H.I. Bozma EE 451 - Velocity Kinematics

Page 4: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

Introduction

Angular Velocity: Fixed Axis

Skew-Symmetric Matrices

Jacobian

Angular Velocity

Linear Velocity

Tool Velocity

Analytic Jacobian

Singularities

Force-Torque Relationships

Inverse Velocity

Pure Rotation About Fixed Axis

◮ Pure rotation → Every point moves in a circle.

◮ Centers of circles – On the axis of rotation

◮ Perpendicular to the axis – θ

◮ Angular velocity ω = θk whereθ = dθ

dtand

k - unit vector in the axis of rotation

◮ Linear velocity v = ω × r

r - Vector from origin (axis of rotation) to the point

H.I. Bozma EE 451 - Velocity Kinematics

Page 5: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

Introduction

Angular Velocity: Fixed Axis

Skew-Symmetric Matrices

Jacobian

Angular Velocity

Linear Velocity

Tool Velocity

Analytic Jacobian

Singularities

Force-Torque Relationships

Inverse Velocity

Goal

◮ Goal – The motion of a moving frame.◮ The motion of the origin of the frame◮ The rotational motion of the frame’s axes

H.I. Bozma EE 451 - Velocity Kinematics

Page 6: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

Introduction

Angular Velocity: Fixed Axis

Skew-Symmetric Matrices

Jacobian

Angular Velocity

Linear Velocity

Tool Velocity

Analytic Jacobian

Singularities

Force-Torque Relationships

Inverse Velocity

Angular vs Linear Velocity

◮ Attach a frame rigidly to each object with an orientation

◮ Each point on the object – Same angular velocity!

◮ Angular velocity – Property of the frame attached to a body

◮ Linear velocity – Property of the point, but rather the frame

H.I. Bozma EE 451 - Velocity Kinematics

Page 7: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

Introduction

Angular Velocity: Fixed Axis

Skew-Symmetric Matrices

Jacobian

Angular Velocity

Linear Velocity

Tool Velocity

Analytic Jacobian

Singularities

Force-Torque Relationships

Inverse Velocity

Definition and Properties

◮ Linearity

◮ Relation to cross product

◮ Similarity transformation

◮ Quadratic form

H.I. Bozma EE 451 - Velocity Kinematics

Page 8: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

Introduction

Angular Velocity: Fixed Axis

Skew-Symmetric Matrices

Jacobian

Angular Velocity

Linear Velocity

Tool Velocity

Analytic Jacobian

Singularities

Force-Torque Relationships

Inverse Velocity

Derivative of a Rotation Matrix

ddθRk,θ = S(k)Rk,θ

H.I. Bozma EE 451 - Velocity Kinematics

Page 9: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

Introduction

Angular Velocity: Fixed Axis

Skew-Symmetric Matrices

Jacobian

Angular Velocity

Linear Velocity

Tool Velocity

Analytic Jacobian

Singularities

Force-Torque Relationships

Inverse Velocity

Jacobian

◮ n link robotic system – q1, . . . , qn

◮ T 0n =

[

R0n(t) o0n(t)0 1

]

◮ As robot moves around, qi , R0n and o0n – functions of time

◮ Angular velocity of end effector ω0n(t) – Defined by

S(ω0n(t)) = R0

n(t)(R0n(t))

T

◮ Linear velocity of end effector v0n = o0n

Goal: Find ξ =

[

v0nω0n

]

= Jq where J =

[

JvJω

]

⇐ Jacobian

H.I. Bozma EE 451 - Velocity Kinematics

Page 10: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

Introduction

Angular Velocity: Fixed Axis

Skew-Symmetric Matrices

Jacobian

Angular Velocity

Linear Velocity

Tool Velocity

Analytic Jacobian

Singularities

Force-Torque Relationships

Inverse Velocity

Angular Velocity about a Moving Axis

◮ Time varying rotation matrix R(t), R(t) ∈ SO(3)

H.I. Bozma EE 451 - Velocity Kinematics

Page 11: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

Introduction

Angular Velocity: Fixed Axis

Skew-Symmetric Matrices

Jacobian

Angular Velocity

Linear Velocity

Tool Velocity

Analytic Jacobian

Singularities

Force-Torque Relationships

Inverse Velocity

Addition of Angular Velocities

R0n = R0

1R12 . . .R

n−1n

R0n = S(ω0

0,n)R0n

ω00,n = ω0

0,1 + R01ω

11,2 + R0

2ω22,3 + . . .+ R0

n−1ωn−1n−1,n

= ω00,1 + ω0

1,2 + ω02,3 + . . .+ ω0

n−1,n

H.I. Bozma EE 451 - Velocity Kinematics

Page 12: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

Introduction

Angular Velocity: Fixed Axis

Skew-Symmetric Matrices

Jacobian

Angular Velocity

Linear Velocity

Tool Velocity

Analytic Jacobian

Singularities

Force-Torque Relationships

Inverse Velocity

Angular Velocity - Revolute Joint

If revolute joint, qi = θi with axis of rotation zi−1

Let ωi−1i – Angular velocity of joint i wrt oi−1xi−1yi−1zi−1 Note

that

ωi−1i = qiz

i−1i−1 = qik where k =

001

H.I. Bozma EE 451 - Velocity Kinematics

Page 13: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

Introduction

Angular Velocity: Fixed Axis

Skew-Symmetric Matrices

Jacobian

Angular Velocity

Linear Velocity

Tool Velocity

Analytic Jacobian

Singularities

Force-Torque Relationships

Inverse Velocity

Angular Velocity – Prismatic Joint

If prismatic joint, qi = di with axis of translation zi−1

ωi−1i = 0

H.I. Bozma EE 451 - Velocity Kinematics

Page 14: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

Introduction

Angular Velocity: Fixed Axis

Skew-Symmetric Matrices

Jacobian

Angular Velocity

Linear Velocity

Tool Velocity

Analytic Jacobian

Singularities

Force-Torque Relationships

Inverse Velocity

Angular Velocity - End Effector

Let ρi =

{

1 if revolute0 otherwise

ω0n = ω0

0,1 + ω01,2 + ω0

2,3 + . . .+ ω0n−1,n

= ω00,1 + R0

1ω11,2 + R0

2ω22,3 + . . .+ R0

n−1ωn−1n−1,n

= ρ1q1k + ρ2R01 q2k + . . .+ ρnR

0n−1qnk

= ρ1q1k + ρ2q2R01k + . . .+ ρnqnR

0n−1k

=

n∑

i=1

ρi qiz0i−1 =

n∑

i=1

ρiz0i−1qi

H.I. Bozma EE 451 - Velocity Kinematics

Page 15: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

Introduction

Angular Velocity: Fixed Axis

Skew-Symmetric Matrices

Jacobian

Angular Velocity

Linear Velocity

Tool Velocity

Analytic Jacobian

Singularities

Force-Torque Relationships

Inverse Velocity

Angular Velocity Jacobian

Note that Jω is a 3 × n matrix.

Jω =[

ρ1z00 . . . ρnz

0n−1

]

Equivalently,

Jω =[

ρ1k ρ2R01k . . . ρn−1R

0n−2k ρnR

0n−1k

]

H.I. Bozma EE 451 - Velocity Kinematics

Page 16: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

Introduction

Angular Velocity: Fixed Axis

Skew-Symmetric Matrices

Jacobian

Angular Velocity

Linear Velocity

Tool Velocity

Analytic Jacobian

Singularities

Force-Torque Relationships

Inverse Velocity

Linear Velocity of a Point p Attached to a Frame

Assume: p – Attached rigidly to o1x1y1z1

◮ Case 1: o1x1y1z1 is rotating wrt o0x0y0z0

◮ Case 2: Motion of o1x1y1z1 wrt o0x0y0z0 - Defined by

H01 (t) =

[

R01 (t) o01(t)0 1

]

H.I. Bozma EE 451 - Velocity Kinematics

Page 17: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

Introduction

Angular Velocity: Fixed Axis

Skew-Symmetric Matrices

Jacobian

Angular Velocity

Linear Velocity

Tool Velocity

Analytic Jacobian

Singularities

Force-Torque Relationships

Inverse Velocity

Linear Velocity - End effector

◮ Method 1: If kinematic transformation matrix T 0n (q) exists

o0n =n

i=1

δo0nδqi

qi

H.I. Bozma EE 451 - Velocity Kinematics

Page 18: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

Introduction

Angular Velocity: Fixed Axis

Skew-Symmetric Matrices

Jacobian

Angular Velocity

Linear Velocity

Tool Velocity

Analytic Jacobian

Singularities

Force-Torque Relationships

Inverse Velocity

Linear Velocity - Individual Joints

◮ Prismatic joint:

◮ Revolute joint:

◮ Method 2:

Jvi =

{

z0i−1 Prismatic jointz0i−1 × (on − oi−1) Revolute joint

H.I. Bozma EE 451 - Velocity Kinematics

Page 19: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

Introduction

Angular Velocity: Fixed Axis

Skew-Symmetric Matrices

Jacobian

Angular Velocity

Linear Velocity

Tool Velocity

Analytic Jacobian

Singularities

Force-Torque Relationships

Inverse Velocity

Linear Velocity - Revolute Joint

H.I. Bozma EE 451 - Velocity Kinematics

Page 20: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

Introduction

Angular Velocity: Fixed Axis

Skew-Symmetric Matrices

Jacobian

Angular Velocity

Linear Velocity

Tool Velocity

Analytic Jacobian

Singularities

Force-Torque Relationships

Inverse Velocity

Jacobian – Summary

J =

[

Jv1 . . . JvnJω1

. . . Jωn

]

where

Jvi =

{

z0i−1 × (on − oi−1) if revolutez0i−1 if prismatic

Jωi=

{

z0i−1 if revolute0 if prismatic

H.I. Bozma EE 451 - Velocity Kinematics

Page 21: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

Introduction

Angular Velocity: Fixed Axis

Skew-Symmetric Matrices

Jacobian

Angular Velocity

Linear Velocity

Tool Velocity

Analytic Jacobian

Singularities

Force-Torque Relationships

Inverse Velocity

Using Velocities

◮ Linear velocity: v(t). After time δt:o0(t + δt) = o0(t) + v(t) ∗ δt

◮ Angular velocity: ω(t). After time δt: δθ = ω(t)δt

◮ Let δθ =[

δθx δθy δθz]T

◮ δR = Rz(δθz)Ry (δθy )Rx(δθx)◮ R(t + δt) = δRR(t)

Note R = S(ω)R is not an orthogonal matrix! Thus, we cannotuse it directly. However, recall that it involves a skew-symmetricmatrix that defines ω.

H.I. Bozma EE 451 - Velocity Kinematics

Page 22: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

Introduction

Angular Velocity: Fixed Axis

Skew-Symmetric Matrices

Jacobian

Angular Velocity

Linear Velocity

Tool Velocity

Analytic Jacobian

Singularities

Force-Torque Relationships

Inverse Velocity

2 DOF RR Planar Robot

H.I. Bozma EE 451 - Velocity Kinematics

Page 23: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

Introduction

Angular Velocity: Fixed Axis

Skew-Symmetric Matrices

Jacobian

Angular Velocity

Linear Velocity

Tool Velocity

Analytic Jacobian

Singularities

Force-Torque Relationships

Inverse Velocity

3 DOF RRR Robot

H.I. Bozma EE 451 - Velocity Kinematics

Page 24: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

Introduction

Angular Velocity: Fixed Axis

Skew-Symmetric Matrices

Jacobian

Angular Velocity

Linear Velocity

Tool Velocity

Analytic Jacobian

Singularities

Force-Torque Relationships

Inverse Velocity

Tool Velocity

◮ TI transformation T 6

tool =

[

R d

0 1

]

◮ ωtool = ω6 → ωtooltool = RTω66

◮ vtooltool = vtool6 + ωtool6 × r tool

H.I. Bozma EE 451 - Velocity Kinematics

Page 25: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

Introduction

Angular Velocity: Fixed Axis

Skew-Symmetric Matrices

Jacobian

Angular Velocity

Linear Velocity

Tool Velocity

Analytic Jacobian

Singularities

Force-Torque Relationships

Inverse Velocity

End Effector Frame

◮ X =

[

d(q)α(q)

]

∈ R3 × SO(3)

◮ X = Ja(q)q ⇐ Analytic Jacobian

◮ Assuming Euler angles R = Rz,φRy ,θRz,ψ,

Ja(q) =

[

I 00 B−1(α)

]

J(q) =

[

I 00 B−1(α)

] [

d

ω

]

where B(α) =

cosψ sin θ − sinψ 0sinψ sin θ cosψ 0cos θ 0 1

H.I. Bozma EE 451 - Velocity Kinematics

Page 26: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

Introduction

Angular Velocity: Fixed Axis

Skew-Symmetric Matrices

Jacobian

Angular Velocity

Linear Velocity

Tool Velocity

Analytic Jacobian

Singularities

Force-Torque Relationships

Inverse Velocity

Singularities - Singular Configurations

◮ ξ = J(q)q

◮ J(q) =[

J1(q) J2(q) . . . Jn(q)]

→ ξ =∑n

i=1 Ji (q)qi◮ J(q) is a 6× n matrix → Rank(J(q)) ≤ min(6, n)

◮ End effector velocity ={

Arbitrary if Rank(J(q)) = 6

◮ Rank(J(q)) is time-varying!

◮ q ∈ C for which Rank(J(q)) < maxRank(J(q)) ← Singularity

◮ For 6× 6 matrix, det(J(q)) = 0

H.I. Bozma EE 451 - Velocity Kinematics

Page 27: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

Introduction

Angular Velocity: Fixed Axis

Skew-Symmetric Matrices

Jacobian

Angular Velocity

Linear Velocity

Tool Velocity

Analytic Jacobian

Singularities

Force-Torque Relationships

Inverse Velocity

Problems of Singularities?

◮ Certain velocities are not attainable

◮ Bounded end-effector velocities – Unbounded joint velocities

◮ Often correspond to points on the boundary of workspace

◮ Often correspond to points unreachable via smallperturbations of link parameters

H.I. Bozma EE 451 - Velocity Kinematics

Page 28: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

Introduction

Angular Velocity: Fixed Axis

Skew-Symmetric Matrices

Jacobian

Angular Velocity

Linear Velocity

Tool Velocity

Analytic Jacobian

Singularities

Force-Torque Relationships

Inverse Velocity

Decoupling of Singularities

◮ Arm singularities - Singularities resulting from the arm motion

◮ Wrist singularities - Singularities resulting from the wristmotion

H.I. Bozma EE 451 - Velocity Kinematics

Page 29: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

Introduction

Angular Velocity: Fixed Axis

Skew-Symmetric Matrices

Jacobian

Angular Velocity

Linear Velocity

Tool Velocity

Analytic Jacobian

Singularities

Force-Torque Relationships

Inverse Velocity

RR Planar Robot

H.I. Bozma EE 451 - Velocity Kinematics

Page 30: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

Introduction

Angular Velocity: Fixed Axis

Skew-Symmetric Matrices

Jacobian

Angular Velocity

Linear Velocity

Tool Velocity

Analytic Jacobian

Singularities

Force-Torque Relationships

Inverse Velocity

Force-Torque Relationships

◮ Interaction with the environment → Forces and moments atthe end effector F = [FxFyFznxnynz ]

T

◮ [FxFyFznxnynz ] → Joint torques τ where τ = J(q)TF

H.I. Bozma EE 451 - Velocity Kinematics

Page 31: EE 451 - Velocity Kinematicsisl.ee.boun.edu.tr/courses/ee451/lectures/ch4_kin.pdf · Angular vs Linear Velocity Attach a frame rigidly to each object with an orientation Each point

Outline

Velocity Kinematics

Introduction

Angular Velocity: Fixed Axis

Skew-Symmetric Matrices

Jacobian

Angular Velocity

Linear Velocity

Tool Velocity

Analytic Jacobian

Singularities

Force-Torque Relationships

Inverse Velocity

Inverse Velocity Problem

◮ Problem Statement: Given ξ, find q such that ξ = J(q)q

◮ If J(q) is invertible (square and full rank), q = J(q)−1ξ

◮ If n 6= 6, J(q) is not invertible !

◮ If ξ ∈ Span(J(q)) ↔ Rank(J(q)) = Rank([J(q) | ξ])(Gaussian Elimination)

◮ If n > 6, Pseudoinverse J+ = (JT J)−1J → q = J+(q)−1ξ

H.I. Bozma EE 451 - Velocity Kinematics