eece 522 notes_24 ch_10b

Upload: habibhabib

Post on 07-Aug-2018

227 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 Eece 522 Notes_24 Ch_10b

    1/18

    1

    10.5 Properties of Gaussian PDF

    To help us develop some general MMSE theory for the GaussianData/Gaussian Prior case, we need to have some solid results for 

     joint and conditional Gaussian PDFs.

    We’ll consider the bivariate case but the ideas carry over to thegeneral N -dimensional case.

  • 8/20/2019 Eece 522 Notes_24 Ch_10b

    2/18

    2

    Bivariate Gaussian Joint PDF for 2 RV’s X and Y 

    !!!!!

     "

     #

    $$$$$

    ''

    (

    )

    **

    +

    ,

    -

    -

    ''

    (

    )

    **

    +

    ,

    -

    --.   -

    ! ! ! ! "! ! ! ! #$

     formquadratic

     y

     xT 

     y

     x

     y

     x

     y

     x y x p

    1

    1/2 2

    1exp

    ||2

    1),( C

    C   ''(

    )

    **+

    ,.

    12

    134

    15

    167

    ''(

    )

    **+

    ,

     X 

     X  E 

    ''

    (

    )

    **

    +

    ,.

    ''

    (

    )

    **

    +

    ,.

    ''(

    )

    **+

    ,.

    2

    2

    2

    2

    )var(),cov(

    ),cov()var(

    Y Y  X 

    Y  X  X 

    Y YX 

     XY  X 

    Y  X Y 

    Y  X  X 

    8 8  98 

    8  98 8 

    8 8 

    8 8 C

    -10 -5 0 5 10-8

    -6

    -4

    -2

    0

    2

    4

    6

    8

    x

         y

    -8-6

    -4-2

    02

    46

    8

    -10

    -5

    0

    5

    10

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    0.09

    xy

         p        (     x ,     y

            )

     x y

        p        (    x ,    y

            )

     x

     y

  • 8/20/2019 Eece 522 Notes_24 Ch_10b

    3/18

    3

    Marginal PDFs of Bivariate GaussianWhat are the marginal (or individual) PDFs?

    :;

    ;-. dy y x p x p ),()( :

    ;

    ;-. dx y x p y p ),()(

    We know that we can get them by integrating:

    After performing these integrals you get that:

     X ~ N (/X, var{ X }) Y ~ N (/Y , var{Y })

    -10 -5 0 5 10-8

    -6

    -4

    -2

    0

    2

    4

    6

    8

    x

         y

     x

     y

     p( x)

     p( y)

  • 8/20/2019 Eece 522 Notes_24 Ch_10b

    4/18

    4

    Comment on “Jointly” Gaussian

    We have used the term “Jointly” Gaussian…

    Q: EXACTLY what does that mean?A: That the RVs have a joint PDF that is Gaussian

    !!!

     "

     #

    $$$

    ''(

    )

    **+

    ,

    -

    -

    ''(

    )

    **+

    ,

    -

    -

    -.   - y

     xT 

     y

     x

     y

     x

     y

     x

     y x p/ 

    0 11/2 2

    1exp

    ||2

    1),( C

    C

    We’ve shown that jointly Gaussian RVs also have Gaussian

    marginal PDFs

    Q: Does having Gaussian Marginals imply Jointly Gaussian?

    In other words… if X is Gaussian and Y is Gaussian is it

    always true that X and Y are jointly Gaussian???

    A: No!!!!!

    Example for

    2 RVs

    See Reading Notes on

    “Counter Example”

     posted on BB

  • 8/20/2019 Eece 522 Notes_24 Ch_10b

    5/18

    5

    We’ll construct a counterexample: start with a zero-mean,

    uncorrelated 2-D joint Gaussian PDF and modify it so it is no

    longer 2-D Gaussian but still has Gaussian marginals.

    12

    13

    4

    15

    16

    7

    !! "

     #

    $$% 

    <-

    . 2

    2

    2

    2

    2

    1exp2

    1),(

    Y  X Y  X  XY 

     y x y x p

    8 8 8 08   x

     y

     x

     y

    But if we modify it by:• Setting it to 0 in the shaded regions

    • Doubling its value elsewhere

    We get a 2-D PDF that is not

    a joint Gaussian but the

    marginals are the sameas the original!!!!

  • 8/20/2019 Eece 522 Notes_24 Ch_10b

    6/18

    6

    Conditional PDFs of Bivariate Gaussian

    What are the conditional PDFs?

    If you know that X has taken value X = xo, how is Y distributed?

    ''(

    )

    **+

    ,

    ==.

    1616258.016258.025C 

    Slope of Line

    cov{ X ,Y }/var{ X } = 98Y /8 X 

    :;

    ;-

    ..dy y x p

     y x p

     x p

     x x p x y p

    ),(

    ),(

    )(

    )|()|(

    0

    0

    0

    00

    Slice @ xo

     Normalizer 

    -15 -10 -5 0 5 10 15

    -15

    -10

    -5

    0

    5

    10

    15

     x

     y

     p( y|X=5)

     p( y)Note: Conditioning on correlated RV

    • shifts mean

    • reduces variance

  • 8/20/2019 Eece 522 Notes_24 Ch_10b

    7/18

    7

    Theorem 10.1: Conditional PDF of Bivariate Gaussian

    Let X and Y  be random variables distributed jointly Gaussian

    with mean vector [ E { X }  E {Y }]T and covariance matrix

    '

    '

    (

    )

    *

    *

    +

    ,.

    '

    '

    (

    )

    *

    *

    +

    ,.

    2

    2

    )var(),cov(

    ),cov()var(

    Y YX 

     XY  X 

    Y  X Y 

    Y  X  X 

    8 8 

    8 8 C

    Then p( y| x) is also Gaussian with mean and variance given by:

    > ?

    > ?}{}{

    }{}{}|{ 2

     X  E  xY  E 

     X  E  xY  E  x X Y  E 

    o

     X 

    o X 

     XY 

    o

    -

  • 8/20/2019 Eece 522 Notes_24 Ch_10b

    8/18

    8

    Impact on MMSE

    We know the MMSE of RV Y after observing the RV X = xo:@ Ao x X Y  E Y    .. |ˆ

    So… using the ideas we have just seen:if the data and the parameter are jointly Gaussian, then

    > ?}{}{}|{ˆ

    2  X  E  xY  E  x X Y  E Y  o X 

     XY 

    o MMSE    -

  • 8/20/2019 Eece 522 Notes_24 Ch_10b

    9/18

    9

    Theorem 10.2: Conditional PDF of Multivariate Gaussian

    Let X (k =1) and Y (l =1) be random vectors distributed jointlyGaussian with mean vector [ E {X}T   E {Y}T ]T and covariance

    matrix

    '

    '

    (

    )

    *

    *

    +

    ,

    ==

    ==.

    '

    '

    (

    )

    *

    *

    +

    ,.

    )()(

    )()(

    l l k l 

    l k k k 

    YYYX

    XYXX

    CC

    CCC

    Then p(y|x) is also Gaussian with mean vector and covariance

    matrix given by:

    > ?}{}{}|{ 1 XxCCYxXY XXYX  E  E  E  oo   - ?}{}{}|{ 2  X  E  xY  E  x X Y  E  o X 

     XY o   -

  • 8/20/2019 Eece 522 Notes_24 Ch_10b

    10/18

    10

    10.6 Bayesian Linear Model

     Now we have all the machinery we need to find the MMSE for

    the “Bayesian Linear Model”

    wH!x  

  • 8/20/2019 Eece 522 Notes_24 Ch_10b

    11/18

    11

    Bayesian Linear Model is Jointly Gaussian

      and w are each Gaussian and are independent

    Thus their joint PDF is a product of Gaussians…

    …which has the form of a jointly Gaussian PDF

    Can now use: a linear transform of jointly Gaussian is jointly Gaussian

    ''(

    )

    **+

    ,

    ''(

    )

    **+

    ,.

    ''(

    )

    **+

    ,

    w

    !

    0I

    IH

    !

    x Jointly Gaussian

    Thus, Thm. 10.2 applies! Posterior PDF is…

    ! Joint Gaussian

    ! Completely described by its mean and variance

  • 8/20/2019 Eece 522 Notes_24 Ch_10b

    12/18

    12

    Conditional PDF for Bayesian Linear Model

    To apply Theorem 10.2, notationally let X = x and Y = .

    First we need  E {X} = H E { } + E {w} = H B

     E {Y} = E { } = B

    And also   !YY CC   .   > ?> ?@ A

    > ?C D   > ?C D@ A> ?> ?@ A   @ AT T T 

     E  E 

     E 

     E  E  E 

    wwHµ!µ!H

    wµ!Hwµ!H

    xxxxC

    !C

    !!

    !!

    XX

  • 8/20/2019 Eece 522 Notes_24 Ch_10b

    13/18

    13

    > ?> ?@ A

    > ?> ?@ A> ?> ?@ AT T 

     E 

     E 

     E 

    Hµ!µ!

    HµwH!µ!

    µxµ!CC

    !!

    !!

    x!!xYX

    --.

    - ?   > ?!w!!! HµxCHHCHCµx!!

    -

  • 8/20/2019 Eece 522 Notes_24 Ch_10b

    14/18

    14

    Ex. 10.2: DC in AWGN w/ Gaussian Prior

    Data Model:  x[n] = A + w[n]  A & w[n] are independent

    ),(~ 2 A A N    8 /  ),0(~ 2  N 

    Write in linear model form:

    x = 1 A + w with H = 1 = [ 1 1 … 1]T 

     Now General Result gives the MMSE estimate as:

    )-()(

    )-()(}|{ˆ

    12

    2

    2

    2

    1222

     AT  AT  A

     A

     AT 

     AT 

     A A MMSE   A E  A

    8 / 

    / 8 8 8 / 

    1x11I1

    1xI111x

    -

    -

  • 8/20/2019 Eece 522 Notes_24 Ch_10b

    15/18

    15

    Aside: Matrix Inversion Lemma

    > ?   > ? 1111111   ------- ? uAuAuuA

    AuuA 1

    1111

    1   -

    ----

  • 8/20/2019 Eece 522 Notes_24 Ch_10b

    16/18

    16

    Continuing the Example… Apply the Matrix Inversion Lemma:

    )(/

    1

    )(/

    )(/

    )(ˆ

    222

    2

    222

    2

    222

    2

    1

    2

    2

    2

    2

     A

     A

     A A

     AT 

     A

    T  A A

     A

     A

    T T  A

     A

     AT  AT  A

     A MMSE 

     N  x N  N 

     N 

     N 

     N 

     N 

     A

    8 8 8 

    8 / 

    8 8 8 

    8 / 

    8 8 8 

    8 / 

    8 / 

    -!!

     "

     #$$% 

    & <

    -> 82 A

    ),

    gain is large, data has large use

     A MMSE  A   / Eˆ

     x A MMSE  Eˆ

  • 8/20/2019 Eece 522 Notes_24 Ch_10b

    17/18

    17

    Using similar manipulations gives:

     N  N 

     N  A

     A A

     A

    /

    11

    1)x|var(

    22

    22

    22

    8 8 

    8 8 

    <.

    <

    !!

     "

     #

    $$% 

    .

    Like || resistors… small one wins!

    F var (A|x) is E the smaller of:• data estimate variance

    • prior variance

     N  A A

    /

    11

    )x|var(

    122

    8 8 

  • 8/20/2019 Eece 522 Notes_24 Ch_10b

    18/18

    18

    10.7 Nuisance Parameters

    One difficulty in classical methods is that nuisance parametersmust explicitly dealt with.

    In Bayesian methods they are simply “Integrated Away”!!!!

    Recall Emitter Location: [ x y z f 0]

    In Bayesian Approach…

    From  p( x, y, z, f 0 | x) can get p( x, y, z | x):

     Nuisance Parameter 

    :. 00 )x|,,,()|,,( df  f  z  y x p z  y x p xThen… find conditional mean for the MMSE estimate!