預力鋼梁與鋼筋混凝土柱自行復位接頭 之耐震行為研究 · i...

184
預力鋼梁與鋼筋混凝土柱自行復位接頭 之耐震行為研究 Seismic Behavior of Self-centering Connections with a Reinforced Concrete Column and Post-tensioned Steel Beams 生:陳俊翰 StudentJ. H.Chen 指導教授:周中哲 博士 AdvisorDr. C. C. Chou 國立交通大學 土木工程學系碩士班 碩士論文 A Thesis Submitted Institude of Civil Engineering National Chiao Tung University In Partial Fulfillment of the Requirements For the Degree of Master of Science in Civil Engineering September 2005 Hsinchu, Taiwan, Republic of China 中華民國九十四年九月

Upload: others

Post on 31-Aug-2019

8 views

Category:

Documents


0 download

TRANSCRIPT

  • I

    Seismic Behavior of Self-centering Connections with a Reinforced Concrete Column and Post-tensioned Steel Beams

    StudentJ. H.Chen

    AdvisorDr. C. C. Chou

    A Thesis

    Submitted Institude of Civil Engineering

    National Chiao Tung University

    In Partial Fulfillment of the Requirements

    For the Degree of Master of Science

    in

    Civil Engineering

    September 2005

    Hsinchu, Taiwan, Republic of China

  • I

    (1)

    (2)

    0.04 (3) 0.05

    (ABAQUS)

  • II

    Seismic Behavior of Self-centering Connections with a Reinforced

    Concrete Column and Post-tensioned Steel Beams StudentJ. H. Chen AdvisorDr. C. C. Chou

    Institude of Civil Engineering

    National Chiao Tung University

    Abstract

    The seismic performance of post-tensioned steel connections for moment-resisting

    frames was ewamined experimentally and analytically. Cyclic tests were conducted on three

    full-scale subassemblies, which had two steel beams post-tensioned to a reinforced concrete

    column (RCS) with high-strength strands to provide recentering response. Reduced flange

    plates (RFPs) welded to the column and bolted to the beam flange were used to incrase the

    dissipation of energy. Test results indicated that (1) the proposed buckling-restrained RFP was

    effective in dissipating energy in axial tension and compression, (2) the subassemblies could

    reach an interstory drift of 4% without strength degradation, and (3) buckling of the beam

    occurred at an interstory drift of 5%, causing a loss of the strand force, the recentering

    response, and the moment capacity. A general-purpose nonlinear finite element analysis

    program (ABAQUS) was used to perform a correlation study. The behavior of the steel beam

    under both post-tensioning and flexural loadings was described based on the experimental

    investigation and finite element analysis.

  • III

    DSI

  • IV

    .

    .

    .

    .

    ..1

    1.1 .1

    1.2 .2

    1.3 .3

    1.4 .3

    1.5 .4

    ..5

    2.1 .5

    2.2 .5

    2.2.1 ..5

    2.2.2 10

    2.2.3 13

    2.2.4 15

    2.2.5 15

    2.3 ...16

    2.3.1 117

    2.3.2 2 ...18

  • V

    2.3.3 318

    2.3.4 419

    2.3.5 519

    2.4 ...20

    2.5 ...21

    23

    3.1 .23

    3.2 .23

    3.3 1 24

    3.3.1 24

    3.3.2 25

    3.3.3 28

    3.4 2 29

    3.4.1 29

    3.4.2 30

    3.4.3 32

    3.5 3 32

    3.5.1 32

    3.5.2 33

    3.5.3 35

    3.6 4 36

    3.6.1 36

    3.6.2 37

    3.6.3 38

    3.7 5 39

  • VI

    3.7.1 39

    3.7.2 40

    3.7.3 41

    42

    4.1 ... 42

    4.2 .. .42

    4.3 ...44

    4.4 45

    47

    5.1 ...47

    5.2 ...49

    ..50

  • VII

    2.1 .53

    2.2 .53

    2.3 .54

    2.4 .54

    2.5 .55

    2.6 .55

    2.7 .55

    3.1 .56

    3.2 .56

    3.3 .57

    4.1 .58

    4.2 .59

  • VIII

    1.1 (Chou & Uang 2002) ..60

    1.2 RCS(CourtesyDeierlein 1997) ..60

    1.3 ....61

    2.1 .62

    2.2 ..63

    2.3 -64

    2.4 .65

    2.5 .65

    2.6 .66

    2.7 .66

    2.8 .67

    2.9 1 .68

    2.10 2 .69

    2.11 3 70

    2.12 4 .71

    2.13 5 .72

    2.14 .73

    2.15 74

    2.16 -.75

    2.17 -75

    2.18 76

    2.19 .76

    2.20 1 .78

    2.21 2 .80

  • IX

    2.22 3 .82

    2.23 4 .84

    2.24 5 .86

    2.25 .87

    3.1 1 88

    3.2 89

    3.3 1 89

    3.4 90

    3.5 1 90

    3.6 1 91

    3.7 92

    3.8 1 93

    3.9 1 93

    3.10 194

    3.11 94

    3.12 95

    3.13 195

    3.14 196

    3.15 97

    3.16 198

    3.17 199

    3.18 1(g = 0.01 rad) 100

    3.19 1 100

    3.20 2 101

    3.21 2 102

  • X

    3.22 2 102

    3.23 2 103

    3.24 2 104

    3.25 2 104

    3.26 2 105

    3.27 2 106

    3.28 2 107

    3.29 2 108

    3.30 2(g = 0.01 rad) 109

    3.31 2 109

    3.32 3 110

    3.33 3 111

    3.34 3 111

    3.35 3 112

    3.36 3 112

    3.37 3 113

    3.38 3 114

    3.39 3 115

    3.40 3 116

    3.41 3 117

    3.42 3 117

    3.43 4 118

    3.44 4 119

    3.45 4 119

    3.46 4 120

  • XI

    3.47 4 120

    3.48 4 121

    3.49 4 121

    3.50 4 122

    3.51 4 123

    3.52 4 124

    3.53 4 125

    3.54 4 125

    3.55 5 126

    3.56 5 127

    3.57 5 127

    3.58 5 128

    3.59 128

    3.60 5 129

    3.61 5 129

    3.62 5 130

    3.63 5 131

    3.64 5 132

    3.65 5 133

    4.1 4134

    4.2 4134

    4.3 135

    4.4 4 136

    4.5 4Mises136

    4.6 4 Mises137

  • XII

    4.7 4138

    4.8 4139

    4.9 140

    4.10 141

    4.11 -142

    4.12 1 143

    4.13 2 143

    4.14 3 144

    4.15 4 144

    4.16 5 145

    4.17 145

    4.18 4 146

    4.19 147

    4.20 148

    4.21 149

    4.22 150

    4.23 151

    4.24 151

  • XIII

    3.1 1152

    3.2 1 3152

    3.3 4 5153

    3.4 2 153

    3.5 1154

    3.6 1154

    3.7 1155

    3.8 1155

    3.9 1 ( = 0.005 rad) 156

    3.10 1 ( = 0.03 rad) 156

    3.11 1 ( = 0.03 rad) 157

    3.12 1 157

    3.13 1( = 0.04 rad) 158

    3.14 1 ( = 0.04 rad)158

    3.15 2 159

    3.16 2 ( = 0.005 rad) 159

    3.17 2( = 0.01 rad)160

    3.18 2( = 0.05 rad) 160

    3.19 2 0.05161

    3.20 3 162

    3.21 3 162

    3.22 3( = 0.03 rad)163

    3.23 3 ( = 0.04 rad) 163

    3.24 3(2nd = 0.04 rad)164

  • XIV

    3.25 4 164

    3.26 4( = 0.03 rad) 165

    3.27 4( = 0.04 rad) 165

    3.28 4( = 0.04 rad) 166

    3.29 4 ( = 0.05 rad) 166

    3.30 4( = 0.05 rad) 167

    3.31 5 167

    3.32 5( = 0.03 rad) 168

    3.33 5( = 0.04 rad) 168

    3.34 5 ( = 0.04 rad, 1st Test) 169

    3.35 5( = 0.04 rad, 2nd Test) 169

  • 1

    1.1

    (Chou and Chen 2005, Hewes and Priestley 2002)

    (Englekirk 1996, Cheok and Stone 1994, Cheok and Lew 1993,

    Priestley and Tao 1993)

    -

    1988 PRESSS (PREcast Seismic

    Structural System) 1990 NSF (National Science

    Foundation)

    60 m (Watanabe et al. 2000)

    ()

    (Priestley and MacRae 1996, Pampanin et al. 1999)

    ()

    1999

  • 2

    (Priestley 1996, Nakaki et al. 1999, Pampanin et al. 1999)

    2002

    39 (Englekirk 2002)

    (Chou and Uang 2002)( 1.1)

    (

    )

    1.2

    (Ricles et al. 2001, 2002,

    Christopoulos et al. 2002, Chou et al. 2004, 2005, Garlock et al. 2005,)

    Ricles et al. (2001, 2002)

    0.03

    (1)()

    (2)

    Christopoulos et al. (2002)

    H

    (1)

    (2)

    0.04

  • 3

    (Chou et al. 2004)

    0.05

    (Chou et al. 2005)

    1.3

    (Deierlein and Noguch 2004)

    ( 1.2 )

    1.4

    1.3

    [ 1.3 (a)][ 1.3

    (b)][ 1.3 (c)]

  • 4

    ABAQUS(2003)

    1.5

  • 5

    2.1

    1 2

    0.01 3

    0.02 4 5

    0.03

    2.22.3

    2.4 2.5

    2.2

    2.2.1

    M g 2.1

    7 [ 2.1(a)][

    2.1(b)] Md[ 2.1(c)]

    ( 1) 2

    My 3

    4 5 6 2.2(a)

  • 6

    LR in

    ( ) =RL

    s

    inSTin dxxAE

    TN0

    (2.1)

    NST( 2.2 NST = 4)

    Es(= 200 GPa)A(x)

    Tu,in

    Tl,in Tin f

    es

    inSTf AE

    TN= (2.2)

    Ae

    2.2(b) C

    inSTd

    xt

    fs TNdAdxEC t

    c

    =

    = 2 (2.3)

    Md()

    ( )[ ]RtRtind

    xt

    fs

    RR

    RtR

    d

    x linluinut

    fs

    RdSTdd

    tdTdT2dAdxE

    tTtdCdTdTxdAdxE

    MMM

    t

    c

    t

    c

    ++

    =

    +

    ++

    =

    +=

    2

    ,,

    ,,

    2

    22222

    (2.4)

    tRdtdu

    dl

    TRCR(2.1)in2.32.3(a)

    A36 2.3(a)

    y u

    Am Py Pu

    mRymyy btAP == (2.5)

    mRumuu btAP == (2.6)

  • 7

    bm

    2.3(b)

    x b(x)

    ( ) ( )( ) cbaxcbBxb

    bcxccxbxbcxcxRbRxb

    R

    R

    m

    +++=++=

    +=60tan2

    2)2()( 22

    (2.7a)

    mm98bb

    RRc

    mmbBb

    mma

    mR

    RR

    =

    =

    =

    =

    =

    22

    2

    17460cot2

    80

    (2.7b)

    R x ab c

    P R

    ( ) ( ) RR txbPx

    = (2.8)

    (2.8) 2.3(a)

    R(x)

    P

    ( ) ( ) ( )

    ( ) ( )

    +

    ++

    +=

    ===

    ++

    +

    +

    ++++

    ++

    c

    c

    cba

    bcR

    bc

    cRmsR

    cba

    c-sR

    cba

    cRcba

    c R

    dxB

    dxcxb

    dxxRbREt

    P

    dxEtxb

    PdxE

    xdxx

    160tan2

    122

    122

    (2.9)

    E Es Ep 2.3(c)

    (2.9)(2.1) in

    CRTR

    2.2(c)

    g

    Pampania et al. (2000) Christopoulos et al. (2002)

  • 8

    1. c

    2.2(c)

    ( )

    STSTSTSTb

    STST

    ST

    gtSTinSTSTinSTST AEANA

    ANL

    cdNNTNTNTNT

    +

    +=+= 12

    (2.10)

    N( N = 1 N =

    2)g LSTAST

    AbEST(= 195 GPa)c

    max

    +=

    += d

    dt

    gd

    t

    gxma M

    Md

    cd

    c

    (2.11)

    d Md

    t

    fd d

    2= (2.12)

    (= M/Md) C

    dAMM

    dxEdA

    dxEdA

    cxEdAC d

    dt

    gsd

    t

    gsxmasx

    +=

    +===

    c

    0

    c

    0

    c

    0

    c

    0

    (2.13)

    xx g

    gRtint ctd

    ++=

    2 (2.14)

    gRinc ct

    ++=

    2 (2.15)

    tc 2.3(c)

    - TR

    CR

    2. c

    = 1 TST C TR CR

    (2.10)(2.13)(2.14)(2.15)

  • 9

    RSTR TTCC +=+ (2.16)

    c c

    3.

    RST

    RR

    RtR

    tST

    MM

    ctCctdTcCcd

    TM

    +=

    ++

    ++

    +

    =

    2232

    2 (2.17)

    MMd (2.11)

    (1)(3) g

    2.1 23 4

    2.1 MR

    MST

    MR g 2.1(b)

    KR,2KR,3 KR,4

    2,

    1,2,

    1,2,

    1,2,R,2

    g

    RR

    gg

    RR MMMMK

    =

    = (2.18)

    2,3,

    2,3,3

    gg

    RRR,

    MMK

    = (2.19)

    3,4,

    3,4,4

    gg

    RRR,

    MMK

    = (2.20)

    MR,1MR,2MR,3MR,4g,1g,2g,3g,4 2.1(b)

    1 2 3 4 4

    5 MR,5 g,5

    R,2

    2,4,5, 2 K

    M Rgg = (2.21)

  • 10

    2,4,5, 2 RRR MMM = (2.22)

    6 g,6 MR,6

    )( 2,3,5,6, gggg = (2.23)

    )( 2356 RRRR MMMM = (2.24)

    7 g,7 0

    Mc,R KR,7 3

    4

    47 R,R, KK = (2.25)

    7,6,,,, Rg6R7RRc KMMM == (2.26)

    [ 2.1(c)](2.26)Md,ST

    0,, + STdRc MM (2.27)

    Mc,R MR,4

    Md,ST

    STdR MM ,4, (2.28)

    2.2.2

    2.4

    Kc

    KPZ Kb KER 2.5

    2

    6

    =

    HH

    LL

    HEI

    K cc

    bcracc (2.29)

  • 11

    HHc

    Lb Lc EIcrac

    ACI 318M/318RM (2002) 10.11.1

    gccrac IEEI 7.0= (2.30)

    IgEc

    PZ

    =

    ==

    cb

    c

    bcvc

    b

    cbcvc

    c

    cvPZ

    c

    PZPZ

    HLL

    dAGM

    Vd

    MAG

    GAV

    G

    295.02

    95.021

    (2.31)

    VcGcAcv

    PZ

    =

    = c

    c

    b

    c

    b

    cc

    b

    bcvc

    bc

    c

    b

    c

    bPZPZ LH

    dLL

    HLL

    d2

    AGM

    LHd

    LL 22 2

    95.0 (2.32)

    KPZ

    ( )

    =

    ==

    c

    b

    c

    b

    cc

    b

    b

    cvc

    cPZ

    b

    PZ

    bPZ

    Hd

    LL

    HLL

    d2

    AGL

    MMK

    2

    2295.0

    (2.33)

    Ricles et al. (2002)

    Kb

    2

    3

    b

    cbsb L

    LIEK = (2.34)

    Ib KER

    STd

    RdbER M

    MKK

    ,

    ,= (2.35)

    Md,R Md,ST(2.4)

  • 12

    2.4 K1

    ERbPZc KKKK

    K

    +++

    =111

    11 (2.36)

    M

    ( )gtT

    t

    STSTb

    STST

    ST

    gtSTSTST

    tST

    Kcd

    ANAAN

    LNcd

    AEN

    cd

    TNM

    ,S21

    2

    2

    =

    +

    =

    =

    (2.37)

    0.015 (

    2.6)(2.37)

    gtSTsSTSTb

    STST

    ST

    gsSTSTSTsST KdANA

    ANL

    NdAENTdNM

    ,1 =

    +

    == (2.38)

    ds

    KST

    tSTb

    ST

    KK

    K

    ,

    111

    += (2.39)

    1 2 K2

    ERSTPZc KKKK

    K

    +++

    =111

    12 (2.40)

    2 3

    KPR1

    2.2(c)

    12,1, PRgcRtR KdFdFM =+= (2.41)

    FR,t FR,c

    d1 d2

  • 13

    2.3(c)

    apgapttR KdKF 1, == (2.42)

    aegaeccR KdKF 2, == (2.43)

    tcKap

    Kae(2.42)(2.43)

    (2.41)

    ( )1

    22

    212,1,

    PRg

    aeapgcRtR

    K

    dKdKdFdFM

    =

    +=+= (2.44)

    2.4 K3

    1

    3 1111

    PRSTPZc KKKK

    K

    +++

    = (2.45)

    (2.41)

    apgapccR KdKF 2, == (2.46)

    ( ) 222212,1, PRgapgcRtR KddKdFdFM =+=+= (2.47) 2.4 K4

    2

    4 1111

    PRSTPZc KKKK

    K

    +++

    = (2.48)

    2.4 4

    5 6 K5 K6 K2

    K3 K7 K4

    2.2.3

  • 14

    ASTM A 572 Gr. 50

    TST

    Mc

    ( ) ( )( )

    f

    STeyc y

    xIxA

    TxM )( = (2.49)

    ( ) ( ) bfrfr AxbtxA += 2 (2.50)

    ( ) ( ) ( )[ ] bbfrbfr IdtdxbxI ++= 332121 (2.51)

    A(x)I(x)yf

    ye(= 1.1y)tfrbfr(x)

    2.7 Mc Mdm

    Mdm Mc

    tfr bfr

    (2.50)(2.51)

    Mc Mdm(2.49)

    ( ) ( )xItyM

    xAT frfdmST

    ye

    )( ++ (2.52)

    fffrfr

    STSTye tbtb

    TAT

    +=

    min

    (2.53)

    2.7 A

    M1 B M2

    M1M2

    ( )

    =

    11

    11AAy

    xIMbf

    (2.54)

    RMM = 2 (2.55)

    A1

  • 15

    2.2.4

    TSTMdi

    1. c c=c/c

    2. i i y

    y Es i

    3. Ti

    Ti TST

    4. 1 3 c

    5. 4Mi

    6. 5Mi

    Md

    7. 1 6 6

    2.2.5

    (RFP)[ 2.2(c)g]

    1. RFPg =0.03 0.1

    Mnp RFP MR

    MnpLR RFP(450 mm) tR =

    8 mm

  • 16

    2. bR

    RRRt

    npR Fttd

    Mb

    )( +

    (2.56)

    FR A36 0.1[ 2.3(a)]

    bR 120 mm

    3. LR[2.3 (b)]RFP-[2.3 (c)]

    4. g =0.03RFP(2.14)(2.15) 2.3(c)

    5. RFP MR

    Md,ST

    2.3

    650650 mm28

    350 kg/cm2 12#11 Grade 60

    2.8(a) Response (2000)

    [ 2.8(b)] Mc =1526 kN-m A572 Gr. 50 H

    (5002001016) Mnp = 723 kN-m

    npc MM = 2.11(=bf /2tf) 6.25

    (=h /tw) 50 AISC (2002)

    48.012.1

    33.2 =ys

    w

    yb

    u

    FEth

    PP

    (2.57)

    Pu 1650 kN

    2.9 2.13 1

    2

  • 17

    3

    4

    5

    AISC(2002)

    2.1

    2.3.1 1

    Md,ST 0.42

    Mnp Md,R 0.12 Mnp 2.2.1

    1300 kN 1 4 13 mm ASTM A416 Grade 270

    0.44 Fpu Fpu

    (= 1860 MPa) A36 12 mm

    2.9(d)

    2.14(a)

    0.01

    2.2.3

    0.01 Mc Mdm[ 2.15(a)]

    750 mm (= 1.5 db) 0.03

    (2.10)(2.17)( 2.2)(2.52)(2.53)

    tfr = 8.1 mm 9 mm

    2.2.2 2.3g

    t 2.4cbePZ

  • 18

    2.3.2 2

    Md,ST 0.3

    Mnp Md,R 0.07 Mnp 2.2.1

    975 kN 2 7 13 mm ASTM A416 Grade

    270 14 0.38 Fpu

    A36 8 mm

    2.10(d)

    2.14(b) 0.01

    2.2.3 Mc Mdm

    2.15(b) 630 mm (= 1.25

    db) 0.03(2.10)(2.17)

    ( 2.2) 2.2.2 2.3

    0.01 0.0168

    2.3.3 3

    Md,ST 0.42

    Mnp Md,R 0.12 Mnp 2.2.1

    1300 kN 3 4 13 mm ASTM A416 Grade

    270 16 0.44 Fpu

    A36 12 mm

    2.11(d) 2.14(c)

    0.02

    2.2.3 Mc Mdm

    2.15(c) 1000 mm (= 2 db) 0.03

  • 19

    (2.10)(2.17)( 2.2)

    2.3 2.4

    2.3.4 4

    Md,ST

    0.3 Mnp Md,R 0.09 Mnp 2.2.1

    975 kN 4 7 13 mm ASTM A416 Grade

    270 14 0.38 Fpu

    A36 8 mm 6 mm

    2.12

    2.14(d) 0.03

    2.2.3

    McMdm 2.15(d)

    750 mm (= 1.5 db) 0.03(2.10)(2.17)

    ( 2.2) 2.2.2

    2.3 0.03 0.0357

    ( 2.4)

    2.3.5 5

    Md,ST 0.3

    Mnp Md,R 0.1 Mnp

    2.2.1 975 kN 5 4 13

    mm ASTM A416 Grade 270 16

    0.33 Fpu A36 8 mm

    6 mm 2.13

  • 20

    2.14(c)

    0.03 AISC(2002)

    2.2.3 Mc Md

    2.15(e) 1000 mm (= 2 db)

    0.03(2.10)(2.17)(

    2.2) 2.2.2 2.3

    0.036( 2.4)

    2.4

    A572 Gr. 50

    A36

    ( 2.5)

    2.16

    2.6 28

    fc = 34.5 MPa 3

    3

    2.7

    7ASTM

    A416 Grad 270 13 mm Fpu = 1860 MPa 2.17

    7 -(CSDCV

    1999)

    sss f 1965000086.0 = (2.58)

    007.0276.018600086.0

    =

    sss f

    (2.59)

  • 21

    2.5

    2.18 1

    2.19

    1 5 2.20 2.24

    2

    g

    total PZ

    c b

    g

    1. PZ

    Uang Bonded (1996)

    ( 2.25)

    ( )4322

    2 +=

    abba (2.60)

    34 a b

    +=

    2c

    bb

    bPZd

    LHd

    L

    (2.61)

    Lb(2675 mm)H

  • 22

    (3480 mm)dc(650 mm)

    2. c

    ( )

    =

    Hd

    db

    bc 121

    (2.62)

    1 2 2.25

    +=

    2c

    bccd

    L (2.63)

    3. b

    =

    LL

    EIFL b

    b 3

    3

    (2.64)

    F

    4. g

    g

    bgg L = (2.65)

    (1)( S)

    (2)( R )

  • 23

    3.1

    3.2

    3.3 3.7

    3.2

    1 2

    3 4 5

    1 2

    3.1

    135 90

    ( 3.2)( 3.3) 28

    ( 3.4) 4

    ( 3.5) T(3.1)

    jA

    TP = (3.1)

  • 24

    Aj(= 40.1cm2) T

    (3.1)

    3.3 1

    3.3.1

    1

    ( 3.6) 3.7

    = 0.00375

    = 0.005

    1 2 ( 3.8)

    ( 3.9)

    = 0.0075 25 cm

    0.1 mm

    = 0.01

    150 mm 42 cm

    0.3 mm

    = 0.02

    2

    0.7 mm = 0.03 1 2

    ( 3.10) 3.11

    0.04 1 2

    0.8 mm ( 3.12) =

  • 25

    0.04 1( 3.13)

    1

    0.05 1 ( 3.14) 1

    1( 3.1)

    3.3.2

    3.1 1 2 M

    Mnp

    0.04

    0.05

    ( 3.13 3.14) 3.2

    KTE(= 81,000 kN-m) 0.005

    0.04

    839 kN-m( = 1.12 Mnp)

    3.3

    3.4

    95% 3.3

    0.04 1200 kN

    1150 kN 3.5

    2.2(2.10)

    2.2

  • 26

    ()

    0.04

    (P4%/bPy) 3.1

    3.6(a) 1

    2.20(a) L1 L2(2.60) 400

    kN-m

    3.6(b) c(2.62)

    2.5

    3.7(a)

    1

    3.7(b) 0.01

    L3 L4[ 2.20(b)]

    ( 3.8)

    0.02

    ( 2.2)

    g L3 L4[ 2.20(b)]

  • 27

    3.9 3.2

    ( 3.10)

    TEg K

    M= (3.2)

    1 1300 kN

    1205 kN

    3.11 1 = 0.05

    0.8

    3.12

    1

    L9 L10 [ 2.20(b)]

    3.13

    0.03

    15.2 mm()

    drc 29 mm drt 497 mm(3.3)

    t c:

    grcc

    grtt

    d

    d

    =

    =

    - (3.3)

    3.13

  • 28

    0.01

    3.14

    0.075 (

    1 )( 2 )

    3.3

    3.3.3

    3.15 2

    3.16 (S11S13

    S14)(S15) 0.03

    3.17 1.5

    (450 mm)

    2.2

    3.18

    0.01

    3.19 0.02

    0.03 (

    0.038) 1.5( 2.2)

  • 29

    0.034 = 0.029 (= 1.5y)

    ( 3.13)

    3.4 2

    3.4.1

    2 1

    ( 3.15

    ) = 0.00375

    = 0.005 1 2

    ( 3.16)

    = 0.0075

    25 cm 0.1 mm

    0.1 mm

    = 0.01

    ( 3.17) 0.1 mm

    = 0.02

    = 0.03 1 2

    0.04 1 2

    0.05 2 1

    ( 3.18) 1 2

    ( 3.19)

  • 30

    3.4.2

    3.20 1 2

    0.02

    3.2 KTE 71,700

    kN-m 0.04 696 kN-m( = 0.93

    Mnp) 3.21 1

    3.21( 3.4) 2

    (956 kN)(8 mm) 1

    1

    8% 0.03

    ( 3.21) 957 kN 835 kN 3.22

    2.2

    (2.10) 2.2

    3.23(a) 2

    3.23 (b) c 2

    3.7(a)

    1

    [ 3.7(b)]

    1

    (

  • 31

    3.24) 1

    0.015

    (3.2) g

    ( 3.25)

    2 975 kN

    957 kN

    3.11 2 = 0.005

    = 0.05

    10% 3.12 2

    1

    3.26

    0.03 16.7 mm

    () drc = 4 mm

    drt = 514 mm(3.3)

    3.26

  • 32

    3.4.3

    3.27

    2 3.28

    (S17) 0.03

    3.29

    2.2

    3.30

    0.02

    3.31

    0.005

    2

    0.02 2

    ( 3.2) Garlock et al. (2005)

    0.05 = 0.12 (= 6y)

    3.5 3

    3.5.1

    3 10 mm

    12 mm

  • 33

    ( 3.20)

    3.21 =

    0.005

    = 0.0075

    21 cm 0.1 mm

    = 0.01

    0.1 mm

    = 0.02 1

    = 0.03

    ( 3.22) 0.04( 3.23)

    2

    0.04

    AISC(2002)

    0.04 2( 3.24)

    3.5.2

    3.32 1 2

    0.04

    3.2 KTE 87,807 kN-m

    0.04 916 kN-m( = 1.2 Mnp)

    3.33

  • 34

    3(1286 kN)

    1 1

    0.03

    ( 3.33) 1286 kN 1198

    kN 3.34 2.2

    (2.10)

    () 2.2

    ()

    3.7(a) 1

    3.7(b)

    3.35

    0.015

    L3L4(3.2)

    3.36

    3 1300 kN

    1286 kN

    3.11 3 = 0.03

    3

    0.04 7% 3

    3.12

    3.32

  • 35

    3.37 0.03 15.3

    mm

    drc = 31 mm drt = 499 mm(3.3)

    () 3.37

    3.5.3

    3.38

    [

    3.38 (h)]

    2 3.39

    2

    S15 0.03

    3.40 0.03

    3.41

    0.03

    3.42 0.03

  • 36

    3.6 4

    3.6.1

    4 6 mm 8 mm

    ( 3.25) = 0.005

    28 mm 0.1 mm

    = 0.0075 = 0.01

    0.2 mm

    = 0.02

    4 mm

    = 0.03

    8 mm

    ( 3.26) 0.04 2

    0.04 ( 3.27) 2

    1

    ( 3.28)

    0.05 2 1

    2( 3.29)

    ( 3.30)

  • 37

    3.6.2

    3.43 1 2

    3.2 KTE 74,700

    kN-m 0.04 644 kN-m( = 0.85

    Mnp) 3.44

    ( 3.4) 230 kN-m 0.04

    186 kN-m 977 kN 871 kN 11% 3.45

    3.46 c 2

    3.7(a)

    3.7(b) 0.01

    0.04

    73%

    3.47

    0.015

    (3.2) g

    ( 3.48)

    4 975 kN 971 kN

    3.11 0.05

    10% 4

  • 38

    3.12

    4 8 mm 1

    3

    ( 2.14)

    0.04

    3.49

    0.03 15.6 mm

    drc = 29 mm drt =

    497 mm(3.3)

    3.6.3

    3.50

    L1 L2

    3.50(b)

    2 3.51 1.5

    3.52 750 mm

    450 mm

    3.53

  • 39

    0.03

    3.54 0.04

    3.7 5

    3.7.1

    5 6 mm 8 mm

    ( 3.31) = 0.00375

    = 0.005

    42 cm 0.1 mm = 0.0075

    = 0.01

    0.2 mm

    = 0.02

    = 0.03

    ( 3.32) 0.04

    4 2 (

    3.33) 0.04(

    3.34)

    0.04 1( 3.35)

  • 40

    3.7.2 5

    3.55 1 2

    KTE

    80,400 kN-m 0.04 723

    kN-m( = 1 Mnp) 3.56

    1 957 kN 926 kN 2

    954 kN

    2 3.56

    3.4 3.57

    3.58

    c 2

    3.7

    3.59

    1 3 0.02

    2

    (3.2) g

    ( 3.60)

    5 975 kN

    957 kN

    3.11 5 = 0.04

    2.2 fp/y = 0.85

  • 41

    ( 2.2)

    3.1

    0.04 MR

    Md,ST

    3.61 0.03 15.1

    mm

    drc = 29 mm drt = 497 mm(3.3)

    3.7.3

    3.62

    3.62(b)

    [ 3.62(h)]

    1 3.63

    3.64

    3.65

    0.03

  • 42

    4.1

    Hibbit,

    Karlsson and Sorensen ABAQUS(2003)

    4.2

    4.3

    4.4 4.5

    4.2

    4(

    4.1)

    4.2 4

    4(S4R) 5

    5

    203,000 MPa 0.3

    A36 ( 4.3)

    (Isotropic Hardening)

  • 43

    si

    sb

    binST

    STST

    STinsi EA

    LTNEALT

    += (4.1)

    TinLSTLbAST

    AbESTEs

    NST

    (Contact)

    (Rough)

    2.2 A36

    ( 4.3) 4

    4.4

    330 kN

    305 kN 8 %(Mises Stress)

    ( 4.5)

    (

    4.6) 11S 4.7(a)

    340 MPa Fy = 318 MPa

    ( 4.8)

    11S

    8%

  • 44

    bm tR R 4.1 4.9

    810 mm 80 mm

    220 mm 180 mm

    R

    R 60 mm127 mm 180

    mm 4.9

    (Pyt,R)(bmtR)(Py)

    (=Pyt,R/Py) (Pu,R) (Pu)

    (=Pu,R/Pu) 4.10 bm

    1 bm

    =

    4.3

    4.11 127 mm 120 mm

    1.08 2.2

    4.12 4.16

  • 45

    (Isotropic Hardening)

    4.2

    4.17

    LFRP ( 4.2)

    4.4

    8

    (C3D8R) 3

    3

    (Beam) 3

    Ec 29,370 MPa ( = 'cf57000 ) 'cf 34.5 MPa

    0.2

    DSI

    195,000MPa 0.3

  • 46

    (Hard)

    (Rough)

    (Frictionless)

    4.18 4

    4.19(a)

    4.19(b) 4%

    4.22

    410 MPa

    4.20

    4.21

    ABAQUS

    4.23

    4.24

  • 47

    5.1

    650650 H5002001016

    1 2

    1.25db 2db( db)

    1 0.04

    2 4 0.020.03 0.04

    5 0.04

    0.04

    1. 2 4 5-

    2

    4 5 0.04

    ( 3.12) 1.5% 1

    3

    ( 3.1) 0.04

    2.3%

    2. 5

    16 4 14

  • 48

    ( 3.1) 4 5 971 kN 957 kN

    318 kN-m 311 kN-m

    3. 2 4 5

    1.25db1.5db 2db

    2.2 1 1.5db 2

    1.25db 1300 kN 2 975 kN 1

    0.02

    2.2 0.03

    1.5y 1 2

    0.01 0.03

    1.5y 2

    0.04 6

    4.

    ( 3.3)

    5.

    R bm( 4.10)

    6. ABAQUS

  • 49

    ( 4.21)

    5.2

    1.

    2.

  • 50

    1. AISC. (2002). Seismic provisions for structural steel buildings. AISC, Chicago. IL.

    2. ACI. (2002). Building Code and Commentary. ACI 318M-02/318RM-02.

    3. Cheok, G. and Lew, H. (1993). Model precast cncrete beam-to-column connections

    subject to cyclic loading. PCI J., 38 (4), 80-92.

    4. Cheok, G. and Stone, W. (1994). Performance of 1/3 scale model precast concrete

    beam-column connections subjected to cyclic inelastic loadsReport No. 4, Rep. No.

    NISTIR 5436, National Institute of Standards and Technology, NIST, Gaithersburg, Md.

    5. Chou, C. C. and Uang, C. M. (2002). Cyclic performance of a type of steel beam to

    steel-encased reinforced concrete column moment connection. J. Constructional Steel

    Research, 58, 637-663.

    6. Christopoulos, C., Filiatrault, A., Uang, C. M., and Folz, B. (2002). Posttensioned energy

    dissipating connections for moment-resisting steel frames. J. Struct. Eng., ASCE, 128(9),

    11111120.

    7. Christopoulos, C., Filiatrault, A., and Folz, B. (2002). Seismic response of self-centring

    hysteretic SDOF systems. Earthquake Eng. Struct. Dyn., 31, 11311150.

    8. Chou, C. C., Chen, J. H., Chen, Y. C., (2004) Performance evaluation of posttensioned

    steel connections for moment-resisting frames 6th Korea-Japan-Taiwan Joint Seminar on

    Earthquake Engineering for Building Structures, Taiwan.

    9. Chou, C. C. and Chen, Y. H. (2005). Cyclic tests of post-tensioned precast CFT segmental

    bridge columns with unbonded strands. Earthguake Eng. Struct. Dyn. (Accepted)

    10. Chou, C. C., Chen, J. H., Chen, Y. C., and Tsai, K. C. (2005). Experimental and

    Analytical Studies of Self-Centering Steel Connections. US-Taiwan Workshop on

    Self-Centering Structural Systems, NCREE Report No:05-004, Taipei, Taiwan.

    11.Chou, C. C., Tsai, K. C., Chen, J. H., Chen, Y. C., and Chuang, S. C. (2005) Cyclic

    Behavior of Post-tensioned Steel Connections with Reduced Flange Plate and Slab. 1st

    International Conference on Advances in Experimental Structural Engineering, Nagoya,

    Japan.

    12.Deierlein, G. G. and Noguchi, H. (2004). Overview of U.S.-Tapan Research on the

    Seismic Design of Composite Reinforced Concrete and Steel moment frame Structures. J.

  • 51

    Struct. Eng. ASCE, 130(2), 361-367.

    13.Englekirk, R. E. (1996). An innovative design solution for precast prestressed concrete

    buildings in high seismic zones. PCI J., 41(4), 4453.

    14.Englekirk, R. E. (2002). Design-construction of the paramount a 39-story precast

    prestressed concrete apartment building. PCI J., 47(4), 5671.

    15.Garlock, M., Ricles, J. M., Sause, R. (2005). Experimental studies of full-scale

    posttensioned steel connections. J. Struct. Eng., 131(3), 448448.

    16.Hews J. T. and Priestley, M. T. N. (2002). Seismic design and performance of precast

    concrete segmental bridge columns. Rep. NO. SSRP 2001/25, University of California,

    San Diego, La Jella. CA.

    17.Nakaki, S. D., Stanton, J. F., and Sritharan, S. (1999). An overview of the PRESSS

    five-story precast test building. PCI J., 44(2), 2639.

    18.Nishiyama, M., Watanabe, F., and Muaguruma, H. (1991). Seismic performance of

    prestressed concrete beam-column joint assemblages. Pacific Conference on Earthquake

    Engineering, New Zealand, 217228.

    19.Park, R., and Thompson, K. J. (1977). Cyclic load tests on prestressed and partially

    prestressed beam-column joints. PCI J., 22(5), 84100.

    20.Pampanin, S., Priestley, M. J. N., and Sritharan, S. (1999). Frame direction modeling of

    the five-story PRESSS precast test building. Rep. No. SSRP 99/20, University of

    California, San Diego, La Jolla, CA.

    21.Priestley, M. J. N., and Tao, J. R. (1993). Seismic response of precast prestressed

    concrete frames with partially debonded tendons. PCI J., 38(1), 5866.

    22.Priestley, M. J. N., and MacRae, G. A. (1996). Seismic tests of precast beam-to-column

    joint subassemblages with unbonded tendons. PCI J., 41(1), 6481.

    23.Priestley, M. J. N. (1996). The PRESSS program-current status and proposed plans for

    phase III. PCI J., 41(2), 2240.

    24.Ricles, J. M., Sause, R., Garlock, M. M., and Zhao, C. (2001). Posttensioned

    seismic-resistant connections for steel frames. J. Struct. Eng., ASCE, 127(2), 113121.

    25.Ricles, J. M., Sause, R., Peng, S. W., and Lu, L. W. (2002). Experimental evaluation of

    earthquake resistant posttensioned steel connections. J. Struct. Eng., ASCE, 128(7),

  • 52

    850859.

    26.Rojas, P., Ricles, J. M., Sause, R. (2005). Seismic performance of post-tensioned steel

    moment resisting frames with friction devices. J. Struct. Eng., ASCE, 131(4), 529540.

    27.Uang, C. M. and Bonded, D. (1996). Static Cyclic Testing of Pre-Northridge and haunch

    repaired Steel moment Connections. SSRP 96/102, University of California, Sau Diego,

    CA.

    28.Watanabe, F., Okamoto, S., Hiraishi, H. (2000). Development of the Structual design and

    construction guideline for high-rise PC buildings Japanese PC project. 12WCEE.

  • 53

    2.1

    Specimen No. 1 2 3 4 5

    Jacket No NO Yes Yes Yes

    RFP-to-Column Detail Embedemet Bolt Weld Weld Weld

    FRP Length 1.5 db 1.25 db 2 db 1.5 db 2 db

    NO. of Strands 16 14 16 14 16

    Target Drift (%) 2 2 3 4 4

    tR (mm) 12 8 12 8 8

    Notedb = 500 mm

    2.2

    Specimen

    No. STdRd

    MM

    ,

    , np

    d

    MM

    uST

    in

    TT

    ,

    np

    y

    MM

    np

    R

    MM 03.0,

    np

    ST

    MM 03.0,

    npMM 03.0

    uST

    ST

    TT

    ,

    03.0, R y

    fp

    1 0.29 0.54 0.44 0.85 0.5 0.60 1.01 0.63 0.107 1.25

    2 0.22 0.37 0.38 0.67 0.32 0.47 0.76 0.56 0.098 0.95

    3 0.29 0.54 0.44 0.85 0.5 0.60 1.01 0.63 0.107 1.05

    4 0.3 0.39 0.38 0.67 0.32 0.47 0.76 0.56 0.104 0.9

    5 0.33 0.40 0.33 0.67 0.32 0.49 0.8 0.52 0.111 0.85

    Note R g

    fp g = 0.03

  • 54

    2.3

    Specimen No. 1 2 3 4 5

    Kc (kN-m) 748725 748725 748725 748725 748725 KPZ (kN-m) 385711 385711 800749 634737 634737 Kb (kN-m) 115805 115805 115805 115805 115805

    KST,t (kN-m) 4253 4158 4253 4158 4253 KST (kN-m) 4102 4014 4102 4014 4102 KER (kN-m) 39374 32425 40532 34742 37058 KPR1 (kN-m) 2225 1736 2225 2051 2051 KPR2 (kN-m) 1487 1678 1487 1561 1561 K1 (kN-m) 96410 93681 111348 104673 105788

    K2= K5 (kN-m) 37134 31876 40018 34826 36756 K3= K6 (kN-m) 6174 5623 6225 5959 6045 K4= K7 (kN-m) 5469 5567 5510 5486 5572

    2.4

    Specimen c (rad) be (rad) PZ (rad) g (rad) t (rad) 1 0.0007 0.0047 0.0014 0.01 0.0168 2 0.0005 0.0033 0.0010 0.01 0.0148 3 0.0008 0.0052 0.0007 0.02 0.0267 4 0.0007 0.0042 0.0008 0.03 0.0357 5 0.0007 0.0045 0.0008 0.03 0.0360

  • 55

    2.5

    Beam Item Web Flange FRP

    Jacket RFP

    Grade A572 A572 A572 A36 A36 Thickness (mm) 10 16 9 6 10 8 12

    Fy (MPa) 400 393 418 310 290 324 290 Fu (MPa) 517 496 545 431 428 441 434 y (%) 0.202 0.197 0.209 0.155 0.144 0.163 0.146u (%) 18.9 18.1 19.2 21.8 20.7 22.3 21.5

    2.6

    No. Fy (MPa) Fu (MPa) y (%) u (%) 4 372 448 0.186 20.2 11 398 487 0.199 19.2

    2.7

    Cylinder NO. 1 2 3 Average 28 Day (MPa) 39 39 38 39

    Specimen 1 D.O.T (MPa) 34 35 38 36 Specimen 2 D.O.T (MPa) 38 29 33 32 Specimen 3 D.O.T (MPa) 34 35 39 36 Specimen 4 D.O.T (MPa) 34 34 40 36 Specimen 5 D.O.T (MPa) 37 38 32 36

  • 56

    3.1

    Specimen

    NO. inT

    (kN) uin

    TT

    TEK

    (kN-m)

    TPK

    (kN-m)

    dM

    (kN-m) npSTd

    MM ,

    np

    d

    MM

    np

    y

    MM

    yPP

    %4 npM

    M %4 %4

    np

    ST

    MM

    %4

    np

    R

    MM

    1 1203 0.41 81000 6270 412 0.45 0.57 0.76 0.43 1.02 0.54 0.48

    2 957 0.37 71748 6960 340 0.38 0.47 0.59 0.33 0.96 0.45 0.51

    3 1286 0.44 87807 7320 427 0.47 0.59 0.80 0.46 1.27 0.63 0.64

    4 971 0.38 74700 4620 318 0.36 0.44 0.63 0.37 0.89 0.47 0.42

    5 957 0.33 80400 7800 311 0.35 0.43 0.62 0.39 0.96 0.54 0.42

    3.2

    2% 3%

    Beam 1

    g,exp

    (0.01 rad)

    Beam 2

    g,exp

    (0.01 rad)

    Beam 1

    g,exp

    (0.01 rad)

    Beam 2

    g,exp

    (0.01 rad)

    Specimen g,th (0.01 rad)

    + - + -

    g,th

    (0.01 rad)

    + - + -

    1 1.36 1.07 1.12 1.06 1.12 2.29 1.98 2.03 1.97 2.02

    2 1.48 1.24 1.29 1.25 1.30 2.44 2.16 2.20 2.14 2.22

    3 1.31 1.18 1.22 1.16 1.26 2.24 2.11 2.14 2.08 2.19

    4 1.44 1.31 1.31 1.32 1.32 2.40 2.24 2.24 2.26 2.26

    5 1.44 1.29 1.33 1.28 1.33 2.39 2.21 2.25 2.22 2.27

    4% 5%

    Beam 1

    g,exp

    (0.01 rad)

    Beam 2

    g,exp

    (0.01 rad)

    Beam 1

    g,exp

    (0.01 rad)

    Beam 2

    g,exp

    (0.01 rad)

    Specimen g,th

    (0.01 rad)

    + - + -

    g,th

    (0.01 rad)

    + - + -

    1 3.22 2.92 3.09 2.98 2.99 4.16 4.22 4.17 4.43 4.46

    2 3.40 3.10 3.14 3.10 3.17 4.36 4.06 4.12 4.06 4.11

    3 3.17 3.06 3.06 3.03 3.12 - - - - -

    4 3.36 3.19 3.19 3.20 3.21 4.32 4.43 4.39 4.42 4.17

    5 3.34 3.15 3.19 3.16 3.21 - - - - -

  • 57

    3.3

    0.75 % 1 % 2 % 3 % 4 % Specimen

    No.

    sST,

    iST,

    MM

    sR,

    iR,

    MM

    sST,

    iST,

    MM

    sR,

    iR,

    MM

    sST,

    iST,

    MM

    sR,

    iR,

    MM

    sST,

    iST,

    MM

    sR,

    iR,

    MM

    sST,

    iST,

    MM

    sR,

    iR,

    MM

    1 0.99 0.52 0.96 1.03 0.97 1.16 0.96 1.18 0.95 1.15 2 0.95 0.70 0.87 1.03 0.92 1.16 0.90 1.17 0.87 1.31 3 0.96 0.56 0.91 0.98 0.97 1.13 0.97 1.12 0.97 1.08 4 0.98 0.80 0.93 0.94 1.01 1.10 1.00 1.14 0.99 1.16 5 0.98 0.98 0.89 1.08 0.98 1.17 0.98 1.22 0.97 1.24 Note iST,M =

    iR,M =

    sST,M =

    sR,M =

  • 58

    4.1

    Specimen bR(mm) R(mm) tR(mm)Elastic Stiffness

    (kN/mm) yRyt

    PP ,

    u

    Ru

    PP ,

    y

    Ryc

    PP ,

    BR50R60T5 50 60 5 468 1.12 1.14 1.13

    BR50R127T5 50 120 5 379 1.08 1.06 1.09

    BR50R180T5 50 180 5 342 1.07 1.03 1.08

    BR120R60T5 120 60 5 690 1.13 1.14 1.14

    BR120R127T5 120 120 5 618 1.09 1.06 1.10

    BR120R180T5 120 180 5 573 1.07 1.02 1.08

    BR150R60tT 150 60 5 794 1.11 1.16 1.12

    BR150R127T5 150 120 5 729 1.07 1.10 1.08

    BR150R180T5 150 180 5 717 1.05 1.07 1.06

    BR50R60T8 50 60 8 590 1.11 1.16 1.12

    BR50R127T8 50 120 8 569 1.07 1.09 1.08

    BR50R180T8 50 180 8 513 1.05 1.07 1.06

    BR120R60T8 120 60 8 1062 1.13 1.13 1.14

    BR120R127T8 120 120 8 927 1.09 1.05 1.10

    BR120R180T8 120 180 8 860 1.07 1.02 1.08

    BR150R60T8 150 60 8 1191 1.12 1.14 1.13

    BR150R127T8 150 120 8 1093 1.08 1.06 1.09

    BR150R180T8 150 180 8 1075 1.07 1.03 1.08

  • 59

    4.2

    Name bR

    (mm)

    R

    (mm)

    tR (mm)

    Tin (kN)

    Md,R (kN-m)

    MR,0.03 (kN-m) b

    FRP

    dL

    BR50R60T5P975 50 60 5 975 37 542 0.43

    BR50R127T5P975 50 127 5 975 30 536 0.38

    BR150R127T5P975 150 127 5 975 27 559 0.58

    BR150R127T8P975 150 127 8 975 54 597 0.89

    BR150R180T8P975 150 180 8 975 49 588 0.82

    BR150R127T8P1300 150 127 8 1300 95 673 1.8

    BR150R127T12P1300 150 127 12 1300 142 813 2.4

  • 60

    1.1 (CourtesyChou & Uang 2002)

    1.2 RCS (Courtesy: Deierlein and Noguchi 2004)

  • 61

    (a) Welded RFP

    (b) Embeded RFP

    (c) Bolted RFP

    1.3

    RFP Beam

    FRP

    Strands

    Jacket

    RFP Beam

    FRP

    Strands

    Column

    RFP Beam

    FRP

    Strands

    Column

    Column

  • 62

    M

    g

    1 2 356

    4

    7

    o

    Md,ST

    (a) Strands

    g1

    23 4

    567

    Md,R

    Mc,Ro

    KR,2KR,3 KR,4

    KR,5

    KR,6KR,7

    (b) Reduced Flange Plates (RFPs)

    1

    M

    23

    4

    56

    7

    MyMd

    og

    (c) Strands + RFPs

    2.1

  • 63

    l,in

    u,in

    dldu

    dt

    Tu,in

    T l,in

    LR

    fAx

    (a) Post-tensioning State

    x Tu,in

    T l,inV br

    CR

    TR

    xc

    2fc

    C

    VblTl,in

    Tu,in

    V clM cl

    V cuM cu

    (b) Before Decompression

    g

    TR

    CR

    C

    V clM cl

    bl

    V cuM cu

    Tu

    Tlx c

    Tu

    TlV br

    (c) Decompression

    2.2

  • 64

    Strain, St

    ress

    ,

    (y, y)(u, u)

    Bi-linearApproximation

    Es1

    Ep1

    (a) Stress-Strain Relationship

    o

    b(x)

    60R=127 mm

    x

    B R(8

    10 m

    m)

    x

    a b c -c

    b R(2

    20 m

    m)

    b m

    LR (b) RFP

    Deformation,

    Forc

    e, P

    (y, Py)(u, Pu)

    Bi-linearApproximation

    Kae1

    Kap1

    (c) Force Deformation Relationship

    2.3-

  • 65

    7

    K1

    K2K3

    K4

    K5K6

    M

    K712

    3

    4

    56

    o 2.4

    LcLc

    Hc db

    Vc

    Vc

    Vb

    VbV PZ

    Lb

    2.5

  • 66

    0 0.01 0.02 0.03 0.04Gap Opening Angle, g (rad)

    0

    200

    400

    Neu

    tral A

    xis P

    ositi

    on (m

    m)

    0.015

    2.6

    Distance from Column Face, L/db

    Mom

    ent

    Mc (Moment Capacity)

    Mdm (Moment Demand)

    B A

    M1M2

    2.7

  • 67

    #4 #11

    650

    650

    (a) Column Details and Input Data

    0 40 80 120 160Curvature (rad/km)

    0

    400

    800

    1200

    1600

    Mom

    ent (

    kN-m

    )

    (b) Moment-curature Relationship

    2.8

  • 68

    Beam 5002001016

    CL

    Shear Tab28 mm Bolt

    16 mm BoltStrands

    B

    BRFP 12 mm

    Column 650650

    A A

    Flange Reinforcing Plate

    (a) Elevation

    RFP 12 mm

    Beam 5002001016

    Flange Reinforcing Plate 9 mm

    28 mm Bolt

    16 mm Bolt

    Strands 750 650 750

    #4 @ 100 mm

    Cover Plate

    150 mm Hole

    CL

    205

    205

    400

    (b) Section A-A

    Strands

    RFPFRP

    270

    190

    Shear Tab

    Bolt

    A36 RFP 12 mm

    650630 630

    295

    220

    120

    32 mm Hole

    295

    LC

    (c) Section B-B (d) RFP Detail

    2.9 1

  • 69

    Column 650650

    LC

    Shear Tab

    A

    Symm about

    B

    A

    B

    Flange Reinforcing PlateStrands

    Shear Tab

    Beam 5002001016

    LC

    16 mm BoltRFP 8 mm

    A

    25 mm BoltColumn 650650

    Vertical Stiffener

    (a) Elevation

    120

    CL

    #4 @ 100 mm 16 mm BoltReinforcing Plate 9 mm

    RFP 8 mm

    205

    400

    205

    630Strands 650

    Cover Plate

    Beam 5002001016

    25 mm Bolt

    630

    (b) Section A-A

    Strands

    RFPFRP

    190

    Shear Tab

    Bolt

    220

    630

    30 mmHole

    A36 RFP 8 mm

    120

    (c) Section B-B (d) RFP Details

    2.10 2

  • 70

    Jacket 10 mm

    CL

    16 mm BoltRFP 12 mm

    A

    28 mm BoltColumn 650650

    Shear TabBeam 5002001016

    B

    B

    Flange Reinforcing Plate

    A

    Strands

    (a) Elevation

    LC

    #4 @ 100 mm 16 mm BoltFlange Reinforcing Plate 9 mm

    RFP 12 mm

    205

    400

    205

    1000Strands 650300 mm Hole

    Cover Plate

    Beam 5002001016

    28 mm Bolt

    1000

    (b) Section A-A

    Strands

    RFPFRP

    270

    190

    Shear Tab

    Bolt

    A36 RFP 12 mm

    120

    32 mmHole

    630630 650

    220

    295

    295

    16 mmSlot HoleJacket 10 mm

    (c) Section B-B (d) RFP Details

    2.11 3

  • 71

    CL

    StrandsFlange Reinforcing Plate

    Jacket 6 mm

    Column 65065025 mm Bolt

    A

    RFP 8 mm16 mm Bolt

    Beam 5002001016Shear Tab

    A

    B

    B

    (a) Elevation

    LC

    #4 @ 100 mm16 mm Bolt

    Flange Reinforcing Plate 9 mmRFP 8 mm

    205

    400

    205

    750Strands 650

    Cover Plate

    Beam 5002001016

    25 mm Bolt

    750

    (b) Section A-A

    Strands

    RFPFRP

    190

    Shear Tab

    Bolt

    A36 RFP 8 mm

    120

    30 mmHole

    630630 650

    220

    295

    295

    16 mmSlot HoleJacket 6 mm

    (c) Section B-B (d) RFP Details

    2.12 4

  • 72

    LC

    BShear TabBeam 5002001016

    B

    A

    Flange Reinforcing PlateJacket 6 mm

    Strands16 mm Bolt

    RFP 8 mm

    25 mm BoltColumn 650650

    A

    (a) Elevation

    LC

    #4 @ 100 mm 16 mm BoltFlange Reinforcing Plate 9 mm

    RFP 8 mm

    205

    400

    205

    1000Strands 650

    Cover Plate

    Beam 5002001016

    25 mm Bolt

    1000

    (b) Section A-A

    Strands

    RFPFRP

    270

    190

    Shear Tab

    Bolt

    A36 RFP 8 mm

    120

    30 mm Hole

    630630 650

    220

    295

    295

    Jacket 6 mm16 mmSlot Hole

    (c) Section B-B (d) RFP Details

    2.13 5

  • 73

    -0.04 -0.02 0 0.02 0.04Gap Opening Angle, g(rad)

    -800

    -400

    0

    400

    800M

    omen

    t (kN

    -m)

    -1

    -0.5

    0

    0.5

    1

    M/M

    np

    MST

    -0.04 -0.02 0 0.02 0.04Gap Opening Angle, g(rad)

    -800

    -400

    0

    400

    800

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0

    0.5

    1

    M/M

    np

    MRFP

    -0.04 -0.02 0 0.02 0.04Gap Opening Angle, g(rad)

    -800

    -400

    0

    400

    800

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0

    0.5

    1

    M/M

    np

    MST+RFP

    (a) Specimen 1

    -0.04 -0.02 0 0.02 0.04Gap Opening Angle, g(rad)

    -800

    -400

    0

    400

    800

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0

    0.5

    1M

    /Mnp

    MST

    -0.04 -0.02 0 0.02 0.04Gap Opening Angle, g(rad)

    -800

    -400

    0

    400

    800

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0

    0.5

    1

    M/M

    np

    MRFP

    -0.04 -0.02 0 0.02 0.04Gap Opening Angle, g(rad)

    -800

    -400

    0

    400

    800

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0

    0.5

    1

    M/M

    np

    MST+RFP

    (b) Specimen 2

    -0.04 -0.02 0 0.02 0.04Gap Opening Angle, g(rad)

    -800

    -400

    0

    400

    800

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0

    0.5

    1

    M/M

    np

    MST

    -0.04 -0.02 0 0.02 0.04Gap Opening Angle, g(rad)

    -800

    -400

    0

    400

    800

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0

    0.5

    1

    M/M

    np

    MRFP

    -0.04 -0.02 0 0.02 0.04Gap Opening Angle, g(rad)

    -800

    -400

    0

    400

    800

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0

    0.5

    1

    M/M

    np

    MST+RFP

    (c) Specimen 3

    -0.04 -0.02 0 0.02 0.04Gap Opening Angle, g(rad)

    -800

    -400

    0

    400

    800

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0

    0.5

    1

    M/M

    np

    MST

    -0.04 -0.02 0 0.02 0.04Gap Opening Angle, g(rad)

    -800

    -400

    0

    400

    800

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0

    0.5

    1

    M/M

    np

    MRFP

    -0.04 -0.02 0 0.02 0.04Gap Opening Angle, g(rad)

    -800

    -400

    0

    400

    800

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0

    0.5

    1

    M/M

    np

    MST+RFP

    (d) Specimen 4

    -0.04 -0.02 0 0.02 0.04Gap Opening Angle, g(rad)

    -800

    -400

    0

    400

    800

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0

    0.5

    1

    M/M

    np

    MST

    -0.04 -0.02 0 0.02 0.04Gap Opening Angle, g(rad)

    -800

    -400

    0

    400

    800

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0

    0.5

    1

    M/M

    np

    MRFP

    -0.04 -0.02 0 0.02 0.04Gap Opening Angle, g(rad)

    -800

    -400

    0

    400

    800

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0

    0.5

    1

    M/M

    np

    MST+RFP

    (e) Specimen 5

    2.14

  • 74

    0 1000 2000 3000Distance from Column Face (mm)

    0

    400

    800

    1200

    1600

    Mom

    ent (

    kN-m

    )

    0 2 4 6L/Lb

    MdmMc

    0 1000 2000 3000

    Distance from Column Face (mm)

    0

    400

    800

    1200

    1600

    Mom

    ent (

    kN-m

    )

    0 2 4 6L/Lb

    MdmMc

    (a) Specimen 1 (g = 0.01 rad) (b) Specimen 2 (g = 0.01 rad)

    0 1000 2000 3000Distance from Column Face (mm)

    0

    400

    800

    1200

    1600

    Mom

    ent (

    kN-m

    )

    0 2 4 6L/Lb

    MdmMc

    0 1000 2000 3000

    Distance from Column Face (mm)

    0

    400

    800

    1200

    1600

    Mom

    ent (

    kN-m

    )0 2 4 6

    L/Lb

    MdmMc

    (c) Specimen 1 (g = 0.02 rad) (d) Specimen 2 (g = 0.03 rad)

    0 1000 2000 3000

    Distance from Column Face (mm)

    0

    400

    800

    1200

    1600

    Mom

    ent (

    kN-m

    )

    0 2 4 6L/Lb

    MdmMc

    (e) Specimen 5 (g = 0.03 rad)

    2.15

  • 75

    0 0.05 0.1 0.15 0.2 0.25Strain

    0

    200

    400

    600St

    ress

    (M

    Pa)

    0 0.05 0.1 0.15 0.2 0.25

    Strain

    0

    200

    400

    600

    Stre

    ss (

    MPa

    )

    (a) Flange (b)Web

    0 0.1 0.2 0.3Strain

    0

    200

    400

    600

    Stre

    ss (

    MPa

    )

    0 0.1 0.2 0.3

    Strain

    0

    200

    400

    600

    Str

    ess

    (MP

    a)

    (c) 8 mm RFP (d) 12 mm RFP

    2.16 -

    0 0.005 0.01 0.015 0.02 0.025 0.03Strain

    0

    400

    800

    1200

    1600

    2000

    Stre

    ss (M

    Pa)

    fpu=1860 MPaEST=1965,00 MPa

    EST

    flpfpu

    lp=0.0086

    2.17 -

  • 76

    Beam 1

    1520

    Strands

    3000

    250

    1740

    34003400

    3000

    1740

    RC Column650 650

    Beam 2

    500200 10 16H

    2.18

    0 10 20 30 40 50-6-5-4-3-2-10123456

    Inte

    rsto

    ry D

    rift (

    %)

    0.375

    0.5

    0.75 11.5 2

    34

    5

    Cycle Number

    2.19

  • 77

    Beam 2

    L8

    L3 (Top), L4 (Bottom)

    L5

    Beam 1

    (a) Top View

    L4

    L3

    520L8

    410

    130

    L5

    130 L6

    Beam 1 Beam 2L9

    438

    L7

    L2L1

    438

    (b) Elevation

  • 78

    65

    8565

    8510

    0

    350 310 210

    870

    870

    S25S24

    S23

    S22S21

    C1

    C2

    C1,C2C3,C4C5,C6C7,C8

    Column

    RFP

    R4R3

    R2

    R1

    View C-C

    100

    160

    8565

    8565 S19

    S20S21S22

    EE

    DD

    Beam 1

    CC

    21031035045

    190

    190

    A

    B B

    A

    Beam 2

    S6

    S7S8

    R5

    R6R7 S5

    S4

    S3

    S18S17S16

    S15S14S13S12S11S10S9

    View E-E

    View D-D

    S27

    S26

    View B-B

    View A-A

    4@16

    3

    View F-F

    (c) Gauge Location

    2.20 1

  • 79

    Beam 2Beam 1

    520

    L8L5

    L3 (Top), L4 (Bottom)

    (a) Top View

    Beam 1 Beam 2L9

    L8520

    L6

    130

    L5

    130

    120

    438

    L4L2L1

    L7

    L3

    438

    (b) Elevation

  • 80

    S27

    S25

    S24

    240

    S17

    S14

    210 Beam 1

    CC

    S3

    S4S5

    S2825

    View E-E

    E

    E

    S9S10

    190

    190

    310

    R3R2

    R1

    S2

    S1

    S8S7

    S6

    35045

    View C-C

    S18

    S15S13S11 10

    085

    6585

    65

    S12

    S16

    S22S21S20S19

    B

    A

    View B-B

    View A-A

    Beam 2

    A

    B

    6585

    6585

    100

    RFP

    DD

    View D-D

    S23

    S26

    350 310 210 240

    730

    C1

    C2

    View F-F

    F F

    Column

    C1 , C2

    C3 , C4C5 , C6C7 , C8C9 , C10

    C11 , C12

    (c) Gauge Location

    2.21 2

  • 81

    Beam 1

    L5

    L3 (Top), L4 (Bottom)

    L8

    Beam 2

    (a) Top View

    Beam 1 L6

    130

    L5

    130

    120

    L8520

    L3

    L4

    438

    L1 L2

    L7

    438

    Beam 2

    (b) Elevation

  • 82

    200

    658565

    85 100

    350 510

    Panal Zone

    RFP

    R4R3

    R2

    R1

    View C-C

    100

    8565

    85 65 S19

    S20S21S22

    EE

    DD

    Beam 1

    CC

    26051035045

    190

    190

    A

    B B

    A

    Beam 2

    S6

    S7

    S8

    R5

    R6

    R7 S5

    S4

    S3

    S18S17S16

    S15S14S13

    S12S11S10S9

    View E-E

    View D-D

    S27

    S26

    View B-B

    View A-A

    R10

    R9

    R8

    260

    1120

    1120

    S25S24

    S23S22S21

    R12

    R11

    4@16

    3

    4@150

    (c) Gauge Location

    2.22 3

  • 83

    Beam 2

    L8

    L3 (Top), L4 (Bottom)

    L5

    Beam 1

    (a) Top View

    L4

    L3

    520L8

    410

    130

    L5

    130 L6

    Beam 1 Beam 2L9

    438

    L7

    L2L1

    438

    (b) Elevation

  • 84

    240520350

    240870

    100

    8565

    8565

    165

    165

    View C-C

    View D-D

    S28

    View B-B

    View A-A

    R9R8R7

    S23

    S27

    S26

    S25

    S24

    350 520 240

    4@150

    RFP

    100

    S31

    100

    S29

    View F-FView E-E

    Panal Zone

    F

    F

    E

    E

    R10R6

    Beam 1

    D

    CC

    D

    S30

    24052035045

    190

    190

    A

    B B

    A

    Beam 2

    S6

    R5

    S8

    S1

    S2

    R1

    R2

    R3 S5

    R4

    S3

    S18S17S16

    S15S14S13

    S12S11S10S9

    S22S21S20S1965

    8565

    85 100

    (c) Gauge Location

    2.23 4

  • 85

    Beam 1

    L5

    L3 (Top), L4 (Bottom)

    L8

    Beam 2

    (a) Top View

    Beam 1 L6

    130

    L5

    130

    120

    L8520

    L3

    L4

    438

    L1 L2

    L7

    438

    Beam 2

    (b) Elevation

  • 86

    520350 250

    1120

    250520350

    6585

    65 S19S20S21S22

    S9S10S11S12

    S13 S14 S15

    S16 S17 S18

    S3

    R4

    S5R3

    R2

    R1

    S8

    R5

    S6

    Beam 2

    A

    BB

    A19

    019

    0

    45350 520 250

    S30

    D

    C C

    D

    Beam 1

    R6 R10

    Panal Zone

    4@150

    R12

    R11

    RFP

    S24S23

    R7 R8 R9

    View A-A

    View B-B

    View D-D

    View C-C

    100

    85

    S29S28

    S27

    S26S25

    4@16

    3

    (c) Gauge Local

    2.24 5

  • 87

    dc Lb

    db

    total

    ba

    1

    2

    3 4

    2.25

  • 88

    -150 -100 -50 0 50 100 150Beam Deflection (mm)

    -1000

    -750

    -500

    -250

    0

    250

    500

    750

    1000

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0

    0.5

    1

    M/M

    np

    -4 -2 0 2 4

    Interstory Drift (%)

    (a) Beam 1

    -150 -100 -50 0 50 100 150Beam Deflection (mm)

    -1000

    -750

    -500

    -250

    0

    250

    500

    750

    1000

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0

    0.5

    1

    M/M

    np

    -4 -2 0 2 4

    Interstory Drift (%)

    (b) Beam 2

    3.1 1

  • 89

    -150 -100 -50 0 50 100 150Beam Deflection (mm)

    -800

    -400

    0

    400

    800

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0

    0.5

    1

    M/M

    np

    -4 -2 0 2 4

    Interstory Drift, (%)

    Specimen 1Specimen 2Specimen 3Specimen 4Specimen 5

    3.2

    -400 -200 0 200 400Actuator Force (kN)

    800

    1000

    1200

    1400

    1600

    1800

    Stra

    nd F

    orce

    (kN

    )

    0.3

    0.4

    0.5

    0.6

    Nor

    mal

    ized

    For

    ce

    Beam Yielding

    3.3 1

  • 90

    0.75 1 2 3 4

    Interstory Drift, (%)

    0

    100

    200

    300

    400

    500

    Dec

    ompr

    essi

    on M

    omen

    t (kN

    -m)

    0

    0.2

    0.4

    0.6

    M/M

    np

    Specimen 1 Specimen 3 Specimen 5Specimen 2 Specimen 4

    3.4

    -0.04 -0.02 0 0.02 0.04Gap Opening Angle, g (rad)

    800

    1000

    1200

    1400

    1600

    1800

    Stra

    nd F

    orce

    (kN

    )

    0.3

    0.4

    0.5

    0.6

    Nor

    mal

    ized

    For

    ce

    TestSimplified AnalysisIterative Analysis

    3.5 1

  • 91

    -0.004 -0.002 0 0.002 0.004

    Shear Strain, (rad)

    -1000

    -750

    -500

    -250

    0

    250

    500

    750

    1000

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0

    0.5

    1

    M/M

    np

    (a) Moment-Shear Strain Relationship

    -0.004 -0.002 0 0.002 0.004

    Column Rotation, c(rad)

    -1000

    -750

    -500

    -250

    0

    250

    500

    750

    1000

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0

    0.5

    1

    M/M

    np

    (b) Moment-Column Rotation Relationship

    3.6 1

  • 92

    0.75 1 2 3 4

    Interstory Drift, (%)

    0

    40

    80

    120

    Def

    lect

    ion

    (mm

    )

    Panal ZoneColumnBeamRigid Rotation

    (a) Deflection Component

    0.75 1 2 3 4

    Interstory Drift, (%)

    0

    0.25

    0.5

    0.75

    1

    1.25

    Def

    lect

    ion

    Ratio

    Panal Zone BeamColumn Rigid Rotation

    (b) Deflection Ratio

    3.7

  • 93

    0 0.01 0.02 0.03 0.04Gap Opening Angle, g (rad)

    0

    200

    400

    Dis

    tanc

    e fro

    m B

    eam

    Bot

    tom

    Fac

    e (m

    m)

    TestIterative Analysis

    3.8 1

    0.75 1 2 3 4

    Interstory Drift, (%)

    0

    0.01

    0.02

    0.03

    0.04

    Gap

    Ope

    ning

    Ang

    le ,

    g(r

    ad)

    Specimen 1Specimen 2Specimen 3Specimen 4Specimen 5

    3.9 1

  • 94

    -0.04 -0.02 0 0.02 0.04g (rad) based on Displacement Tranducer

    -0.04

    -0.02

    0

    0.02

    0.04

    g (r

    ad) B

    ased

    on

    Eq. (

    3.2)

    Test

    3.10 1

    0.75 1 2 3 4 5

    Interstory Drift, (%)

    0

    0.4

    0.8

    1.2

    Stra

    nd F

    orce

    Rat

    io

    Specimen 1 Specimen 3 Specimen 5Specimen 2 Specimen 4

    3.11

  • 95

    22.5 30 60 90 120

    Beam Deflection (mm)

    0

    20

    40

    60

    Resi

    dual

    Def

    orm

    atio

    n (m

    m)

    0.75 1 2 3 4

    Interstory Drift (%)

    Specimen 1Specimen 2Specimen 3Specimen 4Specimen 5

    3.12

    -0.04 -0.02 0 0.02 0.04Gap Opening Angle, g (rad)

    -5

    0

    5

    10

    15

    20

    Dis

    plac

    emen

    t (m

    m)

    TestSimplified AnalysisIterative Analysis

    3.13 1

  • 96

    0.75 1 2 3 4

    Interstory Drift, (%)

    0

    200

    400

    600

    800

    1000

    Mom

    ent (

    kN-m

    )

    MSTMR

    3.14 1

  • 97

    C7 C8C5 C6C3 C4C1 C2

    -0.4 -0.2 0 0.2 0.4

    Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    (a) Strain Gauge Location (b) Strain Gauge C1

    -0.4 -0.2 0 0.2 0.4Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    -0.4 -0.2 0 0.2 0.4

    Strain (%)

    -1-0.5

    00.5

    1M

    omen

    t (1

    000

    kN-m

    ) -2 -1 0 1 2Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    (c) Strain Gauge C2 (d) Strain Gauge C3

    -0.4 -0.2 0 0.2 0.4Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    -0.4 -0.2 0 0.2 0.4

    Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    (e) Strain Gauge C4 (f) Strain Gauge C5

    -0.4 -0.2 0 0.2 0.4Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    -0.4 -0.2 0 0.2 0.4

    Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    (g) Strain Gauge C6 (h) Strain Gauge C7

    3.15

  • 98

    S14 S15S13S11

    S17S16 S18

    (a) Strain Gauge Location (Top Flange) (b) Strain Gauge Location (Bottom Flange)

    -0.4 -0.2 0 0.2 0.4Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    -0.4 -0.2 0 0.2 0.4

    Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    (c) Strain Gauge S11 (d) Strain Gauge S13

    -0.4 -0.2 0 0.2 0.4Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    -0.4 -0.2 0 0.2 0.4

    Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    (e) Strain Gauge S14 (f) Strain Gauge S15

    -0.4 -0.2 0 0.2 0.4Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    -0.4 -0.2 0 0.2 0.4

    Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    (g) Strain Gauge S16 (h) Strain Gauge S17

    3.16 1

  • 99

    0 400 800 1200Distance from Column Face (mm)

    -0.3

    -0.2

    -0.1

    0

    Stra

    in (%

    )

    -1.5

    -1

    -0.5

    0

    Nor

    mal

    ized

    Stra

    in

    0 0.5 1 1.5 2

    Lb/db

    0.5 % 1 % 2 % 3 % 4 %

    S13 S14 S15S11

    (a) Top Flange

    0 400 800 1200Distance from Column Face (mm)

    -0.3

    -0.2

    -0.1

    0

    Stra

    in (%

    )

    -1.5

    -1

    -0.5

    0

    Nor

    mal

    ized

    Stra

    in

    0 0.5 1 1.5 2

    Lb/db

    0.5 % 1 % 2 % 3 % 4 %

    S16 S17 S18

    (b) Bottom Flange

    3.17 1

  • 100

    0 1000 2000 3000Distance from Column Face (mm)

    0

    400

    800

    1200

    1600

    Mom

    ent (

    kN-m

    )

    0

    1

    2

    M/M

    ny

    0 2 4 6

    L/Lb

    MdmMc

    3.18 1(g = 0.01 rad)

    -0.4 -0.2 0 0.2 0.4Strain (%)

    -1000

    -750

    -500

    -250

    0

    250

    500

    750

    1000

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0

    0.5

    1M

    /Mnp

    -2 -1 0 1 2

    Normalized Strain

    S2 7

    db/4

    0-2 %3-5 %

    3.19 1

  • 101

    -150 -100 -50 0 50 100 150Beam Deflection (mm)

    -1000

    -750

    -500

    -250

    0

    250

    500

    750

    1000

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0

    0.5

    1

    M/M

    np

    -4 -2 0 2 4

    Interstory Drift (%)

    (a) Beam 1

    -150 -100 -50 0 50 100 150Beam Deflection (mm)

    -1000

    -750

    -500

    -250

    0

    250

    500

    750

    1000

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0

    0.5

    1

    M/M

    np

    -4 -2 0 2 4

    Interstory Drift (%)

    (b) Beam 2

    3.20 2

  • 102

    -400 -200 0 200 400Actuator Force (kN)

    1000

    1250

    1500

    1750

    Stra

    nd F

    orce

    (kN

    )

    0.4

    0.5

    0.6

    0.7

    Nor

    mal

    ized

    For

    ce

    Beam Yielding

    3.21 2

    -0.04 -0.02 0 0.02 0.04Gap Opening Angle, g (rad)

    800

    1000

    1200

    1400

    1600

    1800

    Stra

    nd F

    orce

    (kN

    )

    0.4

    0.5

    0.6

    0.7

    Nor

    mal

    ized

    For

    ce

    TestSimplified AnalysisIterative Analysis

    3.22 2

  • 103

    -0.004 -0.002 0 0.002 0.004

    Shear Strain , (rad)

    -1000

    -750

    -500

    -250

    0

    250

    500

    750

    1000

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0

    0.5

    1

    M/M

    np

    (a) Moment-Shear Strain Relationship

    -0.004 -0.002 0 0.002 0.004

    Column Rotation ,c(rad)

    -1000

    -750

    -500

    -250

    0

    250

    500

    750

    1000

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0

    0.5

    1

    M/M

    np

    (b) Moment-Column Rotation Relationship

    3.23 2

  • 104

    0 0.01 0.02 0.03 0.04Gap Opening Angle, g (rad)

    0

    200

    400

    Dis

    tanc

    e fro

    m B

    eam

    Bot

    tom

    Fac

    e (m

    m)

    TestIterative Analysis

    3.24 2

    -0.04 -0.02 0 0.02 0.04g (rad) based on Displacement Tranducer

    -0.04

    -0.02

    0

    0.02

    0.04

    g (r

    ad) B

    ased

    on

    Eq. (

    3.2)

    Test

    3.25 2

  • 105

    -0.04 -0.02 0 0.02 0.04Gap Opening Angle, g (rad)

    -5

    0

    5

    10

    15

    20D

    ispl

    acem

    ent (

    mm

    )

    TestSimplified AnalysisIterative Analysis

    3.26 2

  • 106

    C1,C2C3,C4C5,C6C7,C8C9,C10

    -0.4 -0.2 0 0.2 0.4

    Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    (a) Strain Gauge Location (b) Strain Gauge C4

    -0.4 -0.2 0 0.2 0.4Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    -0.4 -0.2 0 0.2 0.4

    Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    (c) Strain Gauge C5 (d) Strain Gauge C6

    -0.4 -0.2 0 0.2 0.4Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    -0.4 -0.2 0 0.2 0.4

    Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    (e) Strain Gauge C7 (f) Strain Gauge C8

    -0.4 -0.2 0 0.2 0.4Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    -0.4 -0.2 0 0.2 0.4

    Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    (g) Strain Gauge C9 (h) Strain Gauge C10

    3.27 2

  • 107

    S14S13 S15S11

    S17S16 S18

    (a) Strain Gauge Location (Top Flange) (b) Strain Gauge Location (Bottom Flange)

    -0.4 -0.2 0 0.2 0.4Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    -0.4 -0.2 0 0.2 0.4

    Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    (c) Strain Gauge S11 (d) Strain Gauge S13

    -0.4 -0.2 0 0.2 0.4Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    -0.4 -0.2 0 0.2 0.4

    Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    (e) Strain Gauge S14 (f) Strain Gauge S15

    -0.4 -0.2 0 0.2 0.4Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    -0.6 -0.4 -0.2 0 0.2 0.4 0.6

    Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -3 -2 -1 0 1 2 3

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    (g) Strain Gauge S16 (h) Strain Gauge S17

    3.28 2

  • 108

    0 400 800 1200Distance from Column Face (mm)

    -0.2

    -0.1

    0

    0.1

    Stra

    in (%

    )

    -1

    -0.5

    0

    0.5

    Nor

    mal

    ized

    Stra

    in

    0 0.5 1 1.5 2

    Lb/db

    0.5 % 1 % 2 % 3 % 4 %

    S13 S14 S15S11

    (a) Top Flange

    0 200 400 600 800 1000Distance from Column Face (mm)

    -0.2

    -0.1

    0

    0.1

    Stra

    in (%

    )

    -1

    -0.5

    0

    0.5

    Nor

    mal

    ized

    Stra

    in

    0 0.5 1 1.5 2

    Lb/db

    0.5 % 1 % 2 % 3 % 4 %

    S16 S17 S18

    (b) Bottom Flange

    3.29 2

  • 109

    0 1000 2000 3000Distance from Column Face (mm)

    0

    400

    800

    1200

    1600

    Mom

    ent (

    kN-m

    )

    0

    1

    2

    M/M

    ny

    0 2 4 6

    L/Lb

    MdmMc

    3.30 2(g = 0.01 rad)

    -1.2 -0.8 -0.4 0 0.4 0.8 1.2Strain (%)

    -1

    -0.75

    -0.5

    -0.25

    0

    0.25

    0.5

    0.75

    1

    Mom

    ent (

    100

    0 kN

    -m)

    -1

    -0.5

    0

    0.5

    1M

    /Mnp

    -6 -4 -2 0 2 4 6

    Interstory Drift (%)

    S23

    db/4

    0 - 0.5 %0.75 - 5 %

    3.31 2

  • 110

    -150 -100 -50 0 50 100 150Beam Deflection (mm)

    -1000

    -750

    -500

    -250

    0

    250

    500

    750

    1000

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0

    0.5

    1

    M/M

    np

    -4 -2 0 2 4

    Interstory Drift (%)

    1st Test2nd Test

    (a) Beam 1

    -150 -100 -50 0 50 100 150Beam Deflection (mm)

    -1000

    -750

    -500

    -250

    0

    250

    500

    750

    1000

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0

    0.5

    1M

    /Mnp

    -4 -2 0 2 4

    Interstory Drift (%)

    1st Test2nd Test

    (b) Beam 2

    3.32 3

  • 111

    -400 -200 0 200 400Actuator Force (kN)

    800

    1000

    1200

    1400

    1600

    1800

    Stra

    nd F

    orce

    (kN

    )

    0.3

    0.4

    0.5

    0.6

    Nor

    mal

    ized

    For

    ce

    Beam Yielding

    1st Test2nd Test

    3.33 3

    -0.04 -0.02 0 0.02 0.04Gap Opening Angle, g (rad)

    800

    1000

    1200

    1400

    1600

    1800

    Stra

    nd F

    orce

    (kN

    )

    0.3

    0.4

    0.5

    0.6

    Nor

    mal

    ized

    For

    ce

    TestSimplified AnalysisIterative Analysis

    3.34 3

  • 112

    0 0.01 0.02 0.03 0.04Gap Opening Angle, g (rad)

    0

    200

    400

    Dis

    tanc

    e fro

    m B

    eam

    Bot

    tom

    Fac

    e (m

    m)

    1st Test2nd TestIterative Analysis

    3.35 3

    -0.04 -0.02 0 0.02 0.04g (rad) based on Displacement Tranducer

    -0.04

    -0.02

    0

    0.02

    0.04

    g (r

    ad) B

    ased

    on

    Eq. (

    3.2)

    Test

    3.36 3

  • 113

    -0.04 -0.02 0 0.02 0.04Gap Opening Angle, g (rad)

    -5

    0

    5

    10

    15

    20D

    ispl

    acem

    ent (

    mm

    )

    TestSimplified AnalysisIterative Analysis

    3.37 3

  • 114

    R9

    R8

    R7

    R6 R10

    L2 L1

    -400 -200 0 200 400

    Distance from Column Centerline (mm)

    -0.16-0.12-0.08-0.04

    0

    Shea

    r Stra

    in (

    0.01

    rad)

    -0.6

    -0.4

    -0.2

    0

    Nor

    mal

    ized

    She

    ar S

    train

    0.5 % 1 % 2 % 3 % 4 %

    (a) Rosette Location (b) Shear Strain Profiles

    -0.4 -0.2 0 0.2 0.4Shear Strain (0.01 rad)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -1 -0.5 0 0.5 1

    Normalized Shear Strain

    -1.5-1-0.500.511.5

    M/M

    np

    -0.4 -0.2 0 0.2 0.4

    Shear Strain (0.01 rad)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -1 -0.5 0 0.5 1

    Normalized Shear Strain

    -1.5-1-0.500.511.5

    M/M

    np

    (c) Rosette R6 (d) Rosette R7

    -0.4 -0.2 0 0.2 0.4Shear Strain (0.01 rad)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -1 -0.5 0 0.5 1

    Normalized Shear Strain

    -1.5-1-0.500.511.5

    M/M

    np

    -0.4 -0.2 0 0.2 0.4

    Shear Strain (0.01 rad)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -1 -0.5 0 0.5 1

    Normalized Shear Strain

    -1.5-1-0.500.511.5

    M/M

    np

    (e) Rosette R8 (f) Rosette R9

    -0.4 -0.2 0 0.2 0.4Shear Strain (0.01 rad)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -1 -0.5 0 0.5 1

    Normalized Shear Strain

    -1.5-1-0.500.511.5

    M/M

    np

    -0.4 -0.2 0 0.2 0.4

    Shear Strain (0.01 rad)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m)

    -1.5-1-0.500.511.5

    M/M

    np

    (g) Rosette R10 (h) Overall Shear Strain

    3.38 3

  • 115

    S14 S15S13S11

    S16 S17 S18

    (a) Strain Gauge Location (Top Flange) (b) Strain Gauge Location (Bottom Flange)

    -0.4 -0.2 0 0.2 0.4Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    -0.4 -0.2 0 0.2 0.4

    Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    (b) Strain Gauge S11 (c) Strain Gauge S13

    -0.4 -0.2 0 0.2 0.4Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    -0.4 -0.2 0 0.2 0.4

    Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    (d) Strain Gauge S14 (e) Strain Gauge S15

    -0.4 -0.2 0 0.2 0.4Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    -0.4 -0.2 0 0.2 0.4

    Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    (f) Strain Gauge S16 (g) Strain Gauge S18

    3.39 3

  • 116

    0 400 800 1200Distance from Column Face (mm)

    -0.3

    -0.2

    -0.1

    0

    Stra

    in (%

    )

    -1.5

    -1

    -0.5

    0

    Nor

    mal

    ized

    Stra

    in

    0 0.5 1 1.5 2

    Lb/db

    0.5 % 1 % 2 % 3 % 4 %

    S13 S14 S15S11

    (a) Top Flange

    0 400 800 1200Distance from Column Face (mm)

    -0.3

    -0.2

    -0.1

    0

    Stra

    in (%

    )

    -1.5

    -1

    -0.5

    0

    Nor

    mal

    ized

    Stra

    in

    0 0.5 1 1.5 2

    Lb/db

    0.5 % 1 % 2 % 3 % 4 %

    S16 S18

    (b) Bottom Flange

    3.40 3

  • 117

    0 1000 2000 3000Beam Deflection (mm)

    0

    400

    800

    1200

    1600

    Mom

    ent (

    kN-m

    )

    0

    1

    2

    M/M

    np

    0 2 4 6

    L/Lb

    MdmMc

    3.41 3(g = 0.02 rad)

    -0.4 -0.2 0 0.2 0.4Strain (%)

    -1200

    -800

    -400

    0

    400

    800

    1200

    Mom

    ent (

    kN-m

    )

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5M

    /Mnp

    -2 -1 0 1 2

    Normalized Strain

    0-3 %4-5 %

    S18

    db/4

    3.42 3

  • 118

    -150 -100 -50 0 50 100 150Beam Deflection (mm)

    -1000

    -750

    -500

    -250

    0

    250

    500

    750

    1000

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0

    0.5

    1

    M/M

    np

    -4 -2 0 2 4

    Interstory Drift (%)

    (a) Beam 1

    -150 -100 -50 0 50 100 150Beam Deflection (mm)

    -1000

    -750

    -500

    -250

    0

    250

    500

    750

    1000

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0

    0.5

    1

    M/M

    np

    -4 -2 0 2 4

    Interstory Drift (%)

    (b) Beam 2

    3.43 4

  • 119

    -400 -200 0 200 400Actuator Force (kN)

    800

    1000

    1200

    1400

    1600

    1800

    Stra

    nd F

    orce

    (kN

    )

    0.4

    0.5

    0.6

    0.7

    Nor

    mal

    ized

    For

    ce

    Beam Yielding

    3.44 4

    -0.04 -0.02 0 0.02 0.04Gap Opening Angle, g (rad)

    800

    1000

    1200

    1400

    1600

    1800

    Stra

    nd F

    orce

    (kN

    )

    0.4

    0.5

    0.6

    0.7

    Nor

    mal

    ized

    For

    ce

    TestSimplified AnalysisIterative Analysis

    3.45 4

  • 120

    -0.004 -0.002 0 0.002 0.004

    Column Rotation,c (rad)

    -800

    -400

    0

    400

    800

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0

    0.5

    1

    M/M

    np

    3.46 4

    0 0.01 0.02 0.03 0.04Gap Opening Angle, g (rad)

    0

    200

    400

    Dis

    tanc

    e fro

    m B

    eam

    Bot

    tom

    Fac

    e (m

    m)

    TestIterative Analysis

    3.47 4

  • 121

    -0.04 -0.02 0 0.02 0.04g (rad) based on Displacement Tranducer

    -0.04

    -0.02

    0

    0.02

    0.04

    g (r

    ad) B

    ased

    on

    Eq. (

    3.2)

    Test

    3.48 4

    -0.04 -0.02 0 0.02 0.04Gap Opening Angle, g (rad)

    -5

    0

    5

    10

    15

    20

    Dis

    plac

    emen

    t (m

    m)

    TestSimplified AnalysisIterative Analysis

    3.49 4

  • 122

    R9

    R8

    R7

    R6 R10

    L2 L1

    -400 -200 0 200 400

    Distance from Column Centerline (mm)

    -0.2-0.15-0.1

    -0.050

    Shea

    r Stra

    in (

    0.01

    rad)

    -0.6

    -0.4

    -0.2

    0

    Nor

    mal

    ized

    She

    ar S

    train

    0.5 % 1 % 2 % 3 % 4 %

    (a)Rosette Location (b) Shear Strain Profiles

    -0.4 -0.2 0 0.2 0.4Shear Strain (0.01 rad)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -1 -0.5 0 0.5 1

    Normalized Shear Strain

    -1.5-1-0.500.511.5

    M/M

    np

    -0.4 -0.2 0 0.2 0.4

    Shear Strain (0.01 rad)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -1 -0.5 0 0.5 1

    Normalized Shear Strain

    -1.5-1-0.500.511.5

    M/M

    np

    (c)Rosette R6 (d) Rosette R7

    -0.4 -0.2 0 0.2 0.4Shear Strain (0.01 rad)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -1 -0.5 0 0.5 1

    Normalized Shear Strain

    -1.5-1-0.500.511.5

    M/M

    np

    -0.4 -0.2 0 0.2 0.4

    Shear Strain (0.01 rad)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -1 -0.5 0 0.5 1

    Normalized Shear Strain

    -1.5-1-0.500.511.5

    M/M

    np

    (e)Rosette R8 (f) Rosette R9

    -0.4 -0.2 0 0.2 0.4Shear Strain (0.01 rad)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -1 -0.5 0 0.5 1

    Normalized Shear Strain

    -1.5-1-0.500.511.5

    M/M

    np

    -0.4 -0.2 0 0.2 0.4

    Shear Strain (0.01 rad)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m)

    -1.5-1-0.500.511.5

    M/M

    np

    (e)Rosette R10 (f) Overall Shear Strain

    3.50 4

  • 123

    S14 S15S13S11

    S17 S18S16

    (a) Strain Gauge Location (Top Flange) (b) Strain Gauge Location (Bottom Flange)

    -0.4 -0.2 0 0.2 0.4Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    -0.4 -0.2 0 0.2 0.4

    Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    (c) Strain Gauge S11 (d) Strain Gauge S13

    -0.4 -0.2 0 0.2 0.4Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    -0.4 -0.2 0 0.2 0.4

    Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    (e) Strain Gauge S14 (f) Strain Gauge S15

    -0.4 -0.2 0 0.2 0.4Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    -0.4 -0.2 0 0.2 0.4

    Strain (%)

    -1-0.5

    00.5

    1

    Mom

    ent (

    100

    0 kN

    -m) -2 -1 0 1 2

    Normalized Strain

    -1.5-1-0.500.511.5

    M/M

    np

    (g) Strain Gauge S16 (h) Strain Gauge S17

    3.51 4

  • 124

    0 400 800 1200Distance from Column Face (mm)

    -0.3

    -0.2

    -0.1

    0

    Stra

    in (%

    )

    -1.5

    -1

    -0.5

    0

    Nor

    mal

    ized

    Stra

    in

    0 0.5 1 1.5 2

    Lb/db

    0.5 % 1 % 2 % 3 % 4 %

    S13 S14 S15S11

    (a) Top Flange

    0 400 800 1200Distance from Column Face (mm)

    -0.3

    -0.2

    -0.1

    0

    Stra

    in (%

    )

    -1.5

    -1

    -0.5

    0

    Nor

    mal

    ized

    Stra

    in

    0 0.5 1 1.5 2

    Lb/db

    0.5 % 1 % 2 % 3 % 4 % S16 S17 S18

    (b) Bottom Flange

    3.52 4

  • 125

    0 1000 2000 3000Distance from Column Face (mm)

    0

    400

    800

    1200

    1600

    Mom

    ent (

    kN-m

    )

    0

    1

    2

    M/M

    ny

    0 2 4 6

    L/Lb

    MdmMc

    3.53 4(g = 0.03 rad)

    -0.4 -0.2 0 0.2 0.4Strain (%)

    -800

    -400

    0

    400

    800

    Mom

    ent (

    kN-m

    )

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5M

    /Mnp

    -2 -1 0 1 2

    Normalized Strain

    0-3 %4-5 %

    S1 8

    db/4

    3.54 4

  • 126

    -150 -100 -50 0 50 100 150Beam Deflection (mm)

    -1000

    -750

    -500

    -250

    0

    250

    500

    750

    1000

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0

    0.5

    1

    M/M

    np

    -4 -2 0 2 4

    Interstory Drift (%)

    1st Test2nd Test

    (a) Beam 1

    -150 -100 -50 0 50 100 150Beam Deflection (mm)

    -1000

    -750

    -500

    -250

    0

    250

    500

    750

    1000

    Mom

    ent (

    kN-m

    )

    -1

    -0.5

    0