ee140 introduction to communication systems lecture...

19
3/4/2018 1 EE140 Introduction to Communication Systems Lecture 3 Instructor: Prof. Xiliang Luo 1 Contents Deterministic signals Classification of signals Review of Fourier Transform Frequency-domain properties Time-domain properties Vector space and orthogonality 2

Upload: others

Post on 22-May-2020

33 views

Category:

Documents


2 download

TRANSCRIPT

3/4/2018

1

EE140 Introduction to

Communication Systems

Lecture 3

Instructor: Prof. Xiliang Luo

1

Contents

• Deterministic signals

– Classification of signals

– Review of Fourier Transform

– Frequency-domain properties

– Time-domain properties

– Vector space and orthogonality

2

3/4/2018

2

Spectrum• The Fourier transform of a continuous-time signal is

a complex signal

• (Magnitude) spectrum

3

)f(Sje)f(S)f(S

)f(S

Parseval’s Theorem• Parseval’s Theorem

– when , we have

• Energy Spectral Density

4

df)f(S)f(Sdt)t(s)t(s **

2121

)t(s)t(s 21

df)f(Sdt)t(sE

22

Energy Energy Spectral Density

2)f(S)f(G Joules/Hz

3/4/2018

3

Example: Rectangular waveform• Rectangular waveform

• Frequency response

• Energy spectral density

5

20

21

/t

/t)t(ga

τ

τ

)f(f

)fsin()ee(

fjdte)f(G fjfj/

/

ftja τπτ

τπ

τπτ

πτπτπ

τ

τ

π sinc 2

12

2

2

)f()f(G)f(G a τπτ 222sinc

1

(b) Ga(f)

t0

(a) ga(t)

Ga(f)ga(t)

Power Spectral Density (PSD)• Truncated waveform

• ESD

• Average normalized power

• Power spectral density

6

otherwise

TtTtstsT

,0

2/2/),()(

df)f(Sdt)t(sE TTT

22

21lim )f(S

T)f(P T

T

df)f(ST

dt)t(sT

dt)t(sT

P

TT

TT

/T

/TT

2

22

2

2

1lim

1lim

1lim

3/4/2018

4

Line Spectra for Periodic Signal• Periodic signal with period

7

)t(s 0T

)nff(C

dteC

dteeC

dte)t(s)t(s)f(S

-nn

-n

t)nff(jn

ftj

-n

tnfjn

ftj

0

2

22

2

0

0

δ

π

ππ

πY

PSD of Periodic Signal

8

• Periodic signal with period

• With Parseval’s Theorem

)t(s 0T

2

2

2

0

2

2

2 0

0

11lim

/T

/T

/T

/TTdt)t(s

Tdt)t(s

TP

)nff(Cdt)t(sT

P-n

n

/T

/T 0

22

2

2

0

0

0

1

δ

3/4/2018

5

Example• Spectrum of the following signal

• Fourier series

9

0 T-Tt

V

s(t)

t),Tt(s)t(s

)/T(t/,

/t/,V)t(s

220

22

ττ

ττ

C

n

T

n

T

Vnfsin

Tnf

V

nfj

ee

T

V

enfj

V

TdtVe

TC

/nfj/nfj

/

/

tnfj/

/

tnfjn

πτττπ

ππ

π

τπτπ

τ

τ

πτ

τ

π

sinc2

2

11

000

2222

2

2

2

0

2

2

2

00

00

n n

tnfjtnfjn e

T

n

T

VeC)t(s 00 22 sinc ππ πττ

Example (cont’d)• PSD of the following signal

10

0 T-Tt

V

s(t)

t),Tt(s)t(s

)/T(t/,

/t/,V)t(s

220

22

ττ

ττ

n

n

)nff(fT

V

)nff()f(C)f(P

02

2

0

2

sinc δπττ

δ

3/4/2018

6

Exercise: Question

11

Exercise: Solution

12

3/4/2018

7

Properties of PSD Functions

13

Exercise: Question

Exercise: Solution

14

3/4/2018

8

Contents

• Deterministic signals

– Classification of signals

– Review of Fourier Transform

– Frequency-domain properties

– Time-domain properties

– Vector space and orthogonality

15

Autocorrelation Function• Autocorrelation function

• Autocorrelation function and the PSD are Fourier Transform pairs.

• Power of the signal

16

2

2

1lim

/T

/T

*

T

*

dt)t(s)t(sT

)t(s)t(s)(R

τ

ττ

)(R)f(P τY

Pdt)t(sT

)(R/T

/TT

2

2

21lim0

3/4/2018

9

Example• Autocorrelation function of s(t) = Acos(t+)

17

)ff(A

)ff(A

)nff()f(C)f(Pn

0

2

0

2

0

2

44

δδ

δ

τ

τ

ττ

τπ

cosA

]ee[A

dfe)f(P)(R

jj

fj

24

22

2

Example• Determine the autocorrelation function of the

rectangular pulse waveform

18

t

f(t)*f(t)A2T

2T0 T(c)

rf()=f()*f(-)A2T

T0-T(b)

t

f(t)A

T0(a)

.otherwise,

;T,TA

;T,TA

.otherwise,

;T,dtA

;T,dtA

)(f)(fdttf)t(f)(r

T

T

f

0

0

0

0

0

0

2

2

2

0

2

ττ

ττ

τ

τ

ττττ

τ

τ

3/4/2018

10

Properties of Autocorrelation Functions

19

Exercise: Question

PSD

Exercise: Solution

20

3/4/2018

11

Crosscorrelation Function• Crosscorrelation function

– A function of τ, not the function of t

–– If s1(t) and s2(t) has the same period T0

– Crosscorrelation and cross PSD are Fourier Transform pairs

21

2

2 21

2112

1lim

/T

/T

*

T

*

dt)t(s)t(sT

)t(s)t(s)(R

τ

ττ

)(R)(R ττ 2112

2

2 210

12

0

0

1 /T

/T

* ,dt)t(s)t(sT

)(R τττ

dfe)nff()f(CeC)(R nfj

n

nfj 00 2012

21212

πτπ δτ

Correlation Functions of Power Signals

22

)(tf

)(tn

)(fR

)(nR

)(gR

)(tf

)(fgR

Autocorrelation

Cross-correlation

3/4/2018

12

Properties of Correlation Functions

23

• Some properties of correlation functions– Symmetry: and

– Mean-square value:

– Periodicity:

– Average value: and

– Maximum value:

– Additivity:

Orthogonal Uncorrelated

Correlation functions furnish measures of the similarity of a signal either with itself (in the case of autocorrelation) or with another signal (in the case of cross-correlation) versus a relative shift by an amount .

)(tf

τ

)(R)(R gffg ττ

2

2

2 1

0T

TTf dt)t(f)t(f

Tlim)t(f)(R

)(R)T(R)t(f)Tt(f ff ττ

)t(g)t(f)(Rfg τ 2)t(f)(Rf τ

)t(f)(R)(R ff20 τ

)(R)(R)(R)(R)(R)t(y)t(x)t(z yxxyyxz τττττ

)(R)(R ff ττ

0 1 2

2

dtty)t(x

Tlim)(R

T

TTxy ττ 0

2

1

2

1

dtty)t(xdtty)t(xt

t

t

t

Contents

• Deterministic signals

– Classification of signals

– Review of Fourier Transform

– Frequency-domain properties

– Time-domain properties

– Vector space and orthogonality

24

3/4/2018

13

Vector Spaces• Set of vectors• Operations on vectors and scalars

– Vector addition: v1 + v2 = v3

– Scalar multiplication: sv1 = v2

– Linear combinations:

• Closed under these operations• Linear independence• Basis• Dimension

25

vv

i

n

iia

1

Vector Spaces• Pick a basis, order the vectors in it, then all vectors

in the space can be represented as sequences of coordinates, i.e. coefficients of the basis vectors, in order.

• Example:– Cartesian 3-space(笛卡尔)

– Basis: [i j k]– Linear combination: xi + yj + zk– Coordinate representation: [x y z]– Vector addition:

26

]bzazbyaybxax[]zyx[b]zyx[a 212121222111

3/4/2018

14

Functions as Vectors• Need a set of functions closed under linear

combination, where– Function addition is defined

– Scalar multiplication is defined

• Example:– Quadratic polynomials

– Monomial (power) basis: [x2 x 1]

– Linear combination: ax2 + bx + c

– Coordinate representation: [a b c]

27

Metric Spaces• Define a (distance) metric s.t.

– d is nonnegative

– d is symmetric

– Indiscernibles are identical

– The triangle inequality holds

28

R)d( 21 v,v

)d()d(: ijjiji v,vv,vVv,v

0 )d(: jiji v,vVv,v

)d()d()d(: kikjjikji v,vv,vv,vVv,v,v

jijiji vvv,vVv,v 0)d(:

3/4/2018

15

Normed Spaces• Define the length or norm of a vector

– Nonnegative

– Positive definite

– Symmetric

– The triangle inequality holds

• Banach spaces – normed spaces that are complete(no holes or missing points)– Real numbers form a Banach space, but not rational

numbers– Euclidean n-space is Banach

29

v

0 vVv :

0vv 0

vvVv aa:Fa,

jijiji vvvvVv,v :

Norms and Metrics• Examples of norms:

– p norm:

• p=1 Manhattan norm

• p=2 Euclidean norm

• Metric from norm• Norm from metric if

– d is homogeneous

– d is translation invariant

then

30

ppD

iix

1

1

2121 vvv,v )d(

)d(a)aad(:Fa, jijiji v,vv,vVv,v

)aad()d(:Fa, jijiji v,vv,vVv,v

),d( 0vv

3/4/2018

16

Inner Product• Define [inner, scalar, dot] product s.t.

• For complex spaces:

• Induces a norm:

31

vv,v

Rji v,v

kjkikji v,vv,vv,vv

jiji v,vvv a,a

ijji v,vvv ,

0vv,

0vvv 0,

ijji v,vvv , jiji v,vvv aa,

Examples• Multiplication in R• Dot product in Euclidean N-space

• For real functions over domain [a,b]

• For complex functions over domain [a,b]

• Can add nonnegative weight function

32

b

a

dx)x(g)x(fg,f

b

a

dx)x(g)x(fg,f

i

N

ii 2,1,21 vvv,v

1

b

aw

dx)x(w)x(g)x(fg,f

3/4/2018

17

Hilbert Space• An inner product space that is complete with

respect to the induced norm is called a Hilbert space– Infinite dimensional Euclidean space

– Inner product defines distances and angles

– Subset of Banach spaces

33

Orthogonality• Two vectors v1 and v2 are orthogonal if

• v1 and v2 are orthonormal if they are orthogonal and

• Orthonormal set of vectors

34

021 v,v

1 2211 v,vv,v

j,iji δv,v (Kronecker delta)

3/4/2018

18

Example• Linear polynomials over [-1,1]

– B0(x) = 1, B1(x) = x

– Is x2 orthogonal to these?

– Is orthogonal to them?

35

01

1

dxx

2

13 2 x

Example• Cosine series

36

)ncos()(B),cos()(B,)(B n θθθθθ 10 1

02

1

2

1

02

1

2

0

2

0

2

0

π

π

π

θθ

θθ

θθθ

)])nmsin[()nm(

])nmsin[()nm(

(

nmfor]))nmcos[(])nm(cos[(

d)ncos()mcos(

02

0

2 nmford)n(cos πθθπ

0202

0

2 nmford)(cos πθπ

3/4/2018

19

Thanks for your kind attention!

Questions?

37