eeeeeeeeeeeee - defense technical information … eeeeeeeeeeeee f/g 12/3nl hweemnhhhhihhhh inwa...

83
- 38 334 MEASURED PROBABILITY DENSITY FUNCTION OF A PHASE-LOCKED III LOOP (PLL) OUTPUT(U) NRYRL POSTGRADUATE SCHOOL MONTEREY CA M TOPCU MAR 87 UNCL7SSIFIED F/G 12/3NL EEEEEEEEEEEEE HWEEMNHHHHiHHHH

Upload: vunhi

Post on 17-May-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

- 38 334 MEASURED PROBABILITY DENSITY FUNCTION OF A PHASE-LOCKED IIILOOP (PLL) OUTPUT(U) NRYRL POSTGRADUATE SCHOOL MONTEREYCA M TOPCU MAR 87

UNCL7SSIFIED F/G 12/3NLEEEEEEEEEEEEE

HWEEMNHHHHiHHHH

Page 2: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

WA 3AINmg.,JfuI~ *FAN^J~LoJ

Page 3: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

'OlSFILE COPY

NAVAL POSTGRADUATE SCHOOLco Monterey, California

Q"TIC.ELECT~

'THESIS BI7MEASURED PROBABILITY DENSITY FUNCTION OF

A PHASE-LOCKED LOOP (PLL) OUTPUT

by

Melhmet Topcu

March 1987

Thesis Advisor Glen A. Myers

Approved for public release; distribution is unlimited.

87 8 18 2S4

Page 4: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

SEJ"u $TV CLASSIFICATIONg OF wsPAE/5

REPORT DOCUMENTATION PAGEI& REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASS IFIlED_____________ ______

2& SECURITY CLASSIFICATION AUTHORITY 37DISY1MBUTIONJ1AVAILA1ITY OF REPORT

2b ECLSSIICDON/DONGRDIG SHEDLEApproved for public release; distriZb ICLSSIICTIOIDONGROIG SHEDLEbution is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMSER(S)

64. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL ?a NAME OF MONITORIN4G ORGANIZATION(If applicable)

Naval Postgraduate Scoo 62 Naval Postgraduate School6C ADDRESS (City. State. Old ZIP C*) lb ADDRESS (City. Statel. &M~ ZIP Cod)

Monterey, California 93943 - 5000 Monterey, California 93943 - 5000

01a NAME OF FUNDINGiSPONSORING $Sb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERORGANIZATION I pable

6c ADORE SS (City. State, aod ZIP Co*e? 10 SOURCE OF FUNDING NUMBERPROGRAM IPROJECT TIASKC WORK .INI?ELEMEN4T NO NO jNO jACCESSION NO0

It TITLE 011ClUde Secu0ritY CI*1hCat8onI MEASURED PROBABILITY DENSITY FUNCTION OF A PHASE-LOCKED LOOP OUTPUT

11I PERSONjAL AUTNOR(S)

TOPCUM ma

L 3 TYPE Of REPORT I1 b TiME COVERE A4 DATE OF REPORT (Ye. Mtnth. Dy) 5, PAGF CO.LN?strsTRSg sOM TO _ 1987 Marc 80

S SLPLENIENTARY NOTATION

'?COSAr' CODES 18 SUBJECT TERMS (Continue on rev if"FeesUAry aOW 40"el by block %mee'I$ ELOr GROUP SUl-GROUP Bandpass, Gaussian,-Gaussian probability

density functionle-,

S TRACT (Contuo on reewe if necessa ang tdrnfdV by block numnbord

The behavior of the Phase-Locked Loop (PLL) is difficult to describeanalytically, especially when noise is present at the input because thesystem is non-linear.

In this report, the noise behavior of the PLL is determinedexperimentally. Experimental results show that the probability densityfunction of the PLL output for a variety of input siqnals which are eachcorrupted by additive Gaussian noise resembles the Gaussian densityfunction.,

;0 0 S.43UTiON iAVAIABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIfICATIO04(,.;4CASSF'ED&NL'MlT[D C3 SAME AS QPT C DITIC SERS1 UNCASFE

Ila %AAt Of RESPONSIBLE NAIVIOtAL III)tjTLfPs*ONE (k~chud Af*ACOJ ;2C 060'(1 t,'M10

00 FORM 147 3. 4 MAR 03 APRt ed.o-t' -y be wsoa -A't I Owawstt 5((%,RI'Y CLAS$4-(ATION Of 0- &4;(All ot"Ilt edt.OA, We Obs'el@ U NCLASSI F IED

Page 5: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Approved for public release; distribution is unlimited.

Measured Probability Density Function of a Phase-Locked Loop (PLL) Output

by

Mebmet TopcuLieutenant J.G, Turkish Navy

B.S., Turkish Naval Academy, 1980

Submitted in partial fulfiment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOLMarch 1987

Author.

sherif- Michael, Meader

Department of Electrical and Computer Eng eg

Dean of Science and Engineering

2

Page 6: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

ABSTRACT

The behavior of the Phase-Locked Loop (PLL) is difficult to describeanalytically, especially when noise is present at the input because the system is non-linear.

In this report, the noise behavior of the PLL is determined experimentally.Experimental results show that the probability density function of the PLL output fora variety of input signals which are each corrupted by additive Gaussian noiseresembles the Gaussian density function.

Assesion oro

: TIS GOA&DTIC TABUtannounced Qjustiflcfltion

Distribut ioni

AvallabilItY C046Avall and/or

Dist SpoolalfO/c-

3!Copy~-w

Page 7: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

TABLE OF CONTENTS

1.INTRODUCTION .11.....................A. F& M OOPKN PRINCIPLES OF A PHASE- 1

B. PHASE-LOCKED LOOP (PLL) APPLICATIONS............ 13C. ANALYSIS OF THE PLL.............................. 13

if. DESCRIPTION OF THE EXPERIMENTAL SYSTEM ............. 14A. ffNWL DIAGRAM OF THE EXPERIMENTAL

............................................ 14B. BUILDING BLOCKS OF A PHASE-LOCKED LOOP ......... 14

1. Phase Detector ................................... 142. Loop Filter and DCAmplifier........................ 183. Voltage Controlled Oscillator (VCO) ................... 20

C. STABILITY ANALYSIS OF THE PLL.................... 25D. W EJ % ETA CIRCUIT BANDPASS FILTER

WIII. ? ;IPW I LE i I TY DENS .ITY ........ 33

A. CARRIER ONLY ...................... 33B. E~RWVCY .SHIFT .K EYIN .G .(FSK) .M.ODULA -TED ..... 3

1. ~fut for FSK Modulation (Frequency Deviation - 5

2. OW!~u for FSK Modulation (Frequency Deviation - 3.7kaij .................................. 53

C.TKIAA& NWAVMDLAWNVOLTAGE ........... 62

IV. RESULTS AND CONCLUSIONS ............................ 72A. RESULTS.......................................... 72

1. Measuremnent of the Probability Density Functions .......... 722. Output SNR Calculation for FSK Modulated Carrier ........ 72

B. CONCLUSIONS..................................... 73

4f % t

Page 8: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

APPENDIX: TABLES ........................................... 75

LIST OF REFERENCES .......................................... 78

INITIAL DISTRIBUTION LIST .................................... 79

5

Page 9: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

2'4

7

LIST OF TABLES

1. MEASURED DATA OF THE LOOP FILTER ....................... 752. CALCULATED AND MEASURED DATA OF THE VCO...............76

3. SNR VALUES FOR FSK MODULATED CARRIER ................... 774. LNPUT DUTPUT SNR VALUES FOR FSK MODULATED

AR IER ................................................. 77

6

Page 10: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

I i

LIST OF FIGURES

1.1 General Block Diagram of a Phase Locked-Loop ....................... I I2.1 General Schematic Diagram of the Experimental System ................. 15

2.2 Phase Detector W aveforms ......................................... 17

2.3 Charecteristic of the Phase Detector (XOR Gate) ...................... 182.4 Response of a Phase Detector in Presence of Noise ..................... 192.5 Loop Filter and DC Amplifier ...................................... 19

2.6 Transfer Function of the Loop Filter ................................. 21

2.7 Voltage Controlled Oscillator ....................................... 22

2.8 Integrator Circuit Diagram ......................................... 23

2.9 Comparator Circuit Diagram ....................................... 24

2.10 Charecteristic of VCO ............................................. 26

2.11 Linear M odel of the PLL .......................................... 27

2.12 Bode Plot of the Experimental PLL .................................. 28

2.13 Step Response of the Experimental PLL .............................. 29

2.14 Biquad GIC Bandpass Filter ........................................ 30

2.15 Transfer Function Of The BPF(Computer Simulation) ................... 312.16 Measured Transfer Function Of the BPF ............................. 312.17 Circuit Diagram Of The Summer .................................... 323.1 System for Unmodulated Carrier .................................... 333.2 Output of the PLL for Carrier (No Noise) ............................ 34

3.3 Probability Density Function for Carrier (No Noise) .................... 34

3.4 Output of the PLL for Carrier Plus Noise (SNR- 20 dB) ................ 343.5 Probability Density Function for Carrier Plus Noise (SNR- 20 dB) ........ 353.6 Output of the PLL for Carrier Plus Noise (SNR= 10 dB) ................ 353.7 Probability Density Function for Carrier Plus Noise (SNR= 10 dB) ........ 36

3.8 Output of the PLL for Carrier Plus Noise (SNR = 8 dB) ................. 363.9 Probability Density Function for Carrier Plus Noise (SNR- 8 dB) ......... 37

3.10 Output of the PLL for Carrier Plus Noise (SNR= 6 dB) ................. 37

7

ILAWM A%( .vwqX-

Page 11: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

=7

3.11 Probability Density Function for Carrier Plus Noise (SNR- 6 dB) ......... 383.12 Output of the PLL for Carrier Plus Noise (SNR-4 dB) ................. 383.13 Probability Density Function for Carrier Plus Noise (SNR- 4 dB) ......... 393.14 Output of the PLL for Carrier Plus Noise (SNR- 2 dB) ................. 393.15 Probability Density Function for Carrier Plus Noise (SNR- 2 dB) ......... 403.16 Output of the PLL for Carrier Plus Noise (SNR-0 dB) ................. 403.17 Probability Density Function for Carrier Plus Noise (SNR - 0 dB) ......... 413.18 Output of the PLL for Carrier Plus Noise (SNR--5 dB) ................. 41

3.19 Probability Density Function for Carrier Plus Noise (SNR- -5 dB) ........ 42

3.20 System for FSK Modulated Carrier .................................. 433.21 Output of the PLL for FSK Modulation (No Noise) .................... 44

3.22 Probability Density Function for FSK Modulation (No Noise) ............ 44

3.23 Output of the PLL for FSK Modulation Plus Noise (SNR = 20 dB) ........ 453.24 Proabilit' ensity Function for FSK Modulation Plus Noise

(SN - dB ) ................................................... 453.25 Output of the PLL for FSK Modulation Plus Noise (SNR- 10 dB) ........ 45

3.26 Probabili yDensity Function for FSK Modulation Plus Noise(SN R - IV dB) ................................................... 46

3.27 Output of the PLL for FSK Modulation Plus Noise (SNR= 8 dB) ......... 463.28 Proabilty Density Function for FSK Modulation Plus Noise

(SN - d ) .................................................... 473.29 Output of the PLL for FSK Modulation Plus Noise (SNR= 6 dB) ........ 473.30 Probability Density Function for FSK Modulation Plus Noise

(SN R - d B) .................................................... 483.31 Output of the PLL for FSK Modulation Plus Noise (SNR=4 dB) ......... 483.32 Probability Density Function for FSK Modulation Plus Noise

(SNR - 4 dB ) .................................................... 493.33 Output of the PLL for FSK Modulation Plus Noise (SNR=2 dB) ......... 493.34 Probability Density Function for FSK Modulation Plus Noise

(SN R - 2 dB) .................................................... 503.35 Output of the PLL for FSK Modulation Plus Noise (SNR = 0 dB) ......... 50

3.36 Prosba'yDensity Function for FSK Modulation Plus Noise(SN -, U B ) .................... ............................... 51

3.37 Output of the PLL for FSK Modulation Plus Noise (SNR= -5 dB) ........ 51

3.38 Probability Density Function for FSK Modulation Plus Noise(SN R--Y dB ) ................................................... 52

3.39 Output of the PLL for FSK Modulation (No Noise) .................... 53

8

-----------

Page 12: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

3.40 Probabiliyty Density Function for FSK Modulation (No Noise) ........... 53

3.41 Output of the PLL for FSK Modulation Plus Noise (SNR- 20 dB) ........ 54

3.42 Prol~bijty lensity Function for FSK Modulation Plus NoiseO (d= ) . ........................................... 54

3.43 Output of the PLL for FSK Modulation Plus Noise (SNR- 10 dB) ........ 544!3.44 ProbabtiDensity Function for FSK Modulation Plus Noise

(SN R dB ) ................................................... 553.45 Output of the PLL for FSK Modulation Plus Noise (SNR= 8 dB) ......... 55

3.46 Probability Density Function for FSK Modulation Plus Noise(SN R = 8 UB) .................................................... 56

3.47 Output of the PLL for FSK Modulation Plus Noise (SNR= 6 dB) ......... 56

3.48 Probability Density Function for FSK Modulation Plus Noise(SN R - 6 B) .................................................... 57

3.49 Output of the PLL for FSK Modulation Plus Noise (SNR=4 dB) ......... 57

3.50 Probabilit Density Function for FSK Modulation Plus Noise(SN R = 4 aB ) .................................................... 58

3.51 Output of the PLL for FSK Modulation Plus Noise (SNR= 2 dB) ......... 58

3.52 Probability Density Function for FSK Modulation Plus Noise(SN R 2 dB) .................................................... 59

3.53 Output of the PLL for FSK Modulation Plus Noise (SNR= 0 dB) ......... 59

3.54 Probability Density Function for FSK Modulation Plus Noise(SN R -0 aB) .................................................... 60

3.55 Output of the PLL for FSK Modulation Plus Noise (SNR= -5 dB) ........ 603.56 Probabily Density Function for FSK Modulation Plus Noise

(SN R =-- dB) ................................................... 613.57 System for Frequency Modulated Carrier ............................. 623.58 Output of the PLL for Frequency Modulated Carrier (No Noise) .......... 63

3.59 Probability Density Function for Frequency Modulated Carrier (NoN oise) .......................................................... 63

3.60 Output of the PLL for Frequency Modulated Carrier Plus Noise(SN R - 20 dB) ................................................... 63

3.61 Probability Density Function for Frequency Modulated Carrier PlusNoise (SNR-20 dB) ......................................... . . 64

3.62 Output of the PLL for Frequency Modulated Carrier Plus Noise(SN R - 10 d B) ................................................... 64

3.63 Probabilty Density Function for Frequency Modulated Carrier PlusNoise (SNR L 10 dB ) .............................................. 65

3.64 Output of the PLL for Frequency Modulated Carrier Plus Noise W4(SN R - 8 dB) .................................................... 65

3.65 Probability Density Function for Frequency Modulated Carrier PlusN oise (S\ R -- ............................................... 66

9

.W W~

Page 13: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

3.66 Ot ut of the PLL for Frequency Modulated Carrier Plus Noise(S K-6 de) ............................................... . . 663.67 Probabilit Density Function for Frequency Modulated Carrier Plus

Noise (SNR - 6 dB) ............................................... 67

3.68 Outvut of the PLL for Frequency Modulated Carrier Plus Noise(SN - - 4 dB) .................................................... 67

3.69 Probability Density Function for Frequency Modulated Carrier PlusN oise (SN - 4 ) ............................................... 68

3.70 Output of the PLL for Frequency Modulated Carrier Plus Noise(SN R = 2 dB) .................................................... 68

3.71 Probability Density Function for Frequency Modulated Carrier PlusN oise (SNR - 2 d8) ............................................... 69

3.72 Output of the PLL for Frequency Modulated Carrier Plus Noise(SNR - 0 dB) .................................................... 69

3.73 Probability Density Function for Frequency Modulated Carrier PlusN oise (SN R -0 dg) ............................................... 70

3.74 Output of the PLL for Frequency Modulated Carrier Plus Noise(SN R - -5 dB) ................................................... 70

3.75 ProbabilityvDensity Function for Frequency Modulated Carrier PlusN oise (SNR -- - ) .............................................. 71

4.1 Probability Density Function of the Sinusoidal Wave ................... 74

4.2 Input SNR vs. Output SNR for FSK Modulated Carriers ................ 74

10

Page 14: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

I. INTRODUCTION

A. GENERAL WORKING PRINCIPLES OF A PHASE-LOCKED LOOP

A Phase Locked-Loop (PLL) is an electronic servo mechanism system that

consists of three major componets: a multiplier, a loop filter, and a voltage conrolled

oscillator, as shown in Fig. 1.1

RECEIVED SIGNAL VOLTAGE LOOP FILTER ErOR SIGNAL"-- AND

Yt)>MULTIPLIER DC AMPLIFIER

VOLTAGEVCG OUTPUT SIGNAL CONTROLLED < 9,

SOSCILLATOR ,

Figure 1.1 General Block Diagram of a Phase Locked-Loop.

We assume that both input signals to the voltage multiplier are sinusoidal. This

way it is easy to describe system behavior analytically. Let us suppose that initially the

loop is unlocked. Then we can express both input signals to the voltage multiplier as

yi(t) = Acos(wit + Oi)

yo(t) = Bcos(wot + 00)

where wi is the radian frequency of the incoming signal, and

11

Page 15: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

wo is the voltage controlled oscillator (VCO) rest radian frequency.

The voltage multiplier and loop filter form a phase detector. The output of the

phase detector is

ul(t)- KIcos [(wi - wo)t + i -o)]

where KI is the phase detector sensitivity.

If the radian frequency difference (wi - wo) does not exceed a certain value, then

after a period of time the VCO output signal yo(t) becomes synchronous with the input

signal yi(t). Then the VCO output signal yo(t) can be expressed as

yo(t) = Bcos(wit + o)

So, (o has become the linear function of time

(o- (wi - Wo)t+0 o (1.1)

The phase detector output becomes a DC signal, when the VCO is locked to

incoming signal, having value

UI - KIK 2cos(i - 0) (1.2)

where, K2 is the gain of the loop filter

Typically the instantaneous radian frequency (winst) of the VCO is a linear

function of its applied voltage about its rest angular frequency wo .

dwinst= wot+4o)= wo+ K3u2

Thus,

d- -- K3 u2 (1.3)dt

where K3 is the VCO modulation sensitivity.

By substituting Eq.1.l and Eq.1.2 in Eq.l.3 we findd

dt [(wi 2 w)t+0°]= K1 K2 K 3cos(ei - 0 °)

Thus,wi - Wo 1 KIK 2 K3cos(i - eo)

12

Page 16: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Then the phase difference becomes

0i - 0 - Arc cos (1.4)KIK 2 K3

Since the initial radian frequency wi - wo is much smaller than KI K2 K3 then thephase difference becomes

Oi-0o - Arc cosO --

2

This means that when the frequency difference between the incoming signal andthe VCO output is slight when the loop is out of lock, the VCO signal is 900 diffirent

from incoming signal when loop is in lock. Eq. 1.4 is valid when the loop is in lock.When the frequency difference (wi - wo) exceeds the loop gain (KIK 2 K3) then the

argument of the arc cos function exceeds one, which is not possible. Therefore, Eq. 1.4is not valid for lwi-wol> IKK 2K31. In this case, the loop behavior is described by a

non-linear equation, for which an analytical solution is complicated.

B. PHASE-LOCKED LOOP (PLL) APPLICATIONS

Phase Locked Loops (PLL's) are used widely in modem communication systemsfor various purposes, [Ref. 11

1. Carrier Tracking; Coherent communication systems require a carrier referencebe recovered from a noisy received signal. The VC0 output of a PLL can beuse to track the noisy carner.

2. Demodulation; The loop filter output of a PLL can be use to obtain theinformation signal from a frequency modulated or phase modulated carrier.

3. FreQuency Synthesis; The PLL. is .an importaint building bloc of frequencysynthesizers. Frequenqy multiplica ton or division may 1e .pertormed usmg arLL by connecting a frequency divider to the VCO output or the PLL.

C. ANALYSIS OF THE PLLNon-linear loop analysis of the PLL results in the Fokker-Planck equation. The

main goal of the theoretical analysis of the PLL is solution of the Fokker-Planckequation for given PLL charecteristics [Ref. 2]. In some analyses a Markov proccess isassumed to determine the probability density function of the phase error for a noisecorrupted input signal which satisfies the Fokker-Planck equation [Refs. 3,4].

In this research, the output probability density function of the PLL is

determined experimentally.

13

Page 17: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

i. DESCRIPTION OF THE EXPERIMENTAL SYSTEM

A. GENERAL DIAGRAM OF THE EXPERIMENTAL SYSTEMThe experimental system schematic diagram is shown as Fig 2.1. The system

includes a band pass filter (BPF), summer, hard limiter, and phase locked-loop (PLL).

The BPF creates narrow band Gaussian noise from a wide band Gaussian noise

generator (Elgenco 603A). The summer adds the output of the BPF to the s.nusoidal

carrier or modulated sinusoidal carrier. The phase detector in the PLL circuit is

designed for two-level voltages. The hard limiter converts the sinusoid plus noisevoltage to a two-level voltage. The usable output of a PLL used as a demodulator

occurs out of the loop lowpass filter. This output is again filtered to remove DC and

amplified. All plots of probability density functions were of the voltage out of this

amplifier.

B. BUILDING BLOCKS OF A PHASE-LOCKED LOOPThe PLL consists of a phase detector, a loop filter, and a VCO.

1. Phase DetectorThere are two kinds of phase detectors which are distinguished by their output

voltage functions of input signal phase. If the inputs are sinusoids, the output of the

phase detector is a sinusoidal function of phase difference. If the inputs are square

waves, the output is a triangular function. In the experimental system the inputs are

square waves, an XOR logic gate is used as a phase detector and this provides a

triangular output.

The input signals are,received signal - yi(t) - ASign[Vij

output of VCO - yo(t) - BSign[Voj

where V is the signal plus noise voltage, Vo is the VCO output signal voltage, and Sign

represents the signum function.

The output of the phase detector is the product of these two function which

for two-level voltage, can be expressed as

Sign Vi Sign V0 XOR+ + 0+ - 1

+ I- 0

I14

',.-' r",' " ' * ,'' _ s " ',- "" ', 'vV'"'-"- i," ' "D , ""r ' -" "" :,:e* ,%% -. ".," ,'' p.',-*

Page 18: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

n IN

Cu -

Lai

Lai.

4c4

ca~ Ui

WL I'I4'IN I

13

Page 19: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Uhm 0 sipm b the XOA 10c operao.TMe vasivd saLd VCO aootpnt *pal. and Ohe output of the pbase detector

m depiml is ftg. 2.2.Dwmglock. the DC leve (avamp or expectod value) of the error sgal uI is

properdonal to the phan dblhwm of the pase deto input sgnals. The phase

diec vem DC ee of the wror spAl is the characteristic ot the phase detector.

From Fig 2.2 (c).

- C (-'!T - I) - average value of U1 (2.1I

whe e is the tim delay betwee the two signals at the phase detector input and T is

the period ofthe input and ouput ugalsA pbam diftfee * can be expressed in tmm of tim delay t0 as

*-wt. where w- 2x,'T

Ten Eq. 2.1 bcom1s

aI--.- - x-/2) frO<c*cx (2.2)

Sismnlaly. for < *<2n

UI-, (- 3x.2) for x < <U (2.3)It

Fig, 2.3 is a plot of U vs 0 and is called the phase detector characteristic.The phsN detecor sensitivity KI is the magntude of the the slope of its

characteristic. which is

dff d 2C 2CKIIdlI [-- - -)]- (2.4)

In the experimntal circuit C is 5V, and so the phase detector sensitivty is

16

Page 20: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

a)ROC~ived Signal y (t)

0

B t

b)VCO Output Signal y 0(t)

u(t)

-CL

C)Fhase Detector Output Signal u. (t)

Figure 2.2 Phase Detector Waveforms.

17

Page 21: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Up

C

Figure 2.3 Charecteristic of the Phase Detector (XOR Gate).

10K1 - x - 3.183 rad/sec/volt.

Fig. 2.3 depicts that without any disturbance at the phase detector input, itscharecteristic is piecewise linear. But as soon as noise is present at the phase detectorinput, its response becomes non-linear as seen in Fig. 2.4 [Ref. 51.

2. Loop Filter and DC AmplerThe loop filter of Fig. 2.1 is a lowpass filter (LPF). It has a considerable effect

on loop behavior. The loop filter and DC amplifier are analyzed in this section. Theircircuits are shown as Fig. 2.5.

A passive lowpass filter stage, summer amplifier, and another passive lowpassfilter are cascaded. The 5.1 kohm resistance in Fig. 2.5 serves to easily modify loopresponse. Use of a summing amplifier instead of a DC amplifier permits control(adjustment) of the VCO rest frequency (open loop frequency).

Calculation of the loop transfer function proceeds as follows:The transfer function of the first LPF is

18

UI

..-.

Page 22: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

CSawaj

* .80

Figure 2.4 Response of a Phase Detector in Presence of Noise.

Fiue . oo ite n DCW LA mpliie

19

Page 23: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

GI(s)- Rs2 s+ l(R 2C )

(R1 + R2 )(s+ I,'(R 1 +R 2 )CI]

Substituting the values shown in Fig. 2.5 gives

s+ 19607.8G I (s) - 0.0485 s+1950.8

s+ 95 1.47

The DC amplifier transfer function is

G2(s)- 5 - 3" R3

That of the second LPF is

IG3(s)" (R6 C2 Xs+ 1, R6C2 )

70921.98s+70921.98

The transfer function G(s) of the loop flter is the product of Gl(s), G 2(s), and

G3(s).

G(s)- Gl(s)G2(s)G 3(s)

s+19607.8G(s)-n -10319.15 s2+ 71873.45s+ 67480136.31 (2.5)

Figs. 2.6 (a) and (b) show the results of computer simulation or IG(f)I and

measurement of IG(f)I respectively where s-j2xf. The filter 3dB cut-off frequency is

about 170 Hz.3. Vedap Controlled Oscillator (VCO)

Fig. 2.7 shows the VCO circuit used in the experimental ystem. The

LF-13741 is an integrator. The LM-311 are operational amplifiers.

The VCO output frequency is controlled by the error voltage. The main requirements

of the VCO are as follows [Ref. 51.

(1) Adequate central frequency stability.

2oU

Page 24: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

*.--.! ... .... .. ........

........... ....... .... It

7-7.... .. .... .......... ....... *

.. . . . ..... . ... .. . . . . . . .. ..

- . ..........

:: I... ..1ebc :u10i 10

F.Ou

N

Page 25: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

C"3.3NF +5V 1K 5V IK

LF-137iu 2Ln-31 Osi

5.1K 51K

5.1K

1K

1K1

Figure 2.7 Voltage Controlled Oscillator.

(2) The widest possible frequency deviation which is theoretically :h K, in order

to derive maximum benefits from the whole synchronization range of the loop.

(3) A relative high modulation sensitivity K3 (in Hz/V or rad/sec/V) because K3

enters directly in the expression of the open-loop gain K. But for sake ofstability, we can make a fairly poor modulation sensitivity and use an

operational amplifier preceding the VCO to provide gain.

In the experimental system, the VCO sensitivity was chosen to lie between 8 kHz/V

and 10 kHz/V to obtain stable operation.

The VCO operates as follows [Ref. 6): Assume that the first comparator

(LM-71 1) output initially is positive. This positive voltage level turns the analog switchto on, which causes the integrator output to be a positive going ramp voltage. When

this ramp level exceeds the voltage level on the (+) terminal of the first comparator, itsoutput goes low and turns the switch off. The integrator output then decreases until

the analog switch is again turned on and the cycle repeats.

22

L 1 11 11,1 11, ' 111

Page 26: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

A triangular wave is generated at the integrator output. Fig. 2.8 shows an

equivalent circuit of the integrator when V1 is increasing when the analog switch is

closed. In this circuit Vc is the control voltage of the VCO. By using the Thevenin

equivalent circuit of Fig. 2.8 (b), we can express the output waveform as

C C

R/3

LF-13741LF-13741- 7 .vc .v -,

R1

TTR/2

a)Equivalent Circuit b)Thevenin Equivalentwhen Increasing

Figure 2.8 Integrator Circuit Diagram.

V V 3 V V Vv + -- (1 + ] -Lt + , + - cRCs 2s RCs RC 2 2RC

VtV1 - (1+-i) (when increasing) (2.6)

2

The equation for the output of the integrator is calculated when V1 is

decreasing by the same method and is found to be

23

Page 27: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

V- -) (when decreasing) (2.7)

The second operation amplifier in the VCO circuit is a comparator. Its outputis a square wave whose level is positive whenever the (-) terminal voltage level is morenegative than the (+) terminal voltage level. As seen in Fig. 2.9, there is a referencevoltage level (V3) on the (+) terminal. Its value equals half the positive voltage supply

value (V+/2-2.5V), which provides a 50% duty cycle of the square wave at thecomparator output. The (+) terminal voltage level varies around this reference voltage

level. When the analog switch is on, a 51 kohm resistance is connected to ground asseen in Fig. 2.9 (a). The voltage level at the (+) terminal is then

51xlO3

V2 (51 + 1O)xl0 3 x 2.5 =2.1V

+5V 1K +5V 2K

FRMIT RT M 31FO M PTRLM-31

Im n I- \6 IDK ,~ m'

1K KLK 51K

a)Switch is-.C.C.AS* b)SviCb is OTn

Figure 2.9 Comparator Circuit Diagram.

When the analog switch is off, then the 51 kohm resistance is connected to

+ 5V via the I kohni resistor. Superposition gives for V2.,

24

A *j*~~A

Page 28: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

(51+l) x 103 10x 103V2 [ (51+I+10)x 2 + [ (51+10+1)x 103 x52.9v

As the switch condition changes, the output voltage levels of the comparator

and integrator change. During that time the voltage level changes approximately 0.8V

at both outputs. In the experimental circuit this value was measured as 0.85V. By using

this result we can calculate the input voltage level versus output frequency of the VCO

as

V1 Vc/2 from Eq. 2.6, when t = 0

V1 - Vc/2 -0 .85=(Vc!2)[1 -(T/2)(RC) from Eq. 2.7, when t=T/2. Therefor, the

characteristic equation for the VCO is

c (2.8)3.4RC

The third operational amplifier of Fig. 2.7 is also a comparator used to

convert the unipolar square wave output of the second operation amplifier to a bipolar

square wave required for the CMOS XOR (phase detector) input.

Calculated and measured input voltage versus output frequency characteristic

of the VCO is shown on Fig. 2.10. Sensitivity of the VCO is the frequency deviation at

the output for various input control voltage and is the slope of the characteristic. For

the experimental system VCO, the modulation sensitivity (K 3 ) is calculated to be 8.9

kHz,,V while the measured value is approximately 8.1 kHz/V.

C. STABILITY ANALYSIS OF THE PLL

We consider the behavior of the PLL when locked and while a modulation or

disturbance is applied to the input signal phase. In this condition the general linear

equation (from Ref.5) isd4V°0- K[Oi(t ) - 0o(t)] * g(t)

dt

where, * represents convolution, 4D. is the phase of the VCO output signal, 'i is the

phase of the input signal, K is open loop gain, and g(t) is the loop filter impulse

response.

25

Page 29: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Ln

- -Calculated&LLJ LnMeasured I

CD

0.0 2.0 4.0 6.0 8.0 10.0

CONTROL VOLTAGE (VoLt)

Figure 2.10 Charecteristic of VCO.

It is easy to solve this differential equation using the Laplace transform to find

the loop transfer function. Laplace transformation yields

S(o~) K[OD1(s) - 4%,(s)IG(s)

Then, the transfer function of the PLL becomes

H 0 )= D(s) KG(s)(29Oi(s) s +KG(s)

Fig. 2.11 shows this linear model of the PLL.

The filter transfer function G(s) is given by Eq. 2.5. K is the product of the phase

detector sensitivity K1, DC amplifier gain K2 , and the VCO modulation sensitivity K3.K2 was selected as unity (The actual value of K. is -3 which is included in G(s) of Eq.

2.5. In the realization of the circuit of Fig. 2.11, a summning junction is used instead of

a difference amplifier and K. provides the negative feedback.)

26

10 1 1 1 110 1= I 1 11 I C I 1 11 1.1 1, , W I

Page 30: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Ki

4K1G(s)

VC0

Figure 2.11 Linear Model of the PLL.

From before, K, =3.18 V/1rad, and K3 = 8.1 x 103 x 2n rad/sec/V. Therefore,

K -KIK2K3 - 3. 18 x I x 8.1 X 103 x 2n = 161842.28 rad/sec.

So, f thransfer function of the experimental PLL is;

H~s) 31670074528(s + 19607.8)H~s)= s+ 71873.45s2+ 1737554973s +3.2"/46493xi0 I 3

Computer simulation results for the Bode plot and the step response of this

transfer function are shown as Fig. 2.12 and Fig. 2.13 (a) respectively. The measured

step response is shown on Fig. 2.13 (b). As seen on the Bode plot the PLL is stable

because of the positive phase margin.

27

A A ~ ,-.

Page 31: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

.... .... ...... :.. ........ .... . .... . .

.. .. . . .... . : . .:::. :

Figure 2.12 Bode Plot of the Experimental PLL.

D. THE EXPERIMENTAL CIRCUIT 13ANDPASS FILTER AND SUMMER

0A bandpass filter was used between the white Gaussian noise generator

(Elgenco-603a) and summer to obtain narrow band Gaussian noise. See Fig. 2.1. A

biquad General Inunittance Converter (GIC) bandpass filter was constructed [Ref. 71

Circuit diagram of this filter is shown in Fig. 2.14.

The transfer function of the filter is

I-Ws - 2(w, !Q)s

where, wp - I /(RC)i- pole radian frequency, and Q- quality factor.

Frequency Shift Keying (FSK) modulation was used during the probabilitydensity function measurement at the PLL output. Frequency deviation for FSK

modulation was + 2.5 kHz, so the loter bandwidth was chosen to be 5 kHz. The polefrequency was set at 60 kHz. Capacitance and resistance values were chosen to be 2 nFand 1.4 kohin respectively. Since w - VRC, then w -357142.86 rad' sec and Q- (pole

frequency/bandwidth) - 12. Thus the filter transfer function becomes

28

Page 32: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

t(vec)

&)Computer Simulation

b) MeasuredI

Figure 2.13 Step Response of the Experimental PLL.

29

Page 33: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

SUMMER

Figure 2-14 Biquad GIC Bandpass Filter.

59523.8sH~s)P 1+ 29761.9s + 1.2753102x O11

Fig. 2.15 shows a computer plot of H(s), and Fig. 2.16 shows the measured magnitude

of the transfer function obtained from a digital signal processor (SD-360). Measured

pole frequency of the BPF is 59 iJL~z. The difference between the calculated -and

measured :raasfer functions comes from non ideal effects of the operational amplifier.

Also the BPF circuit companent values are not exactly the same as the calculated

values.

An analog voltage multiplier (AD.534J) was used as a sunimer. Its circuitdiagram is shown in Fig. 2.17. The output function of this circuit is [Ref. 8]

V out - 10(Z 2 'Z1 ) / (X1 -X') +

In the experimental circuit, Z2 is ground. Z1 is the noise input, Y1 is the carrer

or modulated signal inpur, X1.X2 is set equal to 1.SV.

The output of the summer is applied to a zero crossing comparator used as ahard limiter to obtain a square wave for the phase detector input.

-L " LA U aL

Page 34: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

. ................................... ..... ... .

............. ... ... ........ .. ................. . .... . . .........................

. .... .... ... . .... ... .. .. . .... ... .. ... ... .. .. .. .a...

Figure 2.15 Transfer Function Of The BPF(Computer Simulation).

dB __ __ _ __ _ __ _ __ _

110 Freq(kHz)

Figure 2.16 Measured Transfer Function Of the BPF.

31

Page 35: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

X0 OUJTPUT M HOR= LIKITER

AD-534J Z

PANDPASS

CARRIER Ci NOWJLATE GAUSSIANNOS

Figure 2.17 Circuit Diagram Of The Summer..

Page 36: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

11L MEASUREMENT %S~fi' e~tIJIY1 D.N1SITY FUNCTION

Probabiliy denmiy functios of the PLL ouapw wer measured using the digital

signal proccessr (SD-360). AUl measrements were made of the output of the filter and

amplfir following the P11. Three kinds of input signals were used. camer only mno-

modulation), frequency sift keying (butary data), frequency modulated signal

(triangular wave modulating voltage). In all cases. measurements were made I-or

vanous levels of the noise powe added to these signals.

A. CAUIEl ONLY

The system is shown in Fig. 3. 1.

32SPLAT

VC0 ~531W. "AT

Fiur I. System fo nm dlte ari

Thecarie isa inuoia wae wt rqec e o59k wiheul h

banpas ilercete feqeny.Figs 2 truh31 hwotu otg n t

prbab ilt r ent fretioncy o igos valuehroug input saooiseu voatios.it

33

Page 37: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3.2 Output of the PLL for Carrier (No Noisev

0. e0 -- - - -

C. 86 4j-44 -44 4-4 4-4 tt14 11+"-

0.44 - - - -- - - a

.22 - - -.

L t

-15 -12 -9 -8 -3 0 3 6 9 12.v( roL t.)

Figure 3.3 Probability Density Function for Carrier (No Noise).

34

Page 38: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 34 Output of the PLL for Carrier Plus Noise (SN\R- 20 dB).

P(v)

0.80E

0.44 - -

0.22

-15 -12 -9 -6 73 0 3 6 9 12 15

Figure 3.5 Probability Density Function I-r Carrier Plus Noise (SNR -20 dB).

Page 39: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3.6 Output of the PLL for Carrier Plus Noise (SNR= 10 dB).

P(v) - - - --

0. 58 5-

0. 468 -- -

0.351 14 ±14+4 444-s i+ 4-N- 414 1-+ 1 -+-if4

0.234'- - -- -

0. 117--

-1 1 9 - 3 0 36a 9 12

V(Volt;

Figure 3.7 Probability Density Function for (:arrier Plus Noise (SN R= 10 d B).

36

Page 40: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3. Output of the PLL for Carrier Plus 'Noise (SNR=S d B).

P(v)

0.30

0.24 -

II

0.18 +4- +9i-1 go, 4-4W !11! -4+4+ HII+ 1

0. 12 --- - - -

-15 -12 -9 -6-3 0 36 9 12 15V (volt)

Figure 3.9 Probability Density Function for Carrier Plus Noise (SR 8 dB).

37

--

....................................................... ....

0 ' *

Page 41: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3.10 Output of the PLL for Carrier Plus Noise (SNR=6 dB).

P( V)

0.30- -

0.24-

- I -0.30:

' I'

0 512 - - 0 9

V(otFigur 3.1 Prbblt DniyFnto frCaiePlsN ise( =6d)

Page 42: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3.12 output of the PLL for Carrier Plus 'Noise (SN R=4 dB3).

P(V) - - - - - - -

0.30 --- - -

0.24 - -- - - - - -

0.18 +4.4 jtd4 I44 v1+ IH4 I-H I1+-i4-4-

0. 12 - - '- - - -

0.0 6--

-15 -12 -9 -6 -3~ 0 3 6 9 12 15V(Volt)

Figure 3.13 Probability Density Function flor Carrier Plus Noise (SNR 4 dB).

39

Page 43: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3.14 Output of the PLL for Carrier Plus Noise (SNR=2 dB).

P(V)

0.30 - - -

0.24 --

0.18 ItH++++++ IH~ I-+ I44 fill+ lilt4 +

0.12 -- i- - - -

0.06 - - -

-15 -12 -9-6 -3 0 3 6 9 12 15V(Volt)

Figure 3.15 Probability Density [LIltiolorC rirPuNis(SR 2B)I

ion or Crrie Pls Nose (NR 2dB)

Page 44: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3.16 Output of the PLL for Carrier Plus Noise (SNR=O dB).

I - - -

0. 06

0.03 - - -

-15 -12 -W 3 63 12vl

Figure 3.17 Probability Density Function for Carrier Plus Noise (SNRO 0 C1).I

J I

4'A

Page 45: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3.18 Output of the PLL for Carrier Plus Noise (SNR -5 dB).

P(V)

0.1 ?-----------------

0.12 --

0.0 ?--3

-15 -12 -9 -6 -3 0 3 6 9 12 15

V(Volt)

Figure 3.19 Probability Density Function for Carrier Plus 'Noise (SNR=.-5 dB).

Page 46: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

5. FREQUENCY SHIFT KEYING (FSK) MODULATED CARRIER

The modulated signal for this meument was obtained by using two signalgenerators (Wavetek Model 142) as shown in Fig. 3.20. One provided the square-wave

modulating voltap having a frequency of 700 Hz. The other one provided the carrier

(sinusoidal wave) of frequency 59 kHz. The square-wave voltage when applied to thecarrier signal generator VCG input created FSK modulated carrier. The square wavevoltage levels define the frequency deviation of the carrier. Measurements were made

for two different values of frequency deviation. The first measurements were made fora 5 kHz frequency deviation. The second measurements were for a 3.7 kHz frequenc.

deviation. For the second measurements the BPF bandwith was set to 3.7 kHz bychanging the value of resistance QR in Fig. 2.14. This changed the filter Q (quahtyfactor) to 59/3.7- 15.9. Figs. 3.21 through 3.38 show the output voltage and its

probability density function for a frequency deviation of 5 kHz. and Figs. 3.39 through

3.56 for a frequency deviation of 3.7 kHz.

X-Y

Figu r.e1 32 y stem Lo -K Moule Ca

VC AW A L-.

43

I L*

%* D A..S B P F W .*4 4 9 4 *

S S4 I*A N

Page 47: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

I. Output for FSK Miodulti.m (Froqumucy Deviatioin- s kHz)

Figure 3.21 Output of the PLL for FSK Modulation (No Noise).

P(v)

0.583 - -

0.46D

0.351!f-f44 -"! t 1t 11, ml I 1 -t 1

0.234

0 7 - -

-15 -12 -9 -6 -3 0 3 6 9 12 15v(volt)

Figure 3.22 Probability Density I'unction for FSK Modulation (No Noise).

. .. .. L , •.- ~ - - 5, ~ . .S" -

Page 48: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3.23 Output of the PLL for FSK Modulation Plus Noise (SNR- 20 dB).

P(V)

0. 585-

0. 466

,, , , . . . J I -. ' :.L m..,.. "',' ";...m .......

0.35 jf ! ilk -f+1 ill I1 ' WTv

I I1 I- v v 1 I11 v H H I

-15 -1 -P 0 3 6 9 12 15v(,.'1t)

Figure 3.24 Probability Density Function for FSK Modulation Plus Noise (SNR= 20 dB).

-45

'AU

Page 49: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3.25 Output of the PLL for FSK Modulation Plus Noise (S\R- 1) dB).

P(v)

0.15

0.12- -- - - -

0.09

0. 06

0.03

-15 -12 -9 -8 -3 0 3 6 9 12 15v(volt)

Figure 3.26 Probability Density Function for FSK Modulation Plus Noise (SNR i0 d B).

46

'I

I a

Page 50: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3.27 Output of the PLL for FSK Modulation Plus Noise (SNR= S dB).

P(v

0. 15

0.121

0.06 --- I

0.03

-15 -12 -9 -6 -3 0 3 6 9 12 t5v(vo1ti

Figure 3.23 Probability Density Function for i SK Modulation Plus Noise (S\R= S dBV,

-47

i'.1

Page 51: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3.29 Output of the PLL for FSK MNodulation Plus Noise (SNR 6 dB).

0. 15 - - - - - - -- -

0. 121 - - - - -

0.09 il,++4t+++!111-1-1 1+* 1+ 9$++il+~f '1

0.0b

0.03~

-15 -12 -9 -6 -3 0 3 8 9 12 15V (volt)

Figure 3.30 Probability Density Function for FSK Modulation Plus 'Noise (SNR 6 dB).

4S

Page 52: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

I

IFigure 3.31 Output of the PLL for FSK .Modulation Plus Noise (SNR= dB).

0.03 6

P(mu )mn....m

1 0 3 9 12 .. 5v(vnlt?

Figure 3.32 Probability Density Function for FSK Modulation Plus Noise (SNR=4 dB i.

.49

0 3: .4

-15 -2 -g -6 -3 0 3 9 ' 2 15

vlvol.4..

Page 53: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3.33 Output of the PLL for FSK Modulation Plus Noise (SNR= 2 dB).

P(V).

0.15

0. 12

0.09 W +1-4 fH- 4+4Ii -fl-iII I -fI H I+4 I +I+

0. 06 - ---

-15 -12 -9 -6 -3 0 3 6 9 12 15V( volt)

Figure 3.34 Probability Density Function for FSK Modulation Plus Noise (SNR = 2 dB).

So

Page 54: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3.35 Output of the PLL for FSK Modulation Plus Noise (SNR=0 dB).

0.12-- - - - - - - - - - -

. 03 -

T 1.n~ 1

-15 -12 -9 -6 -3 0 3 6 9 12 15

Figure 3.36 Probability Density Function for FSK Modulation Plus Noise (SN R dB).

Page 55: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3.37 Output of the PLL for FSK M odulation Plus oie(SN R -5 dB).

P(V);

0.15~ - - - - -

0. 12 - - - - - - - - - -

0. 09 +- oil t+ fill fill 4--441+91++4+f4

0.06 - - -

0.03 - - - - - - - - - -

-15 -12 -9 -8 -3 0 3 8 9 12 15V(Volt)

Figure 3.38 Probability Density Function for FSK Modulation Plus Noise (SNR= -5 dB.

V5

Page 56: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

2. Output for FSK Modulation (Frequency Deviation= 3.7 kl-z)

Figure 3.39 Output of the PLL for FSK Modulation (No Noise).

P(V)0.585

0.4688 - - - - - 4

0. 3 5 1 +-+ H-44 t144

0.234-- -

0.117- -j- -

-15 -12 -9 -6 -3 0 3 6 9 12 15V (vol t)

Figure 3.40 Probabiliyty Dcnsit ' FI un'won ror FSK Modulation (.No Nobise).

5I

' ~ .'PL

Page 57: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3.41 Output of the PLL for FSK Modulation Plus Noise (SNR= 20 dB.,

P(V)

0.30- - - --- -

0.12 - - - -J

0.0- -

-15 -12 -9 -6 -3 0 3 6 9 12 15v(vo it)

Figure 3.42 Probability Density Function for FSK Modulation Plus Noise (SNR = 20 dB).

Page 58: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3.43 Output of the PLL for FSK Modulation Plus Noise (SNR= 10 dB).

P(V)

0. 1 5- - - -

0.12 - -T - -

0. 09 4-j4 +14 -44H1 4+-4~+4141t

0.0O6 t

0. 03 -

-15 -12-9 -6 -3 0 3 6 9 12 15V (vol t)

Figure 3.44 Probability Density Function for FSK Modulation Plus Noise (SNR =I0 dB).

Page 59: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3.45 Output of the PLL for FSK Modulation Plus Noise (SNR=S8 dB).

0. 15 - - - - --

0. 12 -- - - - - a - a

0. 06

0.03-12I

-15 12 -9 -6 -3 0 3 6 .1 12 15V(Volt)

Figure 3.46 Probability Density Function for FSK Modulation Plus Noise (S\R=S dB).

_56

I I | I I I I .....J : I , --. -- ' '": " " .. . ... ... ip

Vp

. . - -- - - - - - -- p

Page 60: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3.47 Output of the PLL for FSK Modulation Plus Noise (SNR= 6 dB).

P(v

0. 15

0.12

0.09 ±4 -t+.4-H.44+. 4 ~I 4j4.-~4 ~*.--

0. 08 --6

0. 03 - I

-15 -12 -9 -6 -3 0 3 6 9 12 ;v(volt.

Figure 3.48 Probability Density Function for FSK Modulation Plus Noise (SNR = 6 JB.

Page 61: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

SWWAVm -- -

-~~~~~~~ . .~*~ .~ .# ..d ............ .-----------

j. ~ .

Page 62: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3.51 Output of the PLL for FSK Modulation Plus Noise (SNR = 2 dB).

P(v)

0.15 - - - -lP

0.12

0.09 '1' H , , ," , ,. . . , , , I, iv , i ,

0.06'-

0.03~

-15 -12 -9 -6 -3 0 3 6 9 12 15V( volt)

Figure 3.52 Probability Density Function for FSK Modulation Plus Noise (SNR = 2 dB)I

............ •............. ............... .,-- - O*. ~..".................... ..... -

Page 63: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3.53 Output of the PL L for FS K NIodulation Plus Noise (S\ R 1) dB).

P(v)

0. 15 -- -

0. 12-

0.0 ill mill4 +±t-1 .... .-... .+ 4 1-1 ++ - 1-4 oil ill

0. 06 a- - -

0.03 - - -

-15 -12 -9 -6 -3 0 3 6 9 12 15

Figure 3.54 Probability Density Iun .tio < I I SK Modulation Plus Noise (S\R-1) ,IB.

,.If PA LAIIIIIIIIIIIII .....

Page 64: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3.55 Output of the PLL for FSK Modulation Plus Noise (SNR=-5 dB).

0. 15

0.12

0.064-- t1 +- -- 4 -4-44 44

0.03- - -- - - - - - - - - - -

m I

- A. - -

-15 -12 -9 -6 -3 0 3 6 9 12 15V (vol t)

Figure 3.56 Probability Density Function for FSK Modulation Plus Noise (S\R= -5 dB)

01

Page 65: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

C. F UENCY MOLATED CARRIER, TRIANGULAR WAVEMDLATING VOLTAGE

Measurements were made for a carrier frequency modulated by a triangular wave

voltage to determine the PLL response to a changing frequency when noise is added. A

signal generator provided a triangular wave of frequency 700 Hz. The triangular wave

peak-to-peak voltage level was adjusted to obtain a 5 kHz peak-to-peak frequency

deviation of the carrier. First measurement was made just for modulated signal (no-

noise) at the input, and then noise was added to input signal according to the desired

input signal-to-noise ratio. Fig. 3.57 shows the system set up for this measurement.

Figs. 3.58 through 3.75 show the output voltage and its probability density function.

I

X-Y

LIMITE ATEA D AN$D-1t

POCSSORN

FN MODULATEDS6

S3 30gIGAL SIG" N AL~ SIGNL.

UMR 3.5 SytmfrFeunyMd tdCrir

Page 66: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3.58 Output of the PLL for Frequency Modulated Carrier (No Noise).

P(v)

0O. 1 5,- -

0. 12

0. 0, 4f4 *tt1 +44 - 4 1*4+

0.06 - - -- - -

0.03

-1 2 -9 -8 -3 0 3 6 9 12 15v(volt)

Figure 3.59 Probability Density Function for Frequency Modulated Carrier (No Noise).

(63

q

Page 67: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3.60 Output of the PLL for Frequency Modulated Carrier Plus Noise (SNR= 20 dB).

P(V),

0. 15 - -

0.12 - -

0.09 milli 1-H 949,+ -I+j4----4++*-4+

0. 08 -- -

0.03 - - -

-15 -12 -9 -8 -3 0 3 6 9 12 15- - - - - V(vol t)

Figure 3.61 Probability Density Function for Frequency Modulated Carrier Plus 'Noise (S\,R~ 20 dB

64

Page 68: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3.62 Output of the PLL for Frequency Modulated Carrier Plus Noise (SNR= 10 dB).

P(v)-

0.15------------------- -

0. 1 2 - --2

0.09 !111 ft +44 4-4 +444 -4+ 4+$4 -4++--1H

0.06- - - -

-15 -12 -9 -8 -3 0 3 6 9 12 15V(Volt)

Figure 3.63 Probability Density Function for Frequency Modulated Carrier Plus Noise (SN R 10 dE,:

65

Page 69: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3.64 Output of the PLL for Frequency Modulated Carrier Plus Noise (SNR- S dB).

P(V) --

0. 15 - - - - - - - -

0. 12 - - -

0.09 *4 +- 41 +t411 4H s4 H4 --

0.06 - - - --

0.03

-5 -12 -9 -8 -3 0 3 6 9 12 1v(volt )

Figure 3.65 Probability Density Function for Frequency Mrodulated Carrier Plus Noise (SNR- 8 dB).:

Page 70: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3.66 Output of the PLL for Frequency Modulated Carrier Plus Noise (SN.\R= 6 dB).

P(v) - - - - - --

0. 15 -

0.12 - - - - - - - - - - - - -

0.094j4 --- 44-44------H4+--1++t-

-15 -12 -9 -6 -3 0 3 6 9 12 15V(Volt)

Figure 3.67 Probability Density Function for Frequency Modulated Carrier Plus Noise (SNR= 6 dB

67

Page 71: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3.68 Output of the PLL for Frequency Modulated Carrier Plus Noise (SNR,=4 dB).

P(V)

0. 15 --

0. 12 -- - -

0.06*

0.03-

15 12 - -6 -3 0 3 6 9 12 5V( volt)

Figure 3.69 Probability Density Function for Frequency Modulated Carrier Plus Noise (SNR=4 dB)

68

Page 72: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3.70 Output of the PLL for Frequency M(Iodulated Carrier Plus Noise (SNR= 2 dB).

P(V v)

0.15------------------------

0.12--

0.09) +fN -4 1 4-4-4 F-44-- " ++l 4+-$- HH --- 14 H!,

-15 -1.2 -9 -6 -3 0 3 6 9 12 15V(Volt)

Figure 3.71 Probability Density Function for Frequency Modulated Carrier Plus Noise (S\R= 2 dB

69

Page 73: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3.72 Output of the PLL for Frequency Modulated Carrier Plus Noise (S\R=() dBi.

P(V)-- - - - - - - - - j70. 15

0. 12 ----

0.03- --- --15 -12-9 -6 -3 0 3 .6 9 12 15

Figure 3.73 Probability Density Function for Frequency Modulated Carir lu olseSR dBI

Page 74: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

Figure 3.74 Output of the PLL for Frequency Modulated Carrier Plus \oise (S\R= -5 A I.

P(V)- - - -

0. 15

0.09+t4+t4+-J+444+-.-4+4+41-+4-4---+

0.06

0.03-- - -

-15 -12 -9 -6 -3 0 3 6 9 12 15v (volt)

Figure 3.75 Probability Density Function for Frequency Modulated Carrier Plus Noise (SNR=-5 dl

Page 75: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

IV. RESULTS AND CONCLUSIONS

A. RESULTS. Meaumnta of the Probability Density Functions

a. Carrier Plus Noise.

As seen in the Figs. 3.4 through 3.19. the probability densit% function of

the PLL output for carrier plus noise input resembles the Gaussian probability density

function. Also these figures show that when input signal-to-noise ratio decreases.

output variance increases.

b. FSK Carrier Plus Noise.

Figs. 3.21 and 3.39 show the recovered square wave modulating %oltagefrom the PLL output when there is no noise at the input. The probabilit density

function of the square wave is impulses at the peak voltage levels of the square wave as

seen in Figs. 3.22 and 3.40. When noise is added to the input signal, the probabiht.N

density function of the PLL output resemNbes the Gaussian density function centered atthese voltage lesels as seen in Figs. 3.24 through 3.38 and Figs. 3.42 through !.5b. The

probability density function plots of the [SK carrier plus noise show that as the

frequency deviation of the carrier increases, the deviation of the output signal le'ekincreases. This is an increase in output signal power. Also, these figures show that the .variance of the output increases as the input noise power increases.

c. FAI by Triangular KWave PIs Noise

Fig. 3.58 shows the recovered triangular wave modulating voltage from tile

PLL output. Fig. 3.59 shows the probability density function of it which is a uniform

distribution. When noise power is increased at the input, the probability density.

function of the PLL output is getting closer to the Gaussian probabilitv density

function as seen in Figs. 3.60 through 3.75.

2. Output SNR Calculation for FSK Modulated Carrier.For this calculation, the output signal level was measured using the digital

signal proccessor (SD-360), and X-Y display tSD-31 1). The average power level of the

output signal plus noise was measured using a true RMS voltmeter d1P-34d():\. lo

use the measurement on the X-Y display, scaling of the abscissa is necessar. F or thi%purpose, a sinusoidal wave was used. Ih,: probability density function of a sinusold

x(t) -Asinwt is. IRef. 91 %

" 1,

Page 76: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

fxl - lt;A 2 _ x 2 ) 1xi < a

A graph of this function is shown in Fig. 4.1. As seen on the graph, the maximum

point on the x-axis is 1.4140. The x-axis was scaled by changing the input sinusoidal

wave RMS value.

The output signal power and output signal plus noise power were caLLuited

as the square of measured RMS values. Then the output noise power was calculated as

the difference in these noise powers. -The output signal-to-noise ratio was then

calculated.

Input and output S\R values for a FSK modulated carrier are given in ahle

3 of the Appendix for a peak frequency deviation of 5 kHz. Table -4 of the ..\ppendix

shows thee SNR values For a peak frequency deviation of 3.7 ktl,. Fig. 4.2 is a plot

of these data.

B. CONCLUSIONS

Lxperimental results show that the probability density functions of the PLL

output for a variety of input signals which are each corrupted by additi.e handpass

Gaussian noise resembles a Gaussian probability density function 4FSK and carrier

only). This result agrees with the theoretical results of [Ref. 31 and [Ref. 4[. J he results

also show the output SNR of a PLL increases with the peak frequency deviation ol

applied FSK modulated camer. -This result was expected.

"71

Page 77: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

lux)

-As-1. 4140 AK . i4140'

Figure 4.1 Probability Density Function of' the Sinusoidal Wave.

V 0.0 S. 5.0 7.5 '0.0 12.5 1S.0 17.5 2()

SNR (Input Ob)

Figure 4.2 Input SNR vs. Output SNR for FSK Modulated Carriers.

74

Page 78: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

APPENDIXTABLES

TABLE I

.MEASLRED DATA OF THE LOOP FILTER

Input voltage to the filter (Vin) - 2.75V.

Frequency(Hz) Output Voltage( Volt) Output \ oltage(dB.)

10 8.0 9.27

20 8.0 9.27

50 8.0 9.27

70 7.85 9.10

104 7.0 8.11

133 6.5 7.47

156 6.0 6.77

182 5.5 6.0

215 5.0 5.19

251 4.5 4.3

2)98 4.0 3.25

425 3.0 0.75

666 2.0 -2.76

1389 1.0 -8.78

4000 0.5 -14.8

11627 0.3 -19.2

75

1 V,!.~ V ~ f 4r pop,

Page 79: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

TABLE 2

CALCULATED AND MEASURED DATA OF THE VCO

Measured Output Calculated OutputControl Voltage( Volt) Frequency (k lz) Frequency (ki Iz)

3.00 17.3 26.7

4.00 36.0 35.65

4.50 40.26 40.1

5.00 44.47 44.56

5.50 48.60 4 9.02

6.00 52.8 1 53.47

6.25 54.89 55.7

6.50 56.92 57.93

6.75 58.94 60.16

7.00 60.97 62.-3 8

7.25 62.96 6.4.61

7.50 64.93 66.84

7.75 66.88 69.07

8.00 68.84 71.30

8.25 70.81 73.53

8.50 72.77 75.75

76

Page 80: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

TABLE 3

SNR VALUES FOR FSK MODULATED CARRIER

Frequency Deviation -5 kHz.

Input SNR Values(dBj Output S'NR values(dB)

20 124.35

10 16.00

8 13.30

6 11.00

4 9.00

2 6.25

0 4.00

TABLE 4INPUT OUTPUT S\R VALUES FOR FSK MODULATED CARRIER

Frequency Deviation- 3.7 kHz

Input SNR Values~dB) Output SNR Values~dB)

20 21.20

to 14.00

8 11.10

6 8.85

4 6.75

2 4.34

0 -1.3

77

Page 81: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

LIST OF REFERENCES

I. Chic, C.M., Lindsev. W.C., Phase-Locked Loos: Applications. Performance19easures. and Summary ofAnalyncal Results, ILEEE Press, New York, November1984.

2. Mevr, Heinrich. Non-Linear Analysis of, Correlative Tracking System UsingReiewal Process Theory, IEEE Press, New York, February 1975.

2S3. Yoon. .. Lindse- W.C., Phase-Locked Loop Performance in the Presence ofx CI" [ntj'fece and A4ditive .\oise, IEEE Press, New York. October 1982.

Z 4. Vitarbi, A.J.. Phase-Locked Loop Dynamics in the Presence of Noise by Fokker-Planck Techniques, IEEE Press, New York, December 1963.

, 5. Blanchard. A., Phase Locked-Loops Application to Cohorent Receiver Design, John> Wiley & Sons, New York, 1976.00- 6. Young, Thomas , Linear Integrated Circuit, John Wiley & Sons, New York, 19S!1.

, 7. M.S. Ghausi, K.R. Laker., oderr Filter Design, Prentice-Hall, Englewood, 1981.U

0 8. Analog Devices. Integrated Circuit Data Book V"olume I, 1984.0ItILw 9. Par oulis. A.. Prohability. Random Variables, and Stochastic Processes, McGraw-

ltll. New York. 1984.

78

Page 82: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

INITIAL DISTRIBUTION LIST

No. Copies

I. Defense Technical Information Centcr 2Cameron StationAlexandria, Virginia 22304-6145

2. Librarv. Code 0142 2Naval Post graduate School.Monterey, California 93943-5002

3. Turkish Navy General Staff 4Bakanlikar, Ankara Turkey

4. Professor Glen A. Mvers, Code 62Mv 4Naval Post graduate SchoolMonterey, California 93943

5. Professor Sherif Michael. Code 62Mi2N\aval Post graduate School2Monterey, California 93943

6. Department Chairman Code 62 2Naval Postgraduate SchoolM\,onterey, California 939-43

7. LTJG. M.Topcu, Turkish Nsav 6Rustempasa mah, Kumbaz cad, No -2,1A,Sa anca,Sakarya, Turkey

79

Page 83: EEEEEEEEEEEEE - Defense Technical Information … EEEEEEEEEEEEE F/G 12/3NL HWEEMNHHHHiHHHH INWA 3A,JfuI~ mg.*FAN^ J~LoJ 'OlSFILE COPY NAVAL POSTGRADUATE SCHOOL co Monterey, California

I.

I

\~-

Y ~* U