efficient computational modeling of piano strings for real ...jos/pdf/asa-2010-jos.pdf ·...

38
Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 1 / 31 Efficient computational modeling of piano strings for real-time synthesis using mass-spring chains, coupled finite differences, and digital waveguide sections Smith, Kuroda, Perng, Van Heusen, Abel CCRMA, Stanford University ASA-2010 November 16, 2010

Upload: nguyenkhue

Post on 06-Jul-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 1 / 31

Efficient computational modeling of piano strings for real-time synthesisusing mass-spring chains, coupled finite differences, and digital

waveguide sections

Smith, Kuroda, Perng, Van Heusen, AbelCCRMA, Stanford University

ASA-2010

November 16, 2010

Goals

• Goals

• Outline

String Synth History

Mass-Spring Model

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 2 / 31

• Overall Goal: Ultimate Virtual Piano

• Current Focus: Audibly Perfect Piano-String Synthesis

• Method: Start with High Accuracy, then Simplify

Outline

• Goals

• Outline

String Synth History

Mass-Spring Model

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 3 / 31

• Brief History of Virtual Strings

◦ Ideal Strings

◦ Stiff Piano Strings

◦ Nonlinear Piano Strings

• General Mass-Spring String Model

• Finite Difference Implementation

Brief History of String SoundSynthesis

String Synth History

Mass-Spring Model

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 4 / 31

D’Alembert’s PDE for the Ideal String (1747)

• Goals

• Outline

String Synth History

• Ideal String

• Traveling Waves

• Digital Waveguide

• Plucked String

• Struck String

• Stiff Strings

• Stiff Waveguides

• Commuted Stiffness

• Sound Example

• Nonlinear Coupling

• Coupling Effects

• Nonlinear Synthesis

• Synthesis

• Zooming Out

Mass-Spring Model

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 5 / 31

Position

y (t,x)

0 x

. . .

. . .0

K

String Tension

ε = Mass/Length

K∂2y

∂x2= ǫ

∂2y

∂t2i.e., Ky′′ = ǫy

K∆= string tension y

∆= y(t, x)

ǫ∆= linear mass density = transverse displacement

t = time (s) x = position along string axis

Wave equation PDE is derived from Newton’s second law (f = ma)by equating Brook Taylor’s “restoring force” Ky′′ (1713) tomass-density times acceleration ǫy

D’Alembert’s Traveling-Wave Solution (1747)

• Goals

• Outline

String Synth History

• Ideal String

• Traveling Waves

• Digital Waveguide

• Plucked String

• Struck String

• Stiff Strings

• Stiff Waveguides

• Commuted Stiffness

• Sound Example

• Nonlinear Coupling

• Coupling Effects

• Nonlinear Synthesis

• Synthesis

• Zooming Out

Mass-Spring Model

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 6 / 31

• In the same paper, d’Alembert also showed that theideal-string PDE was satisfied by traveling waves in eitherdirection:

y(t, x) = yr

(

t− x

c

)

+ yl

(

t+x

c

)

where

c =

K

ǫ= wave propagation speed

• These ideas were developed into essentially modern form byEuler (1707–1783)

Digital Waveguide Models (1985)

• Goals

• Outline

String Synth History

• Ideal String

• Traveling Waves

• Digital Waveguide

• Plucked String

• Struck String

• Stiff Strings

• Stiff Waveguides

• Commuted Stiffness

• Sound Example

• Nonlinear Coupling

• Coupling Effects

• Nonlinear Synthesis

• Synthesis

• Zooming Out

Mass-Spring Model

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 7 / 31

We sample d’Alembert’s traveling-wave components to make digitalwaveguide models.

Lossless digital waveguide∆= bidirectional delay line

at some wave impedance R =√Kǫ

z−N

z−N

R

Useful for efficient models of strings, bores, plane waves, conicalwaves, and more

Ideal Plucked String (Displacement Waves)

• Goals

• Outline

String Synth History

• Ideal String

• Traveling Waves

• Digital Waveguide

• Plucked String

• Struck String

• Stiff Strings

• Stiff Waveguides

• Commuted Stiffness

• Sound Example

• Nonlinear Coupling

• Coupling Effects

• Nonlinear Synthesis

• Synthesis

• Zooming Out

Mass-Spring Model

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 8 / 31

Digital waveguide string models are extremely efficientcomputationally [O(1) complexity per sample of output]

(x = 0) (x = L)

y (n+N/2)

-1“Bridge”

y (n)+

“Nut”

-y (n)-

-1

y (n-N/2)+

(x = Pluck Position)

• Load each delay line with half of initial string displacement

• Sum of upper and lower delay lines = string displacement

• Insert a linear, time-invariant filter in the loop for any desiredattenuation and dispersion as a function of frequency

Ideal Struck String (Velocity Waves)

• Goals

• Outline

String Synth History

• Ideal String

• Traveling Waves

• Digital Waveguide

• Plucked String

• Struck String

• Stiff Strings

• Stiff Waveguides

• Commuted Stiffness

• Sound Example

• Nonlinear Coupling

• Coupling Effects

• Nonlinear Synthesis

• Synthesis

• Zooming Out

Mass-Spring Model

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 9 / 31

(x = 0) (x = L)

v (n+N/2)

-1“Bridge”

v (n)+

“Nut”

-v (n)-

-1

v (n-N/2)+

(x = Hammer Position)

c

c

Velocity waves v easily converted to force waves f which areproportional to string slope y′:

−Ky′∆= f = f+ + f− = Rv+ −Rv−

Plucked/Struck Sound Example (1988)

• Goals

• Outline

String Synth History

• Ideal String

• Traveling Waves

• Digital Waveguide

• Plucked String

• Struck String

• Stiff Strings

• Stiff Waveguides

• Commuted Stiffness

• Sound Example

• Nonlinear Coupling

• Coupling Effects

• Nonlinear Synthesis

• Synthesis

• Zooming Out

Mass-Spring Model

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 10 / 31

Bach A-Minor Concerto—Orchestra Part: (WAV) (MP3)

• Executed in real time on one Motorola DSP56001(20 MHz clock, 128K SRAM)

Plucked/Struck Sound Example (1988)

• Goals

• Outline

String Synth History

• Ideal String

• Traveling Waves

• Digital Waveguide

• Plucked String

• Struck String

• Stiff Strings

• Stiff Waveguides

• Commuted Stiffness

• Sound Example

• Nonlinear Coupling

• Coupling Effects

• Nonlinear Synthesis

• Synthesis

• Zooming Out

Mass-Spring Model

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 10 / 31

Bach A-Minor Concerto—Orchestra Part: (WAV) (MP3)

• Executed in real time on one Motorola DSP56001(20 MHz clock, 128K SRAM)

• Developed for the NeXT Computer introduction at DaviesSymphony Hall, San Francisco, 1988

Plucked/Struck Sound Example (1988)

• Goals

• Outline

String Synth History

• Ideal String

• Traveling Waves

• Digital Waveguide

• Plucked String

• Struck String

• Stiff Strings

• Stiff Waveguides

• Commuted Stiffness

• Sound Example

• Nonlinear Coupling

• Coupling Effects

• Nonlinear Synthesis

• Synthesis

• Zooming Out

Mass-Spring Model

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 10 / 31

Bach A-Minor Concerto—Orchestra Part: (WAV) (MP3)

• Executed in real time on one Motorola DSP56001(20 MHz clock, 128K SRAM)

• Developed for the NeXT Computer introduction at DaviesSymphony Hall, San Francisco, 1988

• Solo violin part was played live by Dan Kobialka of the SanFrancisco Symphony

Stiff Strings

• Goals

• Outline

String Synth History

• Ideal String

• Traveling Waves

• Digital Waveguide

• Plucked String

• Struck String

• Stiff Strings

• Stiff Waveguides

• Commuted Stiffness

• Sound Example

• Nonlinear Coupling

• Coupling Effects

• Nonlinear Synthesis

• Synthesis

• Zooming Out

Mass-Spring Model

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 11 / 31

• Piano strings are stiff, resulting in significant dispersion:

ǫy = Ky′′ − κy′′′′ (Stiff string PDE)

The new “stiffness term” is proportional to

y′′′′∆=

∂4

∂x4y(t, x) ⇒

1. Faster wave propagation at higher frequencies(hence the “dispersion” of traveling-wave shapes)

◦ Provided in digital waveguide strings using an allpassfilter having a delay that decreases with frequency(typically on the order of 10 poles and zeros)

2. A spring-resistance to corner formation in the string(usually left out in string synthesis models!)See, e.g., Cremer 1984

Digital Waveguide Model for Stiff Strings

• Goals

• Outline

String Synth History

• Ideal String

• Traveling Waves

• Digital Waveguide

• Plucked String

• Struck String

• Stiff Strings

• Stiff Waveguides

• Commuted Stiffness

• Sound Example

• Nonlinear Coupling

• Coupling Effects

• Nonlinear Synthesis

• Synthesis

• Zooming Out

Mass-Spring Model

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 12 / 31

Example waveguide string, three spatial-samples long:

(x = 0) (x = c(ω)T) (x = 2c(ω)T)

. . .

. . .. . .

. . .y (n+2)-y (n+1)-

y (n-1)+ y (n-2)+

y (nT,3c(ω)T)

y (n)-

y (n)+

y (nT,0)

y (n-3)+

(x = 3c(ω)T)

y (n+3)-H (z)

aH (z)

aH (z)

a

H (z)a

H (z)a

H (z)a

Ha(z) = allpass giving desired delay vs. frequency for one sample

Consolidated Allpasses

• Goals

• Outline

String Synth History

• Ideal String

• Traveling Waves

• Digital Waveguide

• Plucked String

• Struck String

• Stiff Strings

• Stiff Waveguides

• Commuted Stiffness

• Sound Example

• Nonlinear Coupling

• Coupling Effects

• Nonlinear Synthesis

• Synthesis

• Zooming Out

Mass-Spring Model

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 13 / 31

In practice, we pull out one or more samples of pure delay:

. . .

. . .. . .

. . .y (n)-

y (n)+

y (nT,0)

y (n-3)+

y (n+3)-

z 1-

z 1-zH (z)3

a

zH (z)3

a

y (nT,3c(ω)T)

(x = 3c(ω)T)(x = 0)

• zH3a(z) (or z2H6

a(z)) is designed as a single allpass filter

• ≈ 10 poles and zeros can handle hundreds of samples ofdispersion with perceptual equivalence

• Not valid for distributed nonlinear behavior (discussed later)

Digital Waveguide Piano Sound Example

• Goals

• Outline

String Synth History

• Ideal String

• Traveling Waves

• Digital Waveguide

• Plucked String

• Struck String

• Stiff Strings

• Stiff Waveguides

• Commuted Stiffness

• Sound Example

• Nonlinear Coupling

• Coupling Effects

• Nonlinear Synthesis

• Synthesis

• Zooming Out

Mass-Spring Model

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 14 / 31

• Piano: (WAV) (MP3) (Stanford Sondius Project, ca. 1995)

Digital Waveguide Piano Sound Example

• Goals

• Outline

String Synth History

• Ideal String

• Traveling Waves

• Digital Waveguide

• Plucked String

• Struck String

• Stiff Strings

• Stiff Waveguides

• Commuted Stiffness

• Sound Example

• Nonlinear Coupling

• Coupling Effects

• Nonlinear Synthesis

• Synthesis

• Zooming Out

Mass-Spring Model

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 14 / 31

• Piano: (WAV) (MP3) (Stanford Sondius Project, ca. 1995)• Uses the commuted synthesis technique

Nonlinear Piano Strings

• Goals

• Outline

String Synth History

• Ideal String

• Traveling Waves

• Digital Waveguide

• Plucked String

• Struck String

• Stiff Strings

• Stiff Waveguides

• Commuted Stiffness

• Sound Example

• Nonlinear Coupling

• Coupling Effects

• Nonlinear Synthesis

• Synthesis

• Zooming Out

Mass-Spring Model

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 15 / 31

• Vertical excitation by hammer couples nonlinearly to thelongitudinal direction:1

ǫξ = ESξ′′ +1

2ES[(y′)2]′ (longitudinal wave PDE)

where ξ = longitudinal displacement

• Nonlinear coupling driven by

[(y′)2]′∆=

∂x

[

∂xy(t, x)

]2

• Slope of square of string slope drives longitudinal waves

• Coupling from longitudinal back to transverse is smaller andtypically neglected

1E.g., Morse & Ingard 1968

Effects of Nonlinear Mode Coupling in Piano Strings

• Goals

• Outline

String Synth History

• Ideal String

• Traveling Waves

• Digital Waveguide

• Plucked String

• Struck String

• Stiff Strings

• Stiff Waveguides

• Commuted Stiffness

• Sound Example

• Nonlinear Coupling

• Coupling Effects

• Nonlinear Synthesis

• Synthesis

• Zooming Out

Mass-Spring Model

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 16 / 31

Main audible effects of nonlinear transverse-to-longitudinal coupling:

1. Initial longitudinal attack pulse(the initial “shock noise” audible in a piano tone)

2. Inharmonic longitudinal modes

3. “Phantom partials”(ongoing intermodulation products from transverse partials)

See Conklin lecture in “Five Lectures on the Acoustics of the Piano,”edited by Anders Askenfelt (and listen to the sound examples)

Nonlinear Piano-String Synthesis

• Goals

• Outline

String Synth History

• Ideal String

• Traveling Waves

• Digital Waveguide

• Plucked String

• Struck String

• Stiff Strings

• Stiff Waveguides

• Commuted Stiffness

• Sound Example

• Nonlinear Coupling

• Coupling Effects

• Nonlinear Synthesis

• Synthesis

• Zooming Out

Mass-Spring Model

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 17 / 31

If one-way coupling is accurate enough (transverse to longitudinalbut not vice versa), we can model its effects separately based onobservations of transverse waves (Bank and Sujbert, JASA 2005):

• Longitudinal modes implemented as second-order resonators(“modal synthesis”)

• Slope of squared slope projected onto longitudinal modes

Up-to-date summary:

“A Modal-Based Real-Time Piano Synthesizer”Balazs Bank, Stefano Zambon, and Federico FontanaIEEE Trans. Audio, Speech, and Language ProcessingMay, 2010 (IEEE-ASLP)

Synthesis Strategies

• Goals

• Outline

String Synth History

• Ideal String

• Traveling Waves

• Digital Waveguide

• Plucked String

• Struck String

• Stiff Strings

• Stiff Waveguides

• Commuted Stiffness

• Sound Example

• Nonlinear Coupling

• Coupling Effects

• Nonlinear Synthesis

• Synthesis

• Zooming Out

Mass-Spring Model

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 18 / 31

Model complexity grows with dynamic level:

1. Linear Superposition: Transverse and longitudinal waveguidesdecouple into separate modes

2. Transverse → Longitudinal Coupling

3. Transverse ↔ Longitudinal Coupling

Synthesis Strategies

• Goals

• Outline

String Synth History

• Ideal String

• Traveling Waves

• Digital Waveguide

• Plucked String

• Struck String

• Stiff Strings

• Stiff Waveguides

• Commuted Stiffness

• Sound Example

• Nonlinear Coupling

• Coupling Effects

• Nonlinear Synthesis

• Synthesis

• Zooming Out

Mass-Spring Model

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 18 / 31

Model complexity grows with dynamic level:

1. Linear Superposition: Transverse and longitudinal waveguidesdecouple into separate modes

2. Transverse → Longitudinal Coupling

3. Transverse ↔ Longitudinal Coupling

Proposed Synthesis Strategy:

• Initial striking force determines the starting regime (1, 2, or 3)

• Maximum slope |y′| over one or more periods indicates regimetransitions

• String model simplifies as it decays

Checking the Approximations

• Goals

• Outline

String Synth History

• Ideal String

• Traveling Waves

• Digital Waveguide

• Plucked String

• Struck String

• Stiff Strings

• Stiff Waveguides

• Commuted Stiffness

• Sound Example

• Nonlinear Coupling

• Coupling Effects

• Nonlinear Synthesis

• Synthesis

• Zooming Out

Mass-Spring Model

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 19 / 31

The preceding involved several approximations:

• Neglected terms in PDEs• Simplified synthesis models

Checking the Approximations

• Goals

• Outline

String Synth History

• Ideal String

• Traveling Waves

• Digital Waveguide

• Plucked String

• Struck String

• Stiff Strings

• Stiff Waveguides

• Commuted Stiffness

• Sound Example

• Nonlinear Coupling

• Coupling Effects

• Nonlinear Synthesis

• Synthesis

• Zooming Out

Mass-Spring Model

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 19 / 31

The preceding involved several approximations:

• Neglected terms in PDEs• Simplified synthesis models

The following questions naturally arise:

• How do we know for sure our approximations are inaudible?• We can listen, but could we miss an audible effect?• Could a difference become audible after more listening?

Checking the Approximations

• Goals

• Outline

String Synth History

• Ideal String

• Traveling Waves

• Digital Waveguide

• Plucked String

• Struck String

• Stiff Strings

• Stiff Waveguides

• Commuted Stiffness

• Sound Example

• Nonlinear Coupling

• Coupling Effects

• Nonlinear Synthesis

• Synthesis

• Zooming Out

Mass-Spring Model

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 19 / 31

The preceding involved several approximations:

• Neglected terms in PDEs• Simplified synthesis models

The following questions naturally arise:

• How do we know for sure our approximations are inaudible?• We can listen, but could we miss an audible effect?• Could a difference become audible after more listening?

What we really want is a truth reference—an “exact model”!

Checking the Approximations

• Goals

• Outline

String Synth History

• Ideal String

• Traveling Waves

• Digital Waveguide

• Plucked String

• Struck String

• Stiff Strings

• Stiff Waveguides

• Commuted Stiffness

• Sound Example

• Nonlinear Coupling

• Coupling Effects

• Nonlinear Synthesis

• Synthesis

• Zooming Out

Mass-Spring Model

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 19 / 31

The preceding involved several approximations:

• Neglected terms in PDEs• Simplified synthesis models

The following questions naturally arise:

• How do we know for sure our approximations are inaudible?• We can listen, but could we miss an audible effect?• Could a difference become audible after more listening?

What we really want is a truth reference—an “exact model”!

• There are software tools (e.g., from perceptual audio coding)for measuring the audible equivalence of two sounds:

• “Original” and “Encoded” for a CODEC• “Exact” and “Computationally Efficient” for piano models

Mass-Spring String Model

String Synth History

Mass-Spring Model

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 20 / 31

Mass-Spring Model in 3D Space

• Goals

• Outline

String Synth History

Mass-Spring Model

• 3D Mass-Springs

• Mass-Spring String

• Adding Stiffness

• Shear Stiffness

• Three-Spring Design

• Shear Springs

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 21 / 31

l1

x1 ∈ R3 x2 ∈ R

3

f1

f2

km m

• Hooke’s Law:

|| f1|| = k · |l1 − l0| (l0 = spring rest length)

• Vector Equation of Motion(

fi∈ R

3, xi ∈ R3

)

:

f1

= k · (‖x2 − x1 ‖ − l0) ·x2 − x1

‖x2 − x1 ‖

= k

[

1− l0

‖x2 − x1 ‖

]

(x2 − x1) = m1 x1

Mass-Spring String Model

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 22 / 31

· · · · · ·

fi

fi+1

li−1 li

fi−1

xi−1 x

ixi+1

km

km

km

fi

= αi ·(

xi+1 − xi)

+ αi−1 ·(

xi−1 − xi)

= αi−1 xi−1 − (αi−1 + αi)xi + αi xi+1

where

αi

∆= k ·

[

1− l0∥

∥xi+1 − xi∥

]

Adding Stiffness

• Goals

• Outline

String Synth History

Mass-Spring Model

• 3D Mass-Springs

• Mass-Spring String

• Adding Stiffness

• Shear Stiffness

• Three-Spring Design

• Shear Springs

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 23 / 31

k

k

m m

Need Shear Stiffness Too

• Goals

• Outline

String Synth History

Mass-Spring Model

• 3D Mass-Springs

• Mass-Spring String

• Adding Stiffness

• Shear Stiffness

• Three-Spring Design

• Shear Springs

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 24 / 31

Three-Spring Design (Before Shear Springs Added)

• Goals

• Outline

String Synth History

Mass-Spring Model

• 3D Mass-Springs

• Mass-Spring String

• Adding Stiffness

• Shear Stiffness

• Three-Spring Design

• Shear Springs

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 25 / 31

· · ·· · ·

Shear Springs

• Goals

• Outline

String Synth History

Mass-Spring Model

• 3D Mass-Springs

• Mass-Spring String

• Adding Stiffness

• Shear Stiffness

• Three-Spring Design

• Shear Springs

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 26 / 31

Finite Difference Implementation

String Synth History

Mass-Spring Model

Finite Differences

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 27 / 31

Digitizing the Flexible String

• Goals

• Outline

String Synth History

Mass-Spring Model

Finite Differences

• Digitization

• State-Space Form

• Summary

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 28 / 31

Recall:

· · · · · ·

fi

fi+1

li−1 li

fi−1

xi−1 x

ixi+1

km

km

km

fi

= αi ·(

xi+1 − xi)

+ αi−1 ·(

xi−1 − xi)

= αi−1 xi−1 − (αi−1 + αi)xi + αi xi+1

where

αi

∆= k ·

[

1− l0∥

∥xi+1 − xi∥

]

Equations of Motion, State-Space Form

• Goals

• Outline

String Synth History

Mass-Spring Model

Finite Differences

• Digitization

• State-Space Form

• Summary

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 29 / 31

f1

= m1 x1 = α1 · (x2 − x1)

......

fi

= mi xi = αi−1 xi−1 − (αi−1 + αi)xi + αi xi+1

......

fM

= mM xM = αM−1 · (xM−1 − xM )

or (3M × 1):F = M X = AX

Digitization (Explicit Finite Difference Scheme):

Xn+1 =[

2I+M−1

A]

Xn −Xn−1 +Bun

where un is the external input vector, and digitization is based on

xn∆= xn+1 − 2xn + xn−1

Results to Date

• Goals

• Outline

String Synth History

Mass-Spring Model

Finite Differences

• Digitization

• State-Space Form

• Summary

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 30 / 31

Presented this morning by Junji Kuroda

[,toc=]Results

Summary

• Goals

• Outline

String Synth History

Mass-Spring Model

Finite Differences

• Digitization

• State-Space Form

• Summary

Smith, Kuroda, Perng, Van Heusen, Abel ASA-2010 – 31 / 31

• String-Synthesis History Reviewed

◦ Ideal Strings

◦ Stiff Piano Strings

◦ Nonlinear Piano Strings

• Mass-Spring Model = Accurate Benchmark Reference

◦ Accuracy ∼ time/space sampling density

◦ Approximations can be quantified in practical cases

◦ Given faster and more parallel computing, maybe we’lljust go ahead and use it for real-time sound synthesisfrom performance!