ee1320 instrumentation amplifiers

28
Challenge the future Delft University of Technology Lecture 4: Instrumentation Amplifiers EE1320: Measurement Science Dr. ir. Michiel Pertijs, Electronic Instrumentation Laboratory May 14, 2013

Upload: tu-delft-opencourseware

Post on 06-May-2015

768 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Ee1320 instrumentation amplifiers

Challenge the future

DelftUniversity ofTechnology

Lecture 4:Instrumentation Amplifiers

EE1320: Measurement Science

Dr. ir. Michiel Pertijs, Electronic Instrumentation Laboratory

May 14, 2013

Page 2: Ee1320 instrumentation amplifiers

2Measurement Science (EE1320) – Lecture 4

Course program 2013

week date topic

4.1 Tu 23/4 #1 intro measurements and meas. systems

Fr 26/4 #2 sensors

4.3 Tu 7/5 #3 sensor readout and signal conditioning

4.4 Tu 14/5 #4 instrumentation amplifiers

We 15/5 intermediate test

4.5 Tu 21/5 #5 analog-to-digital converters

4.6 We 29/5 #6 measurement instruments I

4.7 Tu 4/6 #7 measurement instruments II

We 5/6 intermediate test

4.8 Tu 11/6 tutorial

4.11 We 3/7 final exam

Lecturer: dr. ir. Michiel Pertijs

room HB 15.050, [email protected], 015-2786823

Page 3: Ee1320 instrumentation amplifiers

3Measurement Science (EE1320) – Lecture 4

sensoranalog-to-

digitalconversion

DATA ACQUISITION

signalconditioning

measurementobject

Last time… signal conditioning

• Signal conditioning needed to adjust output signal of the sensor

to the input of the ADC

• Opamps are suitable building blocks for sensor readout

• non-inverting amplifier, transimpedance amplifier, inverting amplifier,

charge amplifier

• Opamp non-ideal properties influence the transfer

and sometimes have to be compensated for

• offset voltage, bias current, offset current

Page 4: Ee1320 instrumentation amplifiers

4Measurement Science (EE1320) – Lecture 4

Today: bridge circuits and

instrumentation amplifiers

• Bridge circuits with resistors

• Differential and common-mode signals

• Common-mode rejection

• Opamp difference amplifier

• 3-opamp instrumentation amplifier

Page 5: Ee1320 instrumentation amplifiers

5Measurement Science (EE1320) – Lecture 4

Overview study material

• Slides: Wheatstone bridge

• Regtien 1.2: common-mode rejection

• Regtien 12.1.4, 12.1.5: difference- en instrumentation amplifiers

Page 6: Ee1320 instrumentation amplifiers

6Measurement Science (EE1320) – Lecture 4

Balance measurements

?1 1

1

Page 7: Ee1320 instrumentation amplifiers

7Measurement Science (EE1320) – Lecture 4

The Wheatstone bridge

• Known resistors R1, R2, R3

Unknown resistor R4

• Galvanometer G measures current I due to unbalance

• Point of balance (I = 0) if

Sir Charles Wheatstone(1802 – 1875)

2

314

3

2

4

1

RRR

RRR

RR =⇒=

?

Page 8: Ee1320 instrumentation amplifiers

8Measurement Science (EE1320) – Lecture 4

The Wheatstone bridge

• With voltage readout• Left divider:

• Right divider:

• Output voltage:

bL URR

RU

41

4

+=

bR URR

RU

32

3

+=

( )( ) b

LRo

URRRR

RRRR

UUU

⋅++

−=

−=

4132

4231

Page 9: Ee1320 instrumentation amplifiers

9Measurement Science (EE1320) – Lecture 4

The Wheatstone bridge

• Balance measurement: let R2 = R3 = R ⇒

Uo > 0 ⇒ R4 < R1 Uo < 0 ⇒ R4 > R1

( )( ) b

LRo

URRRR

RRRR

UUU

⋅++

−=

−=

4132

4231

( ) bo URRRR

U ⋅+−=

41

41

2

?

Page 10: Ee1320 instrumentation amplifiers

10Measurement Science (EE1320) – Lecture 4

Resistive sensor

in a Wheatstone bridge

bL UU21=

bbR URR

URRRR

U ⋅

∆+≅∆+∆+=

21

21

2

bLRo URR

UUU4∆≅−=

• Ratiometric measurement: Uo measured relative to Ub

(Uo / Ub) is measure for ∆R / R

• Absolute value of Ub is not important!

RR

UU

b

o

4∆≅⇒

Page 11: Ee1320 instrumentation amplifiers

11Measurement Science (EE1320) – Lecture 4

Bridge configurations

RR

UU

b

o

4∆≅

RR

UU

b

o

2∆≅

RR

UU

b

o ∆≅

quarter bridge half bridge full bridge

Page 12: Ee1320 instrumentation amplifiers

12Measurement Science (EE1320) – Lecture 4

Example bridge configurations: weighing scale with strain gauges

• quarter, half, full?

• Temperature effect?

Zie ook college 1

R

R Lk

R L∆ ∆= ⋅

Page 13: Ee1320 instrumentation amplifiers

13Measurement Science (EE1320) – Lecture 4

Readout of bridge circuits

• Here, signal-conditioning takes care of:

• converting the differential signal

to a signal referenced to ground (single-ended signal)

• amplification

• readout of the bridge without significantly loading it

differential signal single-ended signal

signalconditioning

analog-to-digital

converter

Page 14: Ee1320 instrumentation amplifiers

14Measurement Science (EE1320) – Lecture 4

Differential and common-mode

signals

• Differential signal:

• Common-mode signal:

bLRd URR

UUU∆=−=

22bLR

c

UUUU =+=

2d

cL

UUU −=

2d

cR

UUU +=

Regtien 1.2

Page 15: Ee1320 instrumentation amplifiers

15Measurement Science (EE1320) – Lecture 4

Differential and common-mode

signals

• UL = 1 V Ud = UR = 4 V Uc =

• UL = -4 V Ud =UR = 2 V Uc =

• Uc = 3 V UL =Ud = 1 V UR =

Page 16: Ee1320 instrumentation amplifiers

17Measurement Science (EE1320) – Lecture 4

Differential and common-mode

signals

• Differential signal is often much smaller

than common-mode signal:

For example: Ub = 1 V, ∆R / R = 1% ⇒mV 10=∆= bd U

RR

U

V5.02

== bc

UU

50x

Page 17: Ee1320 instrumentation amplifiers

18Measurement Science (EE1320) – Lecture 4

Common-mode en

differential amplification

• Differential signal Ud is the

information-carrying signal

of interest and has to be

amplified:

• Common-mode signal Uc

should not contribute to

output signal

Regtien 1.2

• In practice: output is dependent on Uc:

⇒ finite common-mode rejection

ddo UGU ⋅=

ccddo UGUGU ⋅+⋅=

signalconditioning

Page 18: Ee1320 instrumentation amplifiers

19Measurement Science (EE1320) – Lecture 4

Common-mode rejection ratio (CMRR)

• Often expressed in dB:

• Example: a CMRR of H = 1000 (60 dB)

means that ∆Ud = 1 mV and ∆Uc = 1 Vgive an equal contribution ∆Uo to the output

ccddo UGUGU ⋅+⋅=

c

o

d

o

c

d

dUdU

dUdU

GG

H ==

• CMRR:

Regtien 1.2, 12.1.4

( ) [dB] log 20 10 H⋅

signalconditioning

Page 19: Ee1320 instrumentation amplifiers

20Measurement Science (EE1320) – Lecture 4

Importance of a high CMRR

• Determine how high the CMRR must be such that:

∆Uo due to Uc is smaller than ∆Uo due to ∆R / R = 1%

small differential signal Ud on a large common-mode signal Uc

c

o

d

o

c

d

dUdU

dUdU

GG

H ==

Signal-Conditioning

Page 20: Ee1320 instrumentation amplifiers

22Measurement Science (EE1320) – Lecture 4

• Can be used to amplify a voltage difference

• Determine the differential gain Gd = Uo / Ud

Difference amplifier

Regtien 12.1.4

UR

UL

Page 21: Ee1320 instrumentation amplifiers

26Measurement Science (EE1320) – Lecture 4

Limitations of difference amplifiers

• Resistors impose a load on

the source

• Practical resistors have

tolerances:

⇒ R’1 ≠ R1, R’2 ≠ R2

⇒ inverting and non-inverting

transfer is not exactly equal

⇒ output is influenced by Uc !!

Regtien 12.1.4

Page 22: Ee1320 instrumentation amplifiers

27Measurement Science (EE1320) – Lecture 4

Example: determine the common-mode

rejection of a difference amplifier

100 Ω 1 kΩ

1 kΩ

99 Ω

• Common-mode rejection ratio = ??? //

d o d

c o c

G dU dUH

G dU dU= =

Regtien 12.1.4

Page 23: Ee1320 instrumentation amplifiers

29Measurement Science (EE1320) – Lecture 4

3-opamp instrumentation amplifier

Advantages: • higher CMRR than differential amplifier

• higher input impedance (does not load source)

differentialpreamplifier

differenceamplifier

Regtien 12.1.5

Page 24: Ee1320 instrumentation amplifiers

30Measurement Science (EE1320) – Lecture 4

3-opamp instrumentation amplifier

• Virtual grounds opamps ⇒

• This current flows

through resistors R4 ⇒

• So, differential voltage is

amplified by a factor Gdd

ddddd UGUR

RRU ⋅=+=

3

432

2

( ) ( )3

33 RU

RIURU dd =⇒=

• Common-mode voltage at output equals that at input:

cc UU =2

Regtien 12.1.5

Page 25: Ee1320 instrumentation amplifiers

31Measurement Science (EE1320) – Lecture 4

3-opamp instrumentation amplifier

difference amplifierdifferential amplification

3

43 2R

RRGdd

+=1

2

RR

Gd =RR

Gc

∆≅

1

2

3

43,

2RR

RRR

G totd ⋅+=

c

dddtot G

GGH =

• total gain:

• total CMRR:

• So, CMRR is Gdd

times better than

that of only a

difference

amplifier!

Regtien 12.1.5

Page 26: Ee1320 instrumentation amplifiers

32Measurement Science (EE1320) – Lecture 4

Example: bio-potential measurement

with an instrumentation amplifier

• ECG signal:

Uid ~ 10 µV,DC – 100 Hz

• Interference: capacitively

coupled line voltage:

Uic ~ 1 mV,50 Hz

• Distortion in frequency range ECG signal ⇒ filtering is not possible

• But: distortion is mostly common-mode signal ⇒use instrumentation amplifier with sufficiently high CMRR

Page 27: Ee1320 instrumentation amplifiers

33Measurement Science (EE1320) – Lecture 4

Summary

• Wheatstone bridge: balance measurement of resistive sensors,

mostly suitable for small ∆R/R

• Differential signals of interest (such as output bridge circuit)

often superimposed on (unwanted) common-mode signal

• Common-mode rejection ratio (CMRR): measure of the degree

to which an amplifier suppresses the common-mode signal

• Opamp differential amplifier: amplifies differential voltage, but

• input resistors load the source

• tolerances of components limit the achievable CMRR

• 3-opamp instrumentation amplifier

= differential preamplifier + difference amplifier

• Less load on the source: high input impedance

• CMRR increases with gain of the preamplifier

Page 28: Ee1320 instrumentation amplifiers

34Measurement Science (EE1320) – Lecture 4

What’s next?

• Study:

• Regtien sections 1.2, 12.1.4, 12.1.5

• Practice:

• See the exercises on Blackboard!

• Questions, things unclear? Let me know!

[email protected]

Next time:

analog-digital convertors