eece 522 notes_14 ch_7c

13
1 7.10 MLE Examples We’ll now apply the MLE theory to several examples of practical signal processing problems. These are the same examples for which we derived the CRLB in Ch. 3 1. Range Estimation sonar, radar, robotics, emitter location 2. Sinusoidal Parameter Estimation (Amp., Frequency, Phase) sonar, radar, communication receivers (recall DSB Example), etc. 3. Bearing Estimation sonar, radar, emitter location 4. Autoregressive Parameter Estimation speech processing, econometrics See Book We Will Cover

Upload: nithinvs

Post on 14-Dec-2015

216 views

Category:

Documents


3 download

DESCRIPTION

edt

TRANSCRIPT

Page 1: Eece 522 Notes_14 Ch_7c

1

7.10 MLE ExamplesWe’ll now apply the MLE theory to several examples of practical signal processing problems.

These are the same examples for which we derived the CRLB in Ch. 3

1. Range Estimation – sonar, radar, robotics, emitter location

2. Sinusoidal Parameter Estimation (Amp., Frequency, Phase)– sonar, radar, communication receivers (recall DSB Example), etc.

3. Bearing Estimation – sonar, radar, emitter location

4. Autoregressive Parameter Estimation– speech processing, econometrics

See Book

We Will

Cover

Page 2: Eece 522 Notes_14 Ch_7c

2

Ex. 1 Range Estimation ProblemTransmit Pulse: s(t) nonzero over t∈[0,Ts]

Receive Reflection: s(t – τo)

Measure Time Delay: τo

max,);(

0)()()( osts

o TTttwtstxo

τττ

+=≤≤+−= !"!#$

C-T Signal Model

tTs

s(t)

tT

s(t – τo)

BandlimitedWhite Gaussian

BPF& Amp

x(t)PSD of w(t)

f B–B

No/2

Page 3: Eece 522 Notes_14 Ch_7c

3

Range Estimation D-T Signal Model

Sample Every ∆ = 1/2B secw[n] = w(n∆)

DT White Gaussian Noise

Var σ2 = BNo

f

ACF of w(t)

τ1/2B

B–B1/B 3/2B

PSD of w(t)No/2 σ2 = BNo

1,,1,0][][][ −=+−= Nnnwnnsnx o …

s[n;no]… has M non-zero samples starting at no no ≈ τo /∆

−≤≤+

−+≤≤+−

−≤≤

=

1][

1][][

10][

][

NnMnnw

Mnnnnwnns

nnnw

nx

o

ooo

o

Page 4: Eece 522 Notes_14 Ch_7c

4

Range Estimation Likelihood FunctionWhite and Gaussian ⇒ Independent ⇒ Product of PDFs

3 different PDFs – one for each subinterval

2

3#

1

2

2

2#

1

2

2

1#

1

02

2

2

1

2][exp

2])[][(exp

2][exp);(

πσ

σσσ

=

−•

−−−•

−= ∏∏∏

−+

+=

−+

=

=

C

nxCnnsnxCnxCnpMn

Mnn

Mn

nn

on

no

o

o

o

o

o

!!!! &!!!! '(!!!!!!! &!!!!!!! '(!!! &!!! '(

x

Expand to get an x2[n] term… group it with the other x2[n] term

−+−−−•

−= ∑∑ −+

=

=

!!!!!!! "!!!!!!! #$!!! "!!! #$

12

022

1

0

2

])[][][2(2

1exp2

][exp);(

Mn

nno

N

nNo

o

o

nnsnnsnxnx

Cnpσσ

x

must minimize this or maximize its negative over values of noDoes not depend on no

Page 5: Eece 522 Notes_14 Ch_7c

5

Range Estimation ML Condition

!!! "!!! #$!!! "!!! #$∑∑

−+

=

−+

=−+−

12

1

0 ][][][Mn

nno

Mn

nn

o

o

o

o

nnsnnsnx

Doesn’t depend on no! …Summand moves with the limits as no changes.

Because s[n – no] = 0 outside summation

range… so can extend it!

2So maximize this:

∑−

=−

1

00 ][][

N

nnnsnxSo maximize this:

So…. MLE Implementation is based on Cross-correlation: “Correlate” Received signal x[n] with transmitted signal s[n]

,][][][][maxargˆ1

00∑−

=−≤≤−==

N

nxsxs

MNmo mnsnxmCmCn

Page 6: Eece 522 Notes_14 Ch_7c

6

Range Estimation MLE Viewpoint

mno

Cxs[m]

,][][][1

0∑−

=−=

N

nxs mnsnxmC

Doesn’t depend on no! …Summand moves with the limits as no changes.

Warning: When signals are complex (e.g., ELPS) take find peak of |Cxs[m] |

• Think of this as an inner product for each m• Compare data x[n] to all possible delays of signal s[n]

! pick no to make them most alike

Page 7: Eece 522 Notes_14 Ch_7c

7

Ex. 2 Sinusoid Parameter Estimation ProblemGiven DT signal samples of a sinusoid in noise….

Estimate its amplitude, frequency, and phase

1,,1,0][)cos(][ −=++Ω= NnnwnAnx o …φ

Ωo is DT frequency in cycles/sample: 0 < Ωo < π

DT White Gaussian NoiseZero Mean & Variance of σ2

Multiple parameters… so parameter vector: ToA ][ φΩ=θ

The likelihood function is:

),,(

))cos(][(2

1exp);(1

0

22

φ

φσ

o

N

no

N

AJ

nAnxCp

Ω=

+Ω−−=

=∑θx

For MLE: Minimize This

Page 8: Eece 522 Notes_14 Ch_7c

8

Sinusoid Parameter Estimation ML ConditionTo make things easier…

Define an equivalent parameter set:

[α1 α2 Ωo ]T α1 = Acos(φ) α2 = –Asin(φ)

Then… J'(α1 ,α2,Ωo) = J(A,Ωo,φ) α = [α1 α2]T

Define:

c(Ωo) = [1 cos(Ωo) cos(Ωo2) … cos(Ωo(N-1))]T

s(Ωo) = [0 sin(Ωo) sin(Ωo2) … sin(Ωo(N-1))]T

and…

H(Ωo) = [c(Ωo) s(Ωo)] an Nx2 matrix

Page 9: Eece 522 Notes_14 Ch_7c

9

Then: J'(α1 ,α2,Ωo) = [x – H (Ωo) α]T [x – H (Ωo) α]

Looks like the linear model case… except for Ωo dependence of H (Ωo)

Thus, for any fixed Ωo value, the optimal α estimate is

[ ] xHHHα )()()(ˆ 1o

Too

T ΩΩΩ=−

Then plug that into J'(α1 ,α2,Ωo):

[ ] [ ]

[ ][ ]

[ ][ ]

[ ] !!!!!!! "!!!!!!! #$

!!!!!!!! "!!!!!!!! #$

o

oT

ooT

o

oT

ooT

oTT

oT

ooT

oT

ooTTT

oT

ooJ

Ω

ΩΩΩΩ−=

ΩΩΩΩ−=

ΩΩΩΩ−=

Ω−Ω−=

Ω−Ω−=Ω′

w.r.t.minimize

1

)()()()(

21

21

)()()()(

)()()()(

ˆ)()(ˆ

ˆ)(ˆ)(),ˆ,ˆ(

1

xHHHHxxx

xHHHHIx

αHxHαx

αHxαHx

HHHHI

αα

Page 10: Eece 522 Notes_14 Ch_7c

10

Sinusoid Parms. Exact MLE Procedure

[ ]

ΩΩΩΩ=Ω

≤Ω≤xHHHHx )()()()(minargˆ 1

0o

Too

To

To

o π

oΩStep 1: Minimize “this term” over Ωo to find

Step 2: Use result of Step 1 to get

[ ] xHHHα )ˆ()ˆ()ˆ(ˆ 1o

Too

T ΩΩΩ=−

Done Numerically

Step 3: Convert Step 2 result by solving

)ˆsin(ˆˆ

)ˆcos(ˆˆ

2

1

φα

φα

A

A

−=

=φ&ˆfor A

Page 11: Eece 522 Notes_14 Ch_7c

11

Sinusoid Parms. Approx. MLE ProcedureFirst we look at a specific structure:

[ ]

Ω

Ω

ΩΩΩΩ

ΩΩΩΩ

Ω

Ω=ΩΩΩΩ

xs

xc

sscs

sccc

xs

xcxHHHHx

)(

)(

)()()()(

)()()()(

)(

)()()()()(

1

1

oT

oT

ooT

ooT

ooT

ooTT

oT

oT

oT

ooT

oT

!!!!!! "!!!!!! #$

Then… if Ωo is not near 0 or π, then approximately1

20

02

≈N

N

and Step 1 becomes

2

0

21

00)(minarg)exp(][2minargˆ Ω=

Ω−=Ω≤Ω≤

=≤Ω≤∑ Xnjnx

N

N

noo

o ππ

and Steps 2 & 3 become DTFT of Data x[n]

)ˆ(ˆ

)ˆ(2ˆ

o

o

X

XN

A

Ω∠=

Ω=

φ

Page 12: Eece 522 Notes_14 Ch_7c

12

The processing is implemented as follows:

Given the data: x[n], n = 0, 1, 2, … , N-1

1. Compute the DFT X[m], m = 0, 1, 2, … , M-1 of the data• Zero-pad to length M = 4N to ensure dense grid of frequency points

• Use the FFT algorithm for computational efficiency

2. Find location of peak• Use quadratic interpolation of |X[m]|

3. Find height at peak• Use quadratic interpolation of |X[m]|

4. Find angle at peak• Use linear interpolation of ∠X[m]

|X(Ω)|

Ω

∠X(Ω)

ΩoΩ

Page 13: Eece 522 Notes_14 Ch_7c

13

Figure 3.8 from textbook:

)2cos()( φπ += tfAts ot

Ex. 3 Bearing Estimation MLEEmits or reflects

signal s(t)

Simple model

Grab one “snapshot” of all M sensors at a single instant ts:

( ) ][~

cos][)(][ nwnAnwtsnx ssn ++Ω=+= φ

Same as Sinusoidal Estimation!! So Compute DFT and Find Location of Peak!!

If emitted signal is not a sinusoid then you get a different MLE!!