ıııeeecccßßß!!!...@ˇµıecg¯…Œ ƒc.l. siegelÓˇó−…’p £i µ;.“þ˙ıec…ŒØ...

46
ı E C ß ! ¥I˘Œ˘˜/ ¥I˘uŒ˘:¢¿ V g u k ) uŒ˘ø, 2014 c11 18 F

Upload: others

Post on 02-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • õõõEEECCCûûû!!!

    ±±±

    ¥¥¥IIIÆÆÆ���êêêÆÆÆïïïÄÄĤ¤¤

    ¥¥¥IIIÆÆÆ���uuuÛÛÛêêêÆÆÆ:::¢¢¢���¿¿¿

    VVVggguuukkk)))

    uuuÛÛÛêêêÆÆÆùùù, 2014ccc11���18FFF

  • SC²oÖP38c6�¥IÆ�!¥Ió§�ü��¬¬þ�ù{¥¤�Þ�#¥I�Ƥҵ

    p/ü�(0

    põEC¼êØ

    pº¤hnØ

    p

  • uÛk)�õEC¼êØ�¤J:

    1950c£I��¤

    ¼Ä3I[g,Æ�ø

    �µd/+kÜ�Ac0

  • uÛµ¥IõECïÄ�mMö

    uÛ�Ç3ó

  • @ϵõECgżê§C.L. SiegelÓÏó'p

    £I�µ;.þ�õEC¼êØ

    open problemµconstruction of Cauchy-Szegö kernel on theunit ball

    Dirichlet problem on the classical domains

    �EÑ4 a;.�aصBergman Ø£´ BergmanÝþ£PoincaréÝþ�pí2¤�³¤§Cauchy-SzegöاPoissonØ"

  • /luÛ¼ø�Ö¥�§4 Siegel þ²¡�Bergmanؼê±�¤ 1/det ImZ�eZg�/ª§´õgNÚ¼ê"¦�Æ)�Æ)±3)û

    /*¿51I+ß0�y²¥§�ÚÒ´

    �E3*¿51I+�õgNÚ¼ê§l

    þã¼êÑu"ùXXJØ´uÆ��3f´J±

    ��"0

    £ºé�µuÛ¯b�ú¯

  • uP�Æ)§¥IÆ��¬ºé��Ç

  • �Òc§ØN

    • Lu, QiKengµAn inequality of the holomorphic invariantforms. Sci. China Math. 56 (2013);

    • Lu, Qi KengµOn the curvature conjecture of Hua Loo-Keng. Acta Math. Sin. (Engl. Ser.) 28 (2012);

    • Lu, Qi-KengµPoisson kernel and Cauchy formula of a non-symmetric transitive domain. Sci. China Math. 53 (2010);

    • Lu, QikengµThe conjugate points of CP∞ and the zeroesof Bergman kernel. Acta Math. Sci. Ser. B Engl. Ed. 29(2009);

    • Lu, QiKengµHolomorphic invariant forms of a boundeddomain. Sci. China Ser. A 51 (2008)

  • Kobayashi embedding: k.áE�Km

    Lu embedding: k.áGrassmann6/

    uy�XØC/ª9ÙØ�ª'X£aquMiyaoka-YauØ�ª¤

    /fundamental inequalities for holomorphically invariantforms0

    2013c¼�5¥IÆ6`DØ©ø

  • õEC¼êص/êÆ¥ïÄõECþ��X¼ê�

    5Ú(��©|Æ0"

    ^Æ£category¤�ó5`:õECµïÄE)ÛÆ�Ư"

    ùp§Æ�é£objects¤´E6/£DEm¤§��£morphisms¤´E6/£DEm¤m�E)ÛNì"

    Dieudonneµ/´¤kêÆÆ�¥�!(J�nØ0, in /The Work of Nicholas Bourbaki0, TheAmerican Math. Monthly, 1970

  • EC¼êkA'èc: Eê,Cþ,¼ê.

    Eê�Ú?

    ïÄEê�Äå5gng§�ª¦)£16V¤

  • pg§�ê)µ¥IêÆ[�¤Ò

    •/���Ï£dè7ó§!Y|ó§�¢S¯KÚ\ng§§¿JÑCq¦)g¤µ52�²6

    •�y_uy/O¦m{0§_n�¶•HyÊ��¤5êÖÊÙ6§uy/�Km{0¶

    JÑgÓ{ª|�){§'pd@ÊzÊ{c§

    �¡/¥I{½n0£¥I{ê½n¤

    ùó3Ü�K�æå(Wylie)�DÂk'.

  • Niccolo Fontana (Tartaglia), Gerolamo Cardano

    ng§�ze¡ü«/£öS¤µ

    x3 + px = q;

    x3 = px + q, where p, q > 0

  • Tartaglia-Cardano formula:Cardano1545cuL/Ars Magna0(Îoc§+^Z1¤

    )x3 + px = q

    Sµ(u− v)3 + 3uv(u− v) = u3 − v3

    -3uv = p, u3 − v3 = qu3,−v3´y2 − qy − p3/27 = 0�

    x = u− v =3

    √q/2 +

    √q2/4 + p3/27 + 3

    √−q/ +

    √q2/4 + p3/27

  • )x3 = px + q

    Sµ(u + v)3 = 3uv(u + v) + u3 + v3

    -3uv = p, u3 + v3 = q

    u3, v3´y2 − qy + p3/27 = 0�

    x = u + v =3

    √q/2 +

    √q2/4− p3/27 + 3

    √q/2−

    √q2/4− p3/27

    ~µx3 = 15x + 4, x = 4 is obviously a solution.,lúª%ÑyJê

  • Tartaglia-Cardanoúª£Pacioli£øz|¤315V"¶Í¥�ͶJK

    Bombelli�Ò/êÆ0£1572¤:ÏLÚ\Eê9Ùê$§)ºXÛ^Tartaglia-Cardanoúª��)

    ��¢§%7�Jê

    Eê�uyöµCardanoEê�Ú\öµBombelli

  • Wallis^AÛ{)ºJê

    /imaginaire0£J��!¥�¤dRené DescartesÚ\£1637¤;Jê

    Ø«@Jê: Úî, Napier,...

    4ÙZ]£1646)1716¤31702c`µ/gX3ÚØ3�üÑÔ0"”complex numbers are a fine and wonder-ful refuge of the divine spirit, as if it were an amphibian ofexistence and non-existence” .

  • 1730c§#6JÑ#6úª:(cos θ + i sin θ)n = cosnθ + i sinnθ

    î.31748cJÑî.úª:eiθ = cos θ + i sin θ; eiπ + 1 = 0

    ïán�¼êÚê¼ê�'X

    EulerÚ\ÎÒi§2¦^Eê

    3.�£Girard¤§î.§K��ßµêÄ�½n£GaussÑAy²¤

    GirardÚ\sin, cos, ...

  • Eê�ê(�µ

    \~¦Ø§¦{÷v�Æ!(ÜƧXÓ¢ê

    m$µ4£êµ4¤§ØÓu¢ê

    uеo�ê£��Ƥ!l�ê£Cayleyꤣ��Æ(ÜƤ

    ¢êþkØê§U´¢ê!Eê!o

    �ê!l�ê£Bott§Milnor¤

  • ¢ê´kS§EêkS¶

    êØÓ

    R∗ØëϧC∗ëÏ

    Eêýé�¦È5

    üü²Úê�¦ÈEü²Úê¶

    ü4²Úê�¦ÈE4²Úê(Euler);éAo�êýé�¦È5

    ün²Úê�¦ÈEn²Úê§�=�n=1,2,4,8

  • Eê8k´L�ê!AÛ!ÿÀ!)Û(�µ

    EêµÝþ£ål¤§�ݧݧ¡È

    m8§48§�"ëY¼ê

    Ä�!{ü�E6/9Eo+£yêÆÄ�ïÄ

    é¤

    õECEAÛµE6/9Ùm)ÛNì

  • E�ê£Gauss�ê,Ä��êê, ´êêØEÓ¤§

    ©�£knêV\ü )¤�ê¤,êêØÞ

    pƧaاêêØ

    Gauss§Euler§Kummer§Kronecker§Dirichlet§Dedekind§...

  • Riemann ζ ¼ê§Euler product

    The purely arithmetic theory of complex numbers as pairs ofreal numbers was introduced by W. Hamilton (1837).He found a generalization of complex numbers, namely thequaternions, which form a non-commutative algebra

    �k)µEê�Ú?´êƤþ�¯

    Hadamard: ¢¥üýnm�á´§´ÏLEê

  • (k�µ/Ú½�þ0£17V¤

    ¥IµU�£o§13V¤§U�â§o�â£Á#¤

    y�o#µo!Ê�!!Á#

    rCþÚ?êƧ¤/êÆ¥�=ò:0§/¤/C

    þêÆ0

    oõ=È: Algebra�A�£g�¤D´±ÎÒ/0O£¤/ê0i§�{¡/ê0

  • ¼ê:

    Cþm�'X;©ÛÆÄ�Vg;Cz!$Ä�ó

    oõ=È:oõ=Ñ�½Â´µ/ª¥¹U§U¼ê"0

    /¼0/¹0Ï^

    @ÏïÄöµcX0§(k�§¤ê

  • åuéã/�;,�&?¶ê/m�xù¶graph ofa function

    :Ĥ/µw´Ä:�;,£´»¤¶

    kõ�²;−→Ãõ�?¿

    ê!/Ú¼ê�¤êÆÄ�ïÄé

    ê/´¼êA~

  • ¼êµalgebraic notation; geometrical representation; physi-cal laws

    Stevin, Kepler, Galileo,...

    ¼ ê £function¤ c § d 4 Ù Z ]17 V Ú \£variable§constant§parameter)"Úî^/fluent(6þ)0

    nÛ§XJp§Ëã|73§î.§K��§Fp

    §Ü§iù§ÛnÅdħ)|X§M§F

    �ËA§...

    8Üm�éA¶'X¶$¶N�§C§operator

  • ©ÛÆÄ�Vg!g!ïÄé,)Âñ!ëY!©ÚÈ©��ÓÑu:

    ¥I�4gµ

    ¶[¨µ/ºP§F�Ù§�Ø&0£B

    f5Ue6¤§ëY�*g£$fµlÑ�*g¤

    4 µ/�â0

    Cauchy§Weierstrass��õ

    4Ø�Ä:–¢ênصDedekind§Cantor§Weierstrass

  • ê�Vg�Øä´L

    êÆÎÒNXz

    CþêÆ

    )ÛAۧȩ

    EC¼êØ

  • ê�Vg�üzµ

    g,ê§Äê§Sê.gµéA§^S

    ¥I�êÆ��zµ

    l(-�ÎÒL«µ(-§Öê

    ¯KµXÛ^�þÎÒL«¤kêº

    ?§!z!Z!��

    ? µÊ

  • ¥IME? (decimal place value){¤µ

    ?§ Þµû£`�©¤§§z§Z§

    ? uеܱ£7©¤

    ʵS¢ÔI

    £Ê§üiÑy3À±ÏõÜ͵5¤r6§

    5Pf6§5f6§5@f6§5+f6¤

    8²£r!W!�!!Ö!ê¤

  • ±ÊOê

    ʱ?1�êÚ©ê�\!~!¦!Ø!m�

    «$§)§�

    5$f#²e1o6µ�u�§õuʧ`3

    ï 

    f²£ú�4V¤µÊPê{Lã~²({µk£Ù §lî§záZð§Z

    "§�z�

    ʵ¦Ø!m!©ê�O£Ú½{K¤

    �µ�²

  • ±ÊOê

  • êÆÿþóäµO!-§5!Ý

    êÆü{µÊ£^Êü¤§/Ê0�¹Â

    O-§5Ý

  • ¥¥¥III���êêêÆÆÆIIIÆÆÆ

    ¥I©zéêÆ�î>!î!î§O(!°(�

    Â

    ±{ÆO-

    55ÝÝ

  • ¥I©zéêÆg!{!Uå�w

    Êé¥Ió�Kµ

    $Ê ¡§EpÊ,ÑʧÊ#ЧÚʧʱ§Ê§Ê�§Ê§Êy§Ê8§Êï§Ê/§

    Êè§Ê*§Êû§Êû§Ê]§Ê|§...

  • O(§OK§O§O�§IO§YO§O:§O&§

    Oê§éO§¤O§�O§o°�O§...

    -±{§-Ÿ§-�

    ~5§5K§{5§5+Ƨ5ù§5

    Ì5�ݧر5ÝØU¤�§

    Ôl%¤§Ø}ݧ

    Ý{£5Ý{K¤§ÝK£5Ù{K¤§Ý�£U5Ý

    �¤§Ý°£±5Ý�°¤

    þü§zü§åÃÃü§Ñ*yü§ü§üA§ü

    ħüy§

  • 5±´#X`e6:/þ�(-£§�

  • ¥IgkÊåÒk/00g§=± L«/00"

    Ê¥�"´ "Ú$(J�"

    �K꣱ôÚ«©,½3êi� \�FI«Kꤧ

    $5ƵÊÙâ9Ù4 5

  • Laplace:/l

  • ? 3î³�Ê9!uе

    Stevin (?©ê¤µ3 0© 1 1© 4 2©

    Napier: 3.14éêu²ö

    /wå53êÆ¢¥§æ�#Luêi�¦

    {!Ø{!m²Úmá§Oå5AO¤¯qúM

    5§u´·m©�gko|©Ð^�{±)ûù

    ¯K"0

    Vieta: 314, 3|14

  • lllêêêÆÆÆ������NNNwwwEEECCC¼¼¼êêê

    AÛ!ÿÀ§ê§êاêAÛ§PDE§¼©Û§VÇ��éXµ

    •mNì½n§�/5• SchwarzÚnµü ��þ f ∗ds2 ≤ ds2§Ýþ.£§ùp ds2´ PoincaréÝþ

    •�ÝNÚ¼ê�35•êÿÀ��µÓÔ§ÓN¶iùNì½n,

    monodromy½n£)Ûòÿ¤

  • •üz½nµ��§Riemann¥¡§E²¡£{üé¡m¤

    •)Ûòÿ§õ¼êµ�iù¡• Cauchy-Riemann§§NÚ§§Green¼ê•)Ûêاý�¼ê!ý�§�/ª§�•Dirichlet¯K:C©nضBrown$Ķê¼L§y ³Ø

    EC¼êaصܣCauchy¤È©úª£Üؤ§ü �þNÚ¼ê�Ñt£Poisson¤Ø"

  • l/J0�/¢^0

    EC¼êµÆnóêÆ7Æ8

    Bf�: /

  • Apollonius: �I§�Ô!ý�!V£oõ=Ȥ

    üZc�uyA^µ1($Ä5Æ

    1Æ5

    ý�µý��ߺ£,�¡ý�¤k®à1�

    ^£�àߺ¤µPsúº!ºÚ�Àúº

    �Ô: «&ì�!ð�1�!Ã>Ù!�>"�º!XU!¥(U!��U9Yì!à1�

    V:U©"�º��O�

  • .KFßµÊg±þ§Ãª)

    C��!³Ûu)û(which kind of equations can be solvedvia radicals)

    ²1ú�¯Kµ

    Lambertßµ3îAÛLobachevski§Bolyoi§Gauss)ûy¢¢yµBeltrami§Klein§Poincaré