ee4031 1 loadflow

Upload: daryanto

Post on 05-Jul-2018

224 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/16/2019 EE4031 1 Loadflow

    1/28

    The HK Polytechnic University Load Flow

    1

       ✩

       ✪

    1 Load Flow Analysis

    •  A ‘load flow’ or ‘power flow’ is power system jargon for the steady-state solution

    of a power system network subject to certain operational constraints, such as:

     –  Generation supplies the demand (load) plus losses.

     –  Bus voltage magnitudes remain close to rated values.

     –  Generators operate within specified real and reactive power limits.

     –  Transformer tap settings are within limits.

     –  Transmission lines and transformers are not overloaded.

    •  Load flow solution gives the nodal voltages and phase angles and hence the

    power injection at all buses and power flows though transmission units such as

    lines, cables and transformers.

    •  Load flow calculations are performed for power system planning, operational

    planning and in connection with system operation and control.

    2

       ✩

       ✪

    •  Load flow studies are performed to investigate the following features of a power

    system network:

    1. Flow of MW and MVAr in the branches of the network.

    2. Busbar (node) voltage.

    3. Effect of the following changes on system loading:

    (a) Rearranging circuits and incorporating new circuits.

    (b) Temporary loss of generation and transmission circuits.(c) Injecting in-phase and quadrature boost voltages.

    4. Optimum system running conditions and load distribution.

    5. Minimising system losses.

    6. Optimum rating and tap-range of transformers.

    7. Improvements from change of conductor size and system voltage.

    •  Studies will normally be performed for various load conditions to ensure the

    power network behaves properly under a wide range of operating conditions.

    KWCn v1.31 1

  • 8/16/2019 EE4031 1 Loadflow

    2/28

    The HK Polytechnic University Load Flow

    3

       ✩

       ✪

    2 Load Flow Problem

    •  Objectives: to determine the steady state operating conditions of (a) busbar

    voltage, (b) generation, (c) branch power flows, and (d) circuit system loss.

    •  Conventional nodal or loop analysis is not suitable for load flow studies because

    loads are normally given in terms of power rather than impedance. Also,

    generators are considered as power sources, not voltage or current sources.

    •  Together with the power and voltage constraints, the load flow problem becomes

    a nonlinear numerical problem formulated as a set of nonlinear algebraic

    equations and the numerical solution must therefore be iterative in nature.

    •  A load flow solution of the power system requires mainly the following steps:

    1. Formulation of the network equations (load flow equations).

    2. Suitable mathematical technique for solution of the equations

    (Gauss-Seidel, Newton-Raphson, and Fast Decoupled methods).

    4

       ✩

       ✪

    3 Network Model Formulation

    •  In a power system, each bus is associated with 4 quantities:

    1. real and reactive powers, P   & Q.

    2. bus voltage magnitude and angle, |V | & δ .

    Among these 4 quantities , only 2 can be specified and the remaining 2 are

    obtained through the load flow solution.

    •  Depending upon which quantities have been specified, the buses are classified

    into three categories:

    Bus Type Quantities Specified Quantities to be obtained

    Load (PQ) bus   P , Q   |V |, δ 

    Generator (PV) bus   P , |V |   Q, δ 

    Slack (Swing) bus  |V |

    , δ P 

    ,Q

    KWCn v1.31 2

  • 8/16/2019 EE4031 1 Loadflow

    3/28

    The HK Polytechnic University Load Flow

    5

       ✩

       ✪

    3.1 Bus Classification

    1.  Load or PQ bus:  The complex power (P , Q) is specified. It is desired to find out

    the voltage magnitude and phase angle through the load flow solution – loads.

    2.  Generation, PV or voltage control bus:  The voltage magnitude and real

    power are specified. Often limits to the value of the reactive power are giving as

    well. It is required to find out the reactive power generation and the phase angle

    of the bus voltage – capacitors, synchronous compensators and generators.

    3.  Slack, swing or reference bus:  Bus voltage magnitude and angle are

    specified, typically 1.0/0o, whereas its power P , Q are obtained through the

    load flow to cover any power loss, which is not known precisely in advance of

    the calculation, or mismatch of load and power generation – system frequency

    control generators. This bus voltage angle will be taken as the reference. There

    shall be only one such bus in a power system, and usually, the one with the

    largest generation is assigned as the slack, swing or reference bus.

    6

       ✩

       ✪

    3.2 Nodal Admittance Matrix

    Load flow formulation can be established by using either the loop or bus frame of

    reference.

    loop:   V    = Z I    where   Z  : impedance matrix   V    : voltage vector

    bus:   I  = Y V Y    : admittance matrix   I   : current vector

    Generally, bus frame of reference in admittance form is preferred as :

    1. data preparation is simple

    2. its formation and modification is easy

    3. the bus admittance matrix is a sparse matrix (i.e. most of its elements are zero)

     – save computer memory and computational effort.

    KWCn v1.31 3

  • 8/16/2019 EE4031 1 Loadflow

    4/28

    The HK Polytechnic University Load Flow

    7

       ✩

       ✪

    Consider the nodal current at node 1,

    I 1 =  I 11 + I 12 + I 13= V 1y11 + (V 1 − V 2)y12 + (V 1 − V 3)y13

    = V 1(y11 + y12 + y13) − V 2y12 − V 3y13

    = V 1Y 11 + V 2Y 12 + V 3Y 13

    where  y11   is the shunt charging admittance

    at bus   1   and   y12   is the series admittance

    between bus 1 and 2, and

    Y 11 = y11 + y12 + y13Y 12 = −y12

    Y 13 = −y13Similarly for node 2 and 3,

    I 2 = V 1Y 21 + V 2Y 22 + V 3Y 23

    I 3 = V 1Y 31 + V 2Y 32 + V 3Y 33

     I 

     I I I I 

     I  I 

     I 

     I 3

    21 I 

     I  I 

    33

    12

    11

    13 21 23

    22

    3231

    1 2

    3

     y12 = y21

    Three-bus system

    8

       ✩

       ✪

    Nodal current equations can be written in a matrix form:

    I 1

    I 2

    I 3

    =

    Y 11   Y 12   Y 13

    Y 21   Y 22   Y 23

    Y 31   Y 32   Y 33

    ·

    V 1

    V 2

    V 3

    or   I  = Y V  

    or in compact form these equations can be written as:

    I i =

    3j=1

    Y ij V j   for   i = 1, 2, 3

    The above nodal current equations can be generalised to an n bus system:

    I i =n

    j=1

    Y ij V j   for   i = 1, 2,. . . , n   where   Y ii  =n

    j=1

    yij

    Y ij  = −yij

    It can be shown that the nodal admittance matrix is a sparse matrix (only a few

    number of elements are non-zero) for an actual power system.

    KWCn v1.31 4

  • 8/16/2019 EE4031 1 Loadflow

    5/28

    The HK Polytechnic University Load Flow

    9

       ✩

       ✪

    Consider the nodal admittance matrix for a 5 bus system.

    Y    =

    Y 11   Y 12   0   Y 14   Y 15

    Y 21   Y 22   Y 23   0 0

    0   Y 32   Y 33   Y 34   0

    Y 41   0   Y 43   Y 44   Y 45

    Y 51   0 0   Y 54   Y 55

    2

    1

    5

    4

    3

    y12 = y21

    y15 = y51

    y45 = y54

    y34 = y43

    y23 = y32

    y14 = y41

    •  For line, cable and tapped transformer:

    Y ij  = Y ji  = −yij  = −yji

    •   Y ij   and Y ij  are non-zero only if there is a connection between bus i and j.

    •   The diagonal element of each node is the sum of admittances connected to it.

    •  The off-diagonal element is the negated admittance between the nodes.

    10

       ✩

       ✪

    3.3 Network Models

    •  Power network can be operating under balanced or unbalanced conditions. The

    normal procedure for a load flow study is to assume a balanced system and to

    use a single-phase representation equivalent to the positive sequence network.

    •  Shunt Branches – Rectors & Capacitor:

    Shunt admittances are add to the diagonal elements, Y ii, corresponding to thenodes at which they are connected.

    •  Lines & Cables:

     –  Modelled as a π  equivalent.

     –  Contribute to both the diagonal and

    off-diagonal matrix elements

    Y ii, Y jj , Y ij   and Y ji .

     yij

     yii

     y jj

     ji

    KWCn v1.31 5

  • 8/16/2019 EE4031 1 Loadflow

    6/28

    The HK Polytechnic University Load Flow

    11

       ✩

       ✪

    •  Tapped Transformers:

     ji y

    1 : a

    V i V  jaV i

     I i  I  j

     I ay

    (a - a)y (1 - a)y2

    i  I  j

    I j   =   y (V j  − aV i)

    I i   =  −

    aI j   = ya2V i

    −aV j

    The equivalent circuit is just like an asymmetric π network.

    I i   = ((a2− a)y +  ay)V i − ayV j   = (yii +  yij)V i − yijV j

    I j   =   −ayV i + ((1 − a)y +  ay)V j   = −yijV i + (yjj  + yij)V j

    12

       ✩

       ✪

    3.4 Load Flow Equations

    Recall the nodal current equations:

    I i   =

    nj=1

    Y ijV j   for   i = 1, 2, 3, . . . , n

    =   Y iiV i +

    n

    j=1,j=i

    Y ijV j

    or   V i   =  1

    Y ii

    I i −

    nj=1,j=i

    Y ijV j

    =  1

    Y ii

    P i − jQi

    V  ∗i

    nj=1,j=i

    Y ijV j

      with   S ∗i   = V 

     ∗i   I i  = P i − jQi

    The above load flow equations are nonlinear and can be solved by iterative methods

    such as the Gauss-Seidel and Newton-Raphson methods.

    KWCn v1.31 6

  • 8/16/2019 EE4031 1 Loadflow

    7/28

    The HK Polytechnic University Load Flow

    13

       ✩

       ✪

    3.5 Power Calculations

    The complex power S i  delivered to bus i is:

    S i  = P i + jQi  = V  iI ∗i   = V  i

    nj=1

    Y   ∗ijV  

     ∗j

    Express V  i, V  j   and Y  ij   in polar coordinate (magnitude & angle):

    P i +  jQi  = |V  i|ejδi

    nj=1

    |Y  ij |e−jθij |V  j |e

    −jδj = |V  i|

    nj=1

    |V  j ||Y  ij|ej(δi−δj−θij)

    The above complex equation can be expressed in the polar form:

    P i   =   |V  i|

    nj=1

    |V  j ||Y  ij | cos(δ i − δ j  − θij)   (1)

    Qi   =   |V  i|

    nj=1

    |V  j ||Y  ij | sin(δ i − δ j − θij)   (2)

    where   Y ij  = |Y ij |/θij

    14

       ✩

       ✪

    LoadGen

    From

    other

    buses

    QiPi

    QLiPLiQGiPGi

    Bus i

    Vi

    (scheduled)

    Pi(calculated)

    (scheduled)

    Qi(calculated)

    •  busbar voltage

    Vi = |V i|/δ i

    •  net scheduled real power

    Pi(scheduled) = PGi - PLi

    •  net scheduled reactive power

    Qi(scheduled) = QGi - QLi

    where PGi & QGi is generator power

    PLi & QLi is load power

    The power difference between the scheduled value (Pi(scheduled), Qi(scheduled)),

    specified by the busbar generation and load, and the calculated value (Pi(calculated),

    Qi(calculated)), derived from the best available busbar voltages and angles, is referred

    to as the power mismatch (∆Pi, ∆Qi) where

    ∆Pi = Pi(scheduled)   - Pi(calculated)

    ∆Qi = Qi(scheduled)   - Qi(calculated)

    KWCn v1.31 7

  • 8/16/2019 EE4031 1 Loadflow

    8/28

    The HK Polytechnic University Load Flow

    15

       ✩

       ✪

    4 Gauss-Seidel (GS) Method

    •  The GS method is an iterative algorithm for solving a set of non-linear algebraic

    equations.

    •   To start with, a solution vector is assumed. One of the equations is then used to

    obtain the revised value of a particular variable by substituting in it the present

    values of the remaining variable. The solution vector is immediately updated in

    respect of this variable.

    •  The process is then repeated for all the variables thereby completing one

    iteration. The iterative process is then repeated till the solution vector converges

    within prescribed accuracy.

    •  The convergence is sensitive to the starting values assumed.

    16

       ✩

       ✪

    Eg. Consider the following simple nodal equations:

    2V 1 − 0.5V 2 − 1.5V 3  =   I 1   = 1

    −0.5V 1 + 1.25V 2 − 0.75V 3  =   I 2   = −1.5

    −1.5V 1 − 0.75V  2 + 2.25V  3 =   I 3

    where V 3  is 100 and V 2  is assumed to be 100 initially. Find V 1  and V 2.

    In the iterations, the newly computed values are immediately used as soon as they are

    obtained. 1V  1   = (1 + 150 + 50)/2 = 100.50001V  2   = (-1.5+75+50.25)/1.25 = 99.00002V  1   = (1 + 150 + 49.5)/2 = 100.25002V  2   = (-1.5+75+50.125)/1.25 = 98.9000

    3V  1   = 100.2250  3V  2   = 98.8900

    4V  1   = 100.2225  4V  2   = 98.8890

    5V  1   = 100.22225  5V  2   = 98.8889

    Hence, I 3  = -1.5 × 100.22225 - 0.75 × 98.8889 + 2.25 × 100 = 0.49995

    KWCn v1.31 8

  • 8/16/2019 EE4031 1 Loadflow

    9/28

    The HK Polytechnic University Load Flow

    17

       ✩

       ✪

    4.1 Load Flow Solution by Gauss-Seidel (GS) Method

    •  Recall the load flow equation:  V i  =  1

    Y ii

    P i− jQ

    iV  ∗i

    nj=1,j=i

    Y ijV j

      (3)

    •  In GS method, the new calculated voltage  V   k+1i   immediately replaces V   ki   and

    is used in the solution of the subsequent equations. Hence, eqn (3) becomes:

    V  k+1i

      =  1

    Y ii

    P i − jQi

    (V  ki

      )∗  −

    i−1j=1

    Y ijV  k+1j

      −

    nj=i+1

    Y ijV  kj

      (4)

    •  For PV bus, Qi  is unknown but can be calculated from power eqn (2).

    •  For slack bus, its load flow equation is excluded from the GS calculation as bothits voltage magnitude |V  i| and angle δ i  are specified while the 2 unknown

    variables P i, Qi  can be calculated from power eqn (1) and (2), i.e. there are

    (n−1) load flow equations in total for a  n bus system.

    •  Initial unknown voltage magnitude |V  i| and angle δ i  can be set up 1pu and 0o.

    This is referred as the ‘flat start’ condition.

    18

       ✩

       ✪

    4.2 Gauss-Seidel Solution Steps

    1. Formulate the admittance matrix Y  .

    2. Separate out the slack, generator and load buses.

    3. Assume any unknown bus voltage to, say, 1pu and 0o.

    4. Start iteration process with first bus of the system (i=1).

    5. Update Qi  using equation (2) if i bus is a slack or PV bus.

    Calculate the new bus voltage, V  i, from the load flow equation (4).

    6. Calculate the difference between old and new bus voltages.

    ∆V   k+1i   = V   k+1i   − V  

     ki

    7. Using this new value of bus voltage in performing calculations for the next bus of

    the system, except for the PV buses whose |V i| should remain constant.

    8. Advance for the next bus of the system and repeat steps 5 to 7 until a new set of

    values of bus voltages of all buses in the system is obtained – 1 GS iteration.

    KWCn v1.31 9

  • 8/16/2019 EE4031 1 Loadflow

    10/28

    The HK Polytechnic University Load Flow

    19

       ✩

       ✪

    9. Repeat the iterative process from step 4 to 8 until the difference ∆V  i  for all

    buses is within a specified limit or tolerance.|∆V   k+1i   | < ǫ

    where k  is the iteration count and ǫ is the tolerance level.

    4.3 Reactive Power Limits

    For a generation bus, Qi  should be checked for any limit violation.

    Qimin  ≤ Qi  ≤ Qimax

    Whenever there is a limit violation, Qi  will be set to the limit and the bus type will be

    switched to load, i.e. PQ, as it is not possible to keep the generator terminal voltage

    to the specify voltage (V  sp) while Qi   is being limited.

    When bus type switched, the bus voltage is also needed to be corrected to cater for

    the Qi  being limited. Once, Qi  becomes within the limits, the bus type and terminal

    voltage can be restored.

    20

       ✩

       ✪

    4.4 Convergence Limits (Tolerance at Solution)

    Usually 0.001, 0.0001 or 0.00001 (p.u. volts).

    That is all ∆V   k+1i   must lie within this tolerance.

    4.5 Acceleration Factors

    •  In practice, it is found that the process of convergence due to Gauss-Seidel

    method is slow. A large number of iterations is required to obtain an accurate

    solution.

    •  The rate of convergence can be increased by the use of acceleration factors.

    V   k+1iacc   = V   ki   + α(V  

     k+1i   − V  

     ki   )

    where α is known as acceleration factor and best values for the acceleration

    factor α  lie in the range of 1.1 to 1.6 with 1.4 is the most common used value

    in practice.

    KWCn v1.31 10

  • 8/16/2019 EE4031 1 Loadflow

    11/28

  • 8/16/2019 EE4031 1 Loadflow

    12/28

    The HK Polytechnic University Load Flow

    23

       ✩

       ✪

    •  Instead of computing the inverse of J , eqn (3) can be written as :

    −F (x p) =   J (x p)(x p+1 − x p)   (5)

    or   ∆y p =   J (x p)∆x p (6)

    where   F (x) =   F (x p) + ∆y p = 0   (7)

    and   x p+1 =   x p + ∆x p (8)

    •   There are 4 steps for each iteration :

    1. compute ∆y p

    2. compute J (x p)

    3. solve for ∆x p by Gauss elimination and back substitution

    4. compute x p+1

    24

       ✩

       ✪

    5.3 Load Flow Solution by Newton-Raphson (NR) Method

    First, rewrite the power flow equations (1) and (2) into an alternate form:

    P i   =   Gii|V  i|2 +

    nj=1,j=i

    |V  i||V  j ||Y  ij| cos(δ i − δ j − θij)   (9)

    Qi   =   −Bii|V  i|2 +

    n

    j=1,j=i

    |V  i||V  j||Y  ij | sin(δ i − δ j − θij)   (10)

    where   Gii   =   |Y  ii| cos(θii)

    Bii   =   |Y  ii| sin(θii)

    Then, apply the Newton-Raphson method to form the following mismatch equation:  ∆P i

    ∆Qi

    =

      ∂P i∂δi

    ∂P i∂ |V  i|

    ∂Qi∂δi

    ∂Qi∂ |V  i|

      ∆δ i

    ∆|V  i|

      (11)

    where ∆P i  and ∆Qi  are the power mismatch at bus i and

    KWCn v1.31 12

  • 8/16/2019 EE4031 1 Loadflow

    13/28

    The HK Polytechnic University Load Flow

    25

       ✩

       ✪

    ∆P i   =   P i,scheduled − P i,calculated   (12)

    ∆Qi   =   Qi,scheduled − Qi,calculated   (13)

    •   P i,calculated and Qi,calculated:

    obtained from the power flow eqn (1) and (2).

    •   P i,scheduled :

    (a) Slack bus: P i,scheduled  = P i,calculated  and ∆P i  = 0

    (b) Otherwise (PV & PQ buses):  P i,scheduled  = P Gi − P Li.•   Qi,scheduled:

    (a) Slack & PV bus: Qi,scheduled  = Qi,calculated  and ∆Qi  = 0(b) Otherwise (PQ bus): Qi,scheduled  = QGi − QLi.

    •  To further improve the convergence, the mismatch equation can be rewritten as:  ∆P i

    ∆Qi

    =

      ∂P i∂δi

    |V  i|  ∂P i∂ |V  i|

    ∂Qi∂δi

    |V  i|∂Qi∂ |V  i|

      ∆δ i∆|V  i||V  i|

    =

      H N 

    J L

      ∆δ i∆|V  i||V  i|

    26

       ✩

       ✪

    •   For a n bus system with m PQ buses, the mismatch equation becomes :

    ∆P 1

    ..

    ∆P n−1

    ∆Q1

    ..

    ∆Qm

    =

    H 1,1   .. H 1,n−1   N 1,1   .. N 1,m

    .. H i,i   .. .. N  i,i   ..

    H n−1,1   .. H n−1,n−1   N n−1,1   .. N n−1,m

    J 1,1   .. J 1,n−1   L1,1   .. L1,m

    .. J i,i   .. .. Li,i   ..

    J m,1   .. J m,n−1   Lm,1   .. Lm,m

    ∆δ1

    ..

    ∆δn−1

    ∆|V 1|

    |V 1|

    ..

    ∆|V m|

    |V m|

    (14)

    For i =  j, H ii   =  ∂P i

    ∂δi=   −Qi  −  Bii|V  i|

    2

    N ii   =   |V  i|  ∂P i∂|V i|

      =   P i  +  Gii|V  i|2

    J ii   =  ∂Qi

    ∂δi=   P i  −  Gii|V  i|

    2

    Lii   =   |V  i|  ∂Qi∂|V i|

      =   Qi − Bii|V  i|2

    For i =  j, H ij   =  ∂P i∂δj

    =   |V  i||V  j ||Y ij | sin(δi  −  δj  − θij)

    N ij   =   |V  j |  ∂P i∂|V j |

      =   |V  i||V  j ||Y ij | cos(δi −  δj  − θij)

    J ij   =  ∂Qi

    ∂δj=   −N ij

    Lij   =   |V  j |

      ∂Qi∂|V j |   =   H ij

    KWCn v1.31 13

  • 8/16/2019 EE4031 1 Loadflow

    14/28

    The HK Polytechnic University Load Flow

    27

       ✩

       ✪

    5.4 Steps in Newton-Raphson solution

    1. Formulate the nodal admittance matrix Y  .

    2. Assume an initial set of bus voltages and set bus n as the reference bus.

    3. Obtain the power injections P i  and Qi  for all i = 1,...(n − 1)

    4. Obtain the power mismatches ∆P i  and ∆Qi  for all i = 1,...(n − 1)

    5. Stop the iteration if all ∆P i  and ∆Qi  are within tolerance.

    6. Obtain the Jacobian matrix elements using the best available voltage values.

    7. Substitute the values obtained from steps (4) & (6) in equation (14). Solve this

    linear simultaneous equation by a suitable method for vectors [∆δ ] and [∆|V  i||V  i|   ].

    8. Update δ i  and |V i| for all i, i.e.   δ k+1i   = δ 

    ki   + ∆δ i

    V k+1i   = V k

    i   (1 + ∆|V  i||V  i|

      )

    9. Goto step (3).

    28

       ✩

       ✪

    5.5 Decoupled Load Flow (DFL)

    An important characteristic of any practical electrical power transmission system

    operating in steady state is strong interdependence between real powers and bus

    voltage angles and reactive powers and voltage magnitudes.

    If the P -δ  and Q-V  couplings are recognised to be much stronger than the P -V and Q-δ  couplings the sub-matrices N   and J  can be ignored. Then separate

    equations: [∆P ] = [H ] [∆δ ]   (15)

    [∆Q] = [L]

    ∆|V  |

    |V  |

      (16)

    can be obtained and solved separately to give an approximate solution of |V | and δ .

    Instead of the previous 2(n − 1) × 2(n − 1) matrix problem, there are two

    (n − 1) × (n − 1) matrices to solve — save memory and easier to solve but take

    more number of iterations to converge because of the approximation.

    Techniques such as these are often used in on-line (very fast) load flow solutions

    and in the starting (initial stage) of conventional full length load flows.

    KWCn v1.31 14

  • 8/16/2019 EE4031 1 Loadflow

    15/28

  • 8/16/2019 EE4031 1 Loadflow

    16/28

    The HK Polytechnic University Load Flow

    31

       ✩

       ✪

    5.7 Example for Newton Raphson and Fast Decoupled LF

      ❄

    V 1  = 1.05/0o V 2/δzser  = 0.1 + j0.2

    ysh  = j0.15 ysh  = j0.15

    P L, QL0.1 + j0.2

    B1 B2

    Find V 2  by NR method with B1 as the slack bus and initial estimate for  V 2 = 1/0o.

    Power flow at B2:   P 2   =   |V  2|2

    G22 + |V  1||V  2||Y  12| cos(δ 2 − θ12)

    Q2   =   −|V  2|2

    B22 + |V  1||V  2||Y  12| sin(δ 2 − θ12)

    Since B1 is the slack bus, only B2 mismatches are calculated.  ∆P 2

    ∆Q2

      =

      H N 

    J L

      ∆δ 2∆|V  2||V  2|

    =

      ∂P 2∂δ2

    |V  2|  ∂P 2∂ |V  2|

    ∂Q2∂δ2

    |V  2|∂Q2∂ |V  2|

      ∆δ 2∆|V  2||V  2|

    32

       ✩

       ✪

    Admittance matrix:

    A =

    yser + ysh   −yser

    −yser   yser + ysh

     =

    2 − j3.85   −2 + j4

    −2 + j4 2 − j3.85

    where   yser  =  1

    0.1+j0.2  = 2 − j4   and   ysh = j0.15

    i.e. Y 12 = −2 + j4 = 4.472/116.56o

    Y 22 = 2 − j3.85 = G22 + jB22   ⇒   G22 = 2   and   B22 = −3.85

    H  =  ∂P 2

    ∂δ 2=   −|V  1||V  2||Y  12| sin(δ 2 − θ12)

    =   −(1.05)(1.0)(4.472) sin(−116.56o) = 4.2

    J  =  ∂Q2

    ∂δ 2=   |V  1||V  2||Y  12| cos(δ 2 − θ12)

    = (1.05)(1.0)(4.472) cos(−116.56o) = −2.1

    KWCn v1.31 16

  • 8/16/2019 EE4031 1 Loadflow

    17/28

    The HK Polytechnic University Load Flow

    33

       ✩

       ✪

    N   = |V  2|  ∂P 2

    ∂ |V  2|  = 2|V  2|

    2G22 + |V  1||V  2||Y  12| cos(δ 2 − θ12)

    = 2|V  2|2

    G22 + ∂Q2

    ∂δ 2= 2(2) − 2.1 = 1.9

    L = |V  2|∂Q2

    ∂ |V  2|  =   −2|V  2|

    2B22 + |V  1||V  2||Y  12| sin(δ 2 − θ12)

    =   −2|V  2|2

    B22 − ∂P 2

    ∂δ 2= −2(−3.85) − 4.2 = 3.5

    J 1

      =   4.2 1.9

    −2.1 3.5 P 12   =   |V  2|

    2G22 +

     ∂Q2

    ∂δ 2= 2 − 2.1 = −0.1

    Q12   =   −|V  2|

    2B22 −

     ∂P 2

    ∂δ 2= 3.85 − 4.2 = −0.35

    ∆P 12   =   P G − P L − P 2  = −0.1 + 0.1 = 0

    ∆Q12   =   QG − QL − Q2  = −0.2 + 0.35 = 0.15

    34

       ✩

       ✪

      0

    0.15

      =

      4.2 1.9

    −2.1 3.5

      ∆δ 12∆|V   1

    2 |

    |V   12 |

      ∆δ 12∆|V   1

    2 |

    |V   12 |

      =

      1

    18.69

      3.5   −1.9

    2.1 4.2

      0

    0.15

    =

      −0.01525

    0.0337

    δ 12   =   −0.01525 rad

    |V  

     1

    2 |   = 1.0337 p.u.

    Similarly for the second iteration:J 2

      =

      4.3080 2.0375

    −2.2367 3.9199

    ∆P 22   =   −0.00037

    ∆Q22   =   −0.00596

    δ 2   =   δ 22  = −0.01475 rad

    |V  2|   =   |V   22 | = 1.03243 p.u.

    KWCn v1.31 17

  • 8/16/2019 EE4031 1 Loadflow

    18/28

    The HK Polytechnic University Load Flow

    35

       ✩

       ✪

    Now find V 2  again by FD method instead of the NR method.

    Recall:   Y 12 = 4.472/116.56o

    G22 = 2   B22 = −3.85P 12   = −0.1 ∆P 

    12   = 0

    Q12 = −0.35 ∆Q12 = 0.15

    [B′] = [−B22] = [3.85] [B′′] = [−B22] = [3.85]

    From (17):   ∆δ 2 =  ∆P 2

    −B22|V 2|  = 0 rad

    ⇒   δ 12  = δ 2 + ∆δ 2 = 0 rad

    From (18):   ∆|V 2| =  ∆Q2−B22

    = 0.03896 p.u.

    ⇒ |V 12 | = |V 2| + ∆|V 2| = 1.03896 p.u.

    Update the calculated power injection (P 2, Q2) and mismatch (∆P 2, ∆Q2) with

    the latest bus voltage.

    36

       ✩

       ✪

    Repeat the above procedures, as shown below, until the solution converage or the

    power mismatches are below the tolerance.

    Iter P  2   Q2   ∆P 2   ∆Q2   ∆|V  2|   ∆δ 2   |V  2|   δ 2

    1 -0.1 -0.35 0 0.15 0.0390 0 1.0390 0

    2 -0.0229 -0.2078 -0.0771 0.0078 0.0020 -0.0193 1.0410 -0.0193

    3 -0.1025 -0.1572 -0.0026 -0.0428 -0.0111 0.0006 1.0299 -0.0186

    4 -0.1216 -0.2010 -0.0216 0.0010 0.0003 -0.0055 1.0301 -0.0132

    5 -0.0977 -0.2122 -0.0023 0.0122 0.0032 -0.0006 1.0333 -0.0137

    6 -0.0940 -0.1989 -0.0060 -0.0011 -0.0003 -0.0015 1.0330 -0.0153

    7 -0.1010 -0.1966 0.0010 -0.0034 -0.0009 0.0003 1.0321 -0.0150

    8 -0.1017 -0.2005 0.0017 0.0005 0.0001 0.0004 1.0323 -0.0146

    9 -0.0996 -0.2009 -0.0004 -0.0002 0.0002 -0.0001 1.0325 -0.0147

    10 -0.0996 -0.1998 0.0001 -0.0003 -0.0001 0.0000 1.0324 -0.0148

    KWCn v1.31 18

  • 8/16/2019 EE4031 1 Loadflow

    19/28

  • 8/16/2019 EE4031 1 Loadflow

    20/28

    THE HONG KONG

    POLYTECHNIC UNIVERSITY   FAX: (852) 2330 1544Department of Electrical Engineering Hung Hom, Kowloon, Hong Kong

    EE4031 Power Systems

    Tutorial on Power System Load Flow

    1. Fig 1 shows a 4-bus system where all the transmission line series impedances are given

    to a common base of 100 MVA while the shunt admittances of the lines are neglected.

    Specifications at busbars are given in Table 1 and flat start conditions are assumed.

     j0.2

     j0.5

     j0.25

     j0.1 j0.33

    1 2

    34

    LoadLoad

    S 12S 14

    S 21

    S 24

    S 23

    Fig 1

    Real Reactive Real Voltage VoltageBus Demand Demand Generation Magnitude Angle

    (MW) (MVAr) (MW) (pu) (deg)

    1 – – – 1.04 0

    2 – – 100 1.02 –

    3 80 60 – – –

    4 90 50 – – –

    Table 1

    (a) Classify the type of each busbar.

    (b) Determine the bus admittance matrix.

    (c) Determine the initial power flows S 12, S 14, S 21, S 23 and S 24.

    (d) Determine the initial power generations and mismatches at the bus 1 and 2.

    (e) With justification, what should be the real power generation at bus 1 ?

    (f) Recommend a solution method, with justifications, which is suitable for solving

    this power flow problem.

    EE4031, KWCn, 8 Sept 2010 1

  • 8/16/2019 EE4031 1 Loadflow

    21/28

    2. Fig 2 shows a single-line diagram of a 2-bus power system with parameters detailed in

    Table 2. The series impedance of the line is given in per-unit on a common base of 100

    MVA with shunt admittance neglected.

    Z = j0.5

    V2V = 1.02 01o

    S = 50L2S = 30 + j10L1

    SG1

    21

    Fig 2

    Real Reactive Real Voltage VoltageBus Demand Demand Generation Magnitude Angle

    (MW) (MVAr) (MW) (pu) (deg)

    1 30 10 – 1.02 0

    2 50 0 – – –

    Table 2

    (a) Name the slack bus and write down the bus admittance matrix Y .

    (b) Based on the load flow equation given below :-

    V i =  1

    Y ii

    P i −  jQi

    V ∗i−

    n j=1,j=i

    Y ijV  j

    Use Gauss-Seidel with flat start conditions to solve the load bus voltage V 2.

    (c) With justification, what should be the reactive power generation at bus 1 ?

    EE4031, KWCn, 8 Sept 2010 2

  • 8/16/2019 EE4031 1 Loadflow

    22/28

    3. Fig 3 shows a single-line diagram of a three-bus power system. All the transmission line

    series impedances are given in per unit to a common base of 100 MVA while the shunt

    admittances are neglected. Specifications at busbars are given in Table 3.

     j0.1

     j0.1 j0.1

    1 2

    3

    200 MW

    50 MVAr

    Fig 3

    Real Reactive Real Reactive Voltage VoltageBus Demand Demand Generation Generation Magnitude Angle

    P L (MW)   QL (MVAr)   P G (MW)   QG (MVAr)   V   (pu)   δ  (deg)

    1 0 0 – – 1.01 0

    2 200 50 0 0 – –

    3 0 0 100 – 1.02 –

    Table 3

    (a) Classify each bus type and determine which of the variables V , δ , P  and Q should

    be treated as unknown.

    (b) Write down the real power generation at bus 1 by inspecting the data.

    (c) Write down the Jacobian matrix in terms of partial derivatives.

    (d) Determine the bus admittance matrix.

    (e) Given the power flow equations at bus i as follows

    P i   =   |V i|2Gii +

    n j=1,j=i

    |V i||V  j||Y ij| cos(δ i − δ  j − θij)

    Qi   =   −|V i|2Bii +

    n j=1,j=i

    |V i||V  j||Y ij| sin(δ i − δ  j − θij)

    Derive the general equations for the diagonal coefficients of the Jacobian matrix

    and hence find the diagonal coefficients of the Jacobian matrix for the first iter-

    ation when the polar form of the Newton Raphson method is used with flat start

    conditions.

    EE4031, KWCn, 8 Sept 2010 3

  • 8/16/2019 EE4031 1 Loadflow

    23/28

    4. A single-line diagram of a three-bus power system is shown in Fig 4.

     j0.4

     j0.2 j0.1

    1 2

    3

    200 MW50 MVAr

    Fig 4

    All the transmission line series impedances are given in per unit to a common base of 

    100 MVA while the shunt admittances are neglected. Specifications at busbars are givenin Table 4.

    Real Reactive Real Reactive Voltage VoltageBus Demand Demand Generation Generation Magnitude Angle

    P L (MW)   QL (MVAr)   P G (MW)   QG (MVAr)   V   (pu)   δ  (deg)

    1 0 0 – – 1.05 0

    2 200 50 0 0 – –

    3 0 0 100 – 1.02 –

    Table 4

    (a) Classify each bus type and determine which of the variables V , δ , P  and Q should

    be treated as unknown.

    (b) Write down the bus admittance matrix [Y ].

    (c) Using the Fast Decouple Load Flow (FDLF) convention :-

    ∆P 

    |V  |

      =

    B′[∆δ ]

    ∆Q

    |V  |

      = B

    ′′

    ∆|V  |

    |V  |

    write down the matrices [B′] and [B′′].

    (d) Given the power flow equations at bus i as follows

    P i   =   |V  i|2Gii +

    n j=1,j=i

    |V  i||V   j ||Y ij| cos(δ i − δ  j − θij)

    Qi   =   −|V  i|2Bii +

    n j=1,j=i

    |V  i||V   j ||Y ij | sin(δ i − δ  j − θij)

    carry out the first load flow iteration using the FDLF method.

    EE4031, KWCn, 8 Sept 2010 4

  • 8/16/2019 EE4031 1 Loadflow

    24/28

    5. Fig 5 shows a single-line diagram of 3-bus system with parameters detailed in Table 5.

    The series impedance of each transmission line is given in per-unit on a common base of 

    100 MVA with shunt admittance neglected.

     j0.4

     j0.4 j0.4

    1 2

    3

    100 MW

    -80 MVAr

    100 MW

    100 MW

    60 MVAr

    80 MW

    -30 MVAr

    Fig 5

    Load Demand Specified Power Specified Voltage

    Bus MW MVAr MW MVAr pu degree

    1 100 0 – – 1.0 0

    2 100 -80 80 -30 – –

    3 100 60 0 0 – –

    Table 5

    (a) Name the slack bus and write down the bus admittance matrix Y .

    (b) Based on the load flow equation given below :-

    V i =  1

    Y ii

    P i −  jQi

    V ∗i−

    n j=1,j=i

    Y ijV  j

    Perform one iteration of the load flow using the Gauss-Seidel method with flat startconditions to calculate the appropriated voltages at bus 2 and 3.

    (c) What should be the real power generation at bus 1 ?

    EE4031, KWCn, 8 Sept 2010 5

  • 8/16/2019 EE4031 1 Loadflow

    25/28

    EE4031 Power Systems

    Tutorial Solution on Power System Load Flow

    1. 

    a) Bus Type1 Slack

    2 Generator

    3 Load

    4 Load

     b) 

    8.03 5 0 3.03

    5 17 10 2

    0 10 14 4

    3.03 2 4 9.03

     j j j

     j j j jY 

     j j j

     j j j j

    −⎡ ⎤⎢ ⎥−⎢ ⎥=⎢ ⎥−⎢ ⎥

    −⎣ ⎦

     

    c)  ]12

    * *

    12 1 1 2[ ( ) ser S V Y V V  = −

    1.04[ 5(1.04 1.02)]

    0.104 pu 10.4 MVAr  

     j

     j j

    = −

    = = 

    14 0.126 pu 12.6 MVAr  S j j= =  

    21 0.102 puS j= −  

    23 0.204 puS j=  

    24 0.0408 puS j=  

    d)  1 12 14 23 MVAr S S S j= + =

    2 21 23 24 14.28 MVAr S S S S j= + + =  

    Bus 1 – Slack   mismatch = 0 MW

    Bus 2 – PV bus   P mismatch = Pg2 – Pl2 – Re(S2) = 100 MW

    Q mismatch = 0 MW

    e)   No transmission loss   Pg1 = 80 + 90 – 100 = 70 MW

    f) 

    GS: simple, low memory usage, easy to implement NR: faster, better convergence, more reliable

    FD: even faster & more reliable

    2.  a) slack bus : BUS1

    ⎥⎦

    ⎤⎢⎣

    −=

    22

    22

     j j

     j jY 

     b)  ⎥⎥⎦

    ⎢⎢⎣

    −=   −   V Y V S Y V   k 

    121*1

    2

    *

    2

    22

    2

    1, 5.022   −=−= S S    L , 222   jY    −= , 2  21   jY    =

    EE4031, KWCn, 8 Oct 2012 1

  • 8/16/2019 EE4031 1 Loadflow

    26/28

  • 8/16/2019 EE4031 1 Loadflow

    27/28

    4.  a) Bus Type 

    1 Slack

    2 PQ

    3 PV

     b)  [ ]

    7.5 2.5 5

    [ ] 2.5 12.5 10

    5 10 15

     j j j

    Y j j j G j

     j j j

    −⎡ ⎤⎢ ⎥= − = +⎢ ⎥⎢ ⎥−⎣ ⎦

     B

    c) 

    2

    2 22 23 2

    32 33 33

    3

     P 

    V    B B

     B B P 

    δ  

    δ  

    Δ⎡ ⎤⎢ ⎥ − − Δ⎡ ⎤ ⎡⎢ ⎥ = =⎢ ⎥ ⎢− − ΔΔ⎢ ⎥   ⎣ ⎦ ⎣⎢ ⎥⎣ ⎦

    ⎤⎥⎦

      [ ] 222 2

    22V Q

     BV V 

    ⎡ ⎤ ⎡ ΔΔ= − =

      ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

    ⎤⎥

     

    '12.5 10

    10 15 B

    −⎡⎡ ⎤ = ⎢⎣ ⎦ −⎣ ⎦

      [ ] [ ]" 12.5 B   =  

    d)  Flat start conditions  all angles are zero

    i.e. no angle difference  P2 = 0, P3 = 0

    2 2 2

    2000 2 p

    100 schedule P P P  u

    −Δ = − = − = −  

    3 3 2

    1000 1 pu

    100 schedule P P P Δ = − = − =  

    2

    3

    2

    12.5 101.0

    1 10 15

    1.02

    δ  

    δ  

    −⎡ ⎤⎢ ⎥   Δ−   ⎡ ⎤⎡ ⎤

    =⎢ ⎥   ⎢ ⎥⎢ ⎥ Δ−⎣ ⎦ ⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦

     

    ⇒  2

    3

    15 10 2 0.23081

    10 12.5 0.98 0.088687.5

    δ  

    δ  

    Δ   − −⎡ ⎤   ⎡ ⎤ ⎡ ⎤ ⎡= =⎢ ⎥   ⎢ ⎥ ⎢ ⎥ ⎢Δ   −⎣ ⎦ ⎣ ⎦ ⎣⎣ ⎦

    ⎤⎥⎦

      ⇒  2

    3

    0.2308rad

    0.0886

    δ  

    δ  

    −⎡ ⎤   ⎡ ⎤=⎢ ⎥   ⎢ ⎥−⎣ ⎦⎣ ⎦

     

    ( ) ( ) ( )

    2

    2 2 22 2 1 21 2 1 21 2 3 23 2 3 23sin( ) sin( )

    12.5 (1.0)(1.05)(2.5)sin 0.2308 1.0 1.02 10 sin 0.14222 2

    0.152 pu

    Q V B V V Y V V Y  δ δ θ δ δ θ  

    π π 

    = − + − − + − −

    ⎛ ⎞ ⎛ = + − − + − −⎜ ⎟ ⎜

    ⎝ ⎠ ⎝ 

    = −

     ⎞⎟ ⎠

     

    ⇒  250

    ( 0.152) 0.348 pu100

    Q  −

    Δ = − − = −  

    [ ]22 2

    12.5Q   V 

    V V 

    ⎡ ⎤ ⎡Δ   Δ=⎢ ⎥ ⎢

    ⎣ ⎦ ⎣

    ⎤⎥⎦

      ⇒  20.348

    0.028 pu12.5

    V Δ = − = −  

    i.e. 2 21 0.972 puV V = + Δ =  

    EE4031, KWCn, 15 Mar 2011 3

  • 8/16/2019 EE4031 1 Loadflow

    28/28

    5.  a) Slack bus - Bus 1

    5 2.5 2.5

    0.4, 2.5, 2.5 5 2.5

    2.5 2.5 5

     L L

     j j j

     Z j Y j Y j j j

     j j j

    −⎡ ⎤⎢ ⎥= = − = −⎢ ⎥

    −⎢ ⎥⎣ ⎦

     

     b) 

    Flat start:0 0 0

    1 2 31 0 , 1 0V V V = ∠ ° = = ∠ °  

    2

    3

    1

    2

    1

    3

    1 0.8 0.8 0.3 0.2 0.5 pu

    1 0.6 pu

    1 0.2 0.5 0.2 5.52.5 2.5 1.1 0.04 1.1 2.08 pu

    5 1 5

    1 1 0.6 1 4.42.5 2.5 0.88 0.2 0.9 12.8 pu

    5 1 5

    S j j j

    S j

     j jV j j j

     j j

     j jV j j j

     j j

    = − + + − = − +

    = − −

    − − +⎡ ⎤= − − = = − = ∠ −⎢ ⎥−   ⎣ ⎦

    − + +⎡ ⎤= − − = = − − = ∠ −⎢ ⎥−

      ⎣ ⎦

    °

    °

     

    c) 

    100 + 100 + 100 - 80 = 220 MW