effect of plant derived saponin on the structure and ...4460/datastream... ·...

77
Effect of Plant Derived Saponin on the Structure and Stability of Lipid Membranes in the Absence of Cholesterol A Thesis Submitted to the Faculty of Drexel University by Amanda Rose Decker in partial fulfillment of the requirements for the degree of Master of Science June 2014

Upload: others

Post on 07-Feb-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

 

 

 

 

Effect  of  Plant  Derived  Saponin  on  the  Structure  and  Stability  of  Lipid  

Membranes  in  the  Absence  of  Cholesterol  

 A  Thesis  

Submitted  to  the  Faculty  

of  

Drexel  University  

by  

Amanda  Rose  Decker  

in  partial  fulfillment  of  the  

requirements  for  the  degree  

of  

Master  of  Science  

June  2014  

   

Page 2: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

                             

©  Copyright  2014  Amanda  Rose  Decker.  All  Rights  Reserved  

   

Page 3: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

ii  

DEDICATION            

  For  my  friends  and  family,  especially  my  parents,  Joe  and  Karen  Decker,  

without  whom  I  would  not  be  the  person  I  am  today.  

     

Page 4: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

iii  

ACKNOWLEDGEMENTS            

  First,  I  offer  my  greatest  and  most  sincere  thanks  to  Dr.  Steven  Wrenn  for  his  

constant  support  and  guidance  throughout  the  past  three  years.        

  Next,  a  big  thanks  to  my  co-­‐workers,  Nicole  Wallace,  An  Nguyen,  and  Jordan-­‐

Alexandria  Shepard  for  all  of  your  help,  whether  it  was  training  on  equipment,  make  

sense  of  some  nonsensical  data,  or  preparing  liposomes  during  busy  weeks.  

  Thank  you  to  Ms.  Dolores  Conover  and  Drexel  University’s  Biomedical  

Engineering  department  for  use  of  their  lab  space  and  TECAN  equipment.      

  Finally,  I  would  like  to  acknowledge  Simeon  Stoyanov  at  Unilever,  for  

providing  this  inspiration  for  this  project.      

     

Page 5: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

iv  

TABLE  OF  CONTENTS  

LIST  OF  TABLES  ..........................................................................................................................................  v  

LIST  OF  FIGURES  ......................................................................................................................................  vi  

ABSTRACT  .................................................................................................................................................  viii  

CHAPTER  1:  INTRODUCTION  AND  BACKGROUND  ....................................................................  1  

CHAPER  2:  MATERIALS  AND  METHODS  ........................................................................................  5  

2.1   Materials  .......................................................................................................................................................  5  

2.2   Preparation  of  Small  Unilamellar  Vesicles  (SUV)  ........................................................................  5  

2.3   Calcein  Leakage  Assay  .............................................................................................................................  8  

2.4   Förster  Resonance  Energy  Transfer  (FRET)  Assay  ....................................................................  9  

2.5   Fluorescence  Spectroscopy  ................................................................................................................  11  

2.6   Dynamic  Light  Scattering  (DLS)  .......................................................................................................  11  

2.7   Turbidity  Measurement  ......................................................................................................................  12  

CHAPER  3:  RESULTS  ..............................................................................................................................  13  

3.1   Calcein  Leakage  Assay  ..........................................................................................................................  13  

3.2   FRET  Assay  ................................................................................................................................................  20  

CHAPTER  4:  DISCUSSION  ....................................................................................................................  28  

CHAPTER  5:  FUTURE  WORK  ..............................................................................................................  36  

CHAPTER  6:  LIST  OF  REFERENCES  .................................................................................................  37  

APPENDIX  A:  ADDITIONAL  CALCEIN  DATA  ...............................................................................  38  

APPENDIX  B:  ADDITIONAL  FRET  DATA  .......................................................................................  51  

APPENDIX  C:  FITC-­‐Dextran  EXPERIMENT  ...................................................................................  53  

Page 6: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

v  

 

LIST  OF  TABLES  

Table  1:  Liposome  Formulations  for  All  Experiments  ..............................................................  6    Table  2:  Summary  of  Particle  Size  vs.  Saponin  Level  ...............................................................  17    Table  3:  Summary  of  Turbidity  vs.  Saponin  Level  (Stand  in  for  Precipitate  

Formation)  ........................................................................................................................................  18    Table  4:  Summary  of  Linear  Fit  for  Figure  16  .............................................................................  26    Table  5:  Plate  Layout  for  All  Experiments.  ...................................................................................  38    Table  6:  Turbidity  Data  for  Pure  Liposome  Solution  with  No  Saponin  ...........................  51    Table  7:  Liposome  Dimensions.  ........................................................................................................  53    Table  8:  FITC-­‐Dextran  Sizes  Relative  to  Weight  ........................................................................  54    

     

Page 7: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

vi  

LIST  OF  FIGURES    Figure  1:  Structure  of  QuilA  Saponin  ................................................................................................  2    Figure  2:  Ternary  diagram  for  liposome  compositions  ............................................................  7    Figure  3:  Liposome  compositions  overlaid  on  Demana  et  al.'s  phase  diagram  .............  8    Figure  4:  %  Leakage  vs.  Time  Data  for  5  mol%  Saponin  Samples  .....................................  13    Figure  5:  %  Leakage  vs.  Time  Data  for  15  mol%  Saponin  Samples  ...................................  14    Figure  6:  Final  %  Leakage  vs.  Saponin  Level  for  0%  Cholesterol  Liposomes  ...............  15    Figure  7:  Final  %  Leakage  vs.  Saponin  Level  for  25%  Cholesterol  Liposomes  ............  15    Figure  8:  Final  %  Leakage  vs.  Saponin  Level  for  50%  Cholesterol  Liposomes  ............  16    Figure  9:  Qualitative  Visual  Data  for  Precipitate  Formation  after  24  hours  in  4  °C.  ..  18    Figure  10:  FRET  Curves  for  Liposome  C  with  5%  DAN  ..........................................................  20    Figure  11:  FRET  Curves  for  Liposome  C  with  10%  DAN  ........................................................  21    Figure  12:  FRET  Curves  for  Liposome  F  with  5%  DAN  ..........................................................  22    Figure  13:  FRET  Curves  for  Liposome  F  with  10%  DAN  ........................................................  23    Figure  14:  FRET  Curves  for  Liposome  G  with  5%  DAN  ..........................................................  24    Figure  15:  FRET  Curves  for  Liposome  G  with  10%  DAN  .......................................................  25    Figure  16:  DHE/DAN  Max  Emission  Peak  Ratios  vs.  Saponin  Level  for  All  Liposome  

Types  and  DAN  Levels  .................................................................................................................  26    Figure  17:  Calcein  Fluorescence  Intensity  vs.  Time  Data  for  Liposome  A  ......................  38    Figure  18:  Calcein  Fluorescence  Intensity  vs.  Time  Data  for  Liposome  B  ......................  39    Figure  19:  Calcein  Fluorescence  Intensity  vs.  Time  Data  for  Liposome  C  ......................  40    Figure  20:  Calcein  Fluorescence  Intensity  vs.  Time  Data  for  Liposome  D  ......................  41    Figure  21:  Calcein  Fluorescence  Intensity  vs.  Time  Data  for  Liposome  E  ......................  42    Figure  22:  Calcein  Fluorescence  Intensity  vs.  Time  Data  for  Liposome  F  ......................  43  

Page 8: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

vii  

Figure  23:  Calcein  Fluorescence  Intensity  vs.  Time  Data  for  Liposome  G  ......................  44    Figure  24:  Calcein  Fluorescence  Intensity  vs.  Time  Data  for  Liposome  H  .....................  45    Figure  25:  Calcein  Fluorescence  Intensity  vs.  Time  Data  for  Liposome  I  .......................  46    Figure  26:  QuilA  Saponin  Fluorescence  for  Calcein  Leakage  Study  ..................................  47    Figure  27:  %  Leakage  vs.  Time  Data  for  0  mol%  Saponin  Samples  ...................................  48    Figure  28:  %  Leakage  vs.  Time  Data  for  40  mol%  Saponin  Samples  ................................  49    Figure  29:  %  Leakage  vs.  Time  Data  for  75  mol%  Saponin  Samples  ................................  50    Figure  30:  QuilA  Saponin  Fluorescence  for  FRET  Experiment  ............................................  52    Figure  31:  FITC-­‐dextran  Size  Graphical  Interpretation  of  Table  8.  ...................................  54    Figure  32:  FITC  4K  Fluorescence  vs.  Time  for  Liposome  A  ..................................................  55    Figure  33:  FITC  250  K  Fluorescence  vs.  Time  for  Liposome  A  ............................................  56    Figure  34:  FITC  4  K  Fluorescence  vs.  Time  for  Liposome  B  .................................................  57    Figure  35:  FITC  250  K  Fluorescence  vs.  Time  for  Liposome  B  ............................................  58    Figure  36:  FITC  4  K  Fluorescence  vs.  Time  for  Liposome  C  ..................................................  59    Figure  37:  FITC  250  K  Fluorescence  vs.  Time  for  Liposome  C  ............................................  60    Figure  38:  FITC  4  K  Fluorescence  vs.  Time  for  Liposome  F  ..................................................  61    Figure  39:  FITC  250  K  Fluorescence  vs.  Time  for  Liposome  F  ............................................  62    Figure  40:  FITC  4  K  Fluorescence  vs.  Time  for  Liposome  G  .................................................  63    Figure  41:  FITC  250  K  Fluorescence  vs.  Time  for  Liposome  G.  ...........................................  64    Figure  42:  QuilA  Saponin  Fluorescence  for  FITC  Experiment  .............................................  65        

Page 9: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

viii  

ABSTRACT  Effect  of  Plant  Derived  Saponin  on  the  Structure  and  Stability  of  Lipid  Membranes  in  

the  Absence  of  Cholesterol  Amanda  Rose  Decker  

Steven  Wrenn,  Supervisor,  Ph.D.           QuilA  is  a  form  of  saponin  that  is  derived  from  the  inner  bark  of  the  plant  

Quillaja  saponaria.    Traditionally,  this  compound  has  been  used  as  a  detergent-­‐like  

cleaning  agent  and  an  eco-­‐toxin  for  hunting.    Now,  this  and  many  other  forms  of  

saponin  are  used  as  emulsifiers  and  frothing  agents  for  foods,  as  well  as  a  growing  

list  of  pharmacological  applications  such  as  vaccine  adjutant  and  anti-­‐cancer  

supplements.    The  mechanism  behind  saponin’s  interaction  with  lipid  membranes  is  

still  unknown.  

  Previous  studies  have  shown  that  cholesterol  is  an  important  player  in  the  

saponin/lipid  interaction.      This  study  explores  the  effect  of  QuilA  on  lipid  

membranes  in  the  absence  of  cholesterol.    The  fluorescent  dye  release  and  FRET  

analysis  experiments  of  this  study  have  shown  that  minimal  leakage  and  membrane  

reorganization  are  possible  without  cholesterol.      

In  the  absence  of  cholesterol,  the  data  from  this  study  suggest  that  the  

saponin  is  not  incorporated  into  the  membrane.    Instead,  the  saponin  acts  to  isolate  

individual  lipids  from  the  membrane  and  facilitate  a  “vesicle-­‐to-­‐micelle”  transition.    

This  process  results  in  membrane  restructure  but  with  limited  release  of  the  

solution  encapsulated  within  the  liposome.  

   The  lipid  composition  of  the  membrane  also  appears  to  have  a  significant  

affect  on  the  saponin/lipid  interaction.    Lipid  membranes  with  higher  compositions  

Page 10: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

ix  

of  saturated  lipids  experience  lower  leakage  and  slower  membrane  reorganization.    

Conversely,  lipid  membranes  with  higher  compositions  of  unsaturated  lipids  

experience  higher  leakage  and  faster  membrane  reorganization.      

 

 

Page 11: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!
Page 12: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

1  

CHAPTER  1:  INTRODUCTION  AND  BACKGROUND    

  Saponins  are  biological  compounds  that  are  found  in  a  wide  variety  of  plants,  

bacteria,  and  lower  animals  [1].    Structurally,  saponins  contain  an  aglycone  and  a  

sugar  head  group.    Saponins  are  utilized  in  a  wide  variety  of  applications,  such  as  

emulsifiers,  surfactants,  and  pesticides  [1].    Traditional  uses  of  soap  root  as  cleaning  

agents  and  fish  poisons  for  hunting  were  made  possible  by  the  saponins  present  in  

the  plant.      

More  recently,  pharmacological  applications  of  saponin  are  being  developed.    

Once  such  application  is  as  a  vaccine  adjutant  [2].    Vaccine  adjutants  are  compounds  

that  help  stimulate  an  immune  response  by  the  body,  so  the  vaccine  is  more  

effective.    Other  uses  include  anti-­‐cancer  treatment  [1]  and  cholesterol-­‐lowering  

supplements  [1,  3].    Saponins  are  also  widely  used  in  the  food  industry,  as  

emulsifiers  and  cholesterol  removing  agents  in  foods  and  foaming  agents  in  

beverages  [4].  

However,  before  saponins  are  applied  for  pharmaceutical  uses,  there  needs  

to  be  a  better  understanding  behind  the  mechanism  of  saponin/lipid  membrane  

interactions.    Because  there  are  so  many  forms  of  saponin  and  so  many  factors  that  

can  influence  the  structure  and  stability  of  a  lipid  membrane,  the  exact  mechanism  

or  mechanisms,  for  saponin/lipid  interaction  is  still  unknown.      

This  study  focused  on  a  form  of  saponin  Quillaja.    Quillaja  is  derived  from  the  

plant  Quillaja  saponaria,  better  known  as  soapbark  tree,  a  plant  commonly  found  in  

South  America  and  China  [4].    Quillaja  is  a  mixture  of  up  to  100  slightly  different  

forms  of  saponin.    However,  these  isomeric  forms  share  two  important  structural  

Page 13: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

2  

features,  a  fatty  acid  domain  and  a  triterpene  aldehyde  [4].    In  this  study,  one  

particular  isomer,  QuilA,  was  isolated  and  used  as  the  saponin  compound.      

     

 

Figure  1:  Structure  of  QuilA  Saponin.    The  section  labeled  A  identifies  the  two-­‐glucose  moieties  that  signify  α-­‐hederin.    Section  B  is  the  entire  hydrophilic  sugar  head  group.    Section  C  is  the  hydrophobic  aglycone  group.  

        All  saponin  molecules  contain  a  hydrophilic  glycoside  (sugar)  head  group  

and  a  hydrophobic  aglycone  structure  [5].  The  QuilA  form  of  saponin  is  called  an  α-­‐

hederin  [2,  6].    There  are  multiple  classifications  of  hederin,  mainly  characterized  by  

the  number  and  organization  of  the  sugar  moieties  in  the  head  group  [2].      α-­‐hederin  

saponins  contain  a  two-­‐glucose  group.      

  Previous  studies  [2,  6,  7]  have  looked  into  lipid  membrane  reorganization  

using  fluorescent  and  visual  microscopy.    This  study  examined  the  structural  

Page 14: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

3  

changes  of  liposomes  due  to  saponin  interactions  by  spectrophotometry.    Two  

experiments  were  conducted  as  part  of  this  study.      

The  first  was  a  calcein  leakage  assay,  which  examined  the  rate  and  amount  of  

release  of  a  fluorescent  dye  from  the  liposome  due  to  saponin  interactions.    This  

experiment  utilized  a  dequenching  assay,  where  the  fluorescent  dye  was  

encapsulated  inside  the  liposome  at  concentrations  high  enough  to  block  

fluorescence.    Once  the  dye  was  leaked  from  the  liposome,  the  dye  fluoresced.  A  

total  of  nine  liposome  compositions  were  created,  each  of  which  corresponded  to  

one  of  three  subsets  depending  on  the  cholesterol  content;  0%,  25%,  50%.    These  

liposomes  were  then  subjected  to  a  range  of  saponin  molar  concentration,  0%,  5%,  

15%,  40%,  and  75%.  

The  second  experiment  was  Förster  resonance  energy  transfer  (FRET)  

analysis.    This  experiment  aimed  to  examine  the  reorganization  of  the  lipid  

molecules  as  a  result  of  saponin  interactions.    FRET  is  used  to  measure  the  

fluorescence  intensity  of  interacting  fluorescent  probes.    The  two  fluorescent  probes  

used  in  this  study  were  dehydroergosterol  (DHE)  and  dansylated  lecithin  (DAN)  [8].    

In  FRET,  the  donor  probe  DHE,  is  excited  to  a  higher  energy  state  by  light.    This  

energy  can  then  released  in  one  of  two  ways;  DHE  could  directly  release  the  energy  

in  the  form  of  light  with  a  maximum  at  385  nm,  or  transfer  the  energy  to  an  adjacent  

acceptor  probe,  DAN.    The  acceptor  probe  is  then  subsequently  excited  and  releases  

that  energy  in  the  form  of  light  with  a  maximum  at  515  nm.    In  this  way,  two  

fluorescent  wavelengths  are  produced.    The  intensity  of  the  fluorescence  is  directly  

correlated  to  the  proximity  of  the  donor  and  acceptor  probes.    If  the  donor  and  

Page 15: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

4  

acceptor  probes  are  very  close,  more  energy  will  be  transfer  from  DHE  than  

released  from  DHE  as  light.    If  the  probes  are  separated,  more  energy  goes  into  DHE  

light  emission  and  the  DHE  fluorescence  intensity  increases,  while  less  energy  goes  

into  DAN  light  emission  and  the  DAN  fluorescence  intensity  decreases.    Therefore,  a  

simultaneous  increase  of  DHE  fluorescence  and  decrease  of  DAN  fluorescence  is  

indicative  of  FRET  alleviation,  or  that  the  probes  are  being  separated.      

The  FRET  analysis  included  only  the  liposome  types  that  did  not  contain  any  

cholesterol.    These  three  liposomes  types  were  treated  with  the  4  levels  of  saponin  

described  in  the  calcein  leakage  experiment  (5%,  15%,  40%,  and  75%).      

The  data  collected  from  this  study  were  compared  against  Damara  et  al.’s  

paper  “Pseudo  ternary  phase  diagrams  of  aqueous  mixtures  of  QuilA,  cholesterol,  

and  phospholipid  prepared  by  the  lipid-­‐film  hydration  method’,  which  examined  the  

structures  formed  for  a  wide  range  of  liposome  compositions.      

The  research  described  herein  suggests  that  lipid  membranes  without  

cholesterol  form  small  micelles  slowly  by  isolating  lipids  from  the  membrane,  rather  

than  forming  pores  or  larger  micelle  structures  that  require  a  large  structural  

change.    The  effect  of  saponin  is  highly  dependent  on  the  presence  of  cholesterol  and  

the  composition  of  the  lipid  membrane.  

   

Page 16: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

5  

CHAPER  2:  MATERIALS  AND  METHODS  

2.1   Materials       The  liposome  membrane  formulations  consisted  of  monounsaturated  lipid  

1,2-­‐Dioleoyl  phosphatidyl-­‐choline  (DOPC),  saturated  lipid  dipalmitoylphosphatidyl-­‐

choline  (DPPC),  and  cholesterol.    Dansylated  lecithin  (DAN)  and  dehydroergosterol  

(DHE)  were  used  as  fluorescent  probes  for  FRET  analysis.    

Calcein  dye,  phosphate  buffered  saline  powder  (PBS),  Sephadex  G50,  ergosta-­‐

5,7,9(11),22-­‐tetraen-­‐3β-­‐ol  (DHE)  and  cholesterol  were  purchased  from  Sigma-­‐

Aldrich  Chemical  Company  (Sigma-­‐Aldrich,  St.  Louis,  MO).      

1,  2-­‐Dioleoyl-­‐sn-­‐glycero-­‐3-­‐phosphocholine  (DOPC),  1,  2-­‐Dipalmitoyl-­‐sn-­‐

glycero-­‐3-­‐phosphocholine  (DPPC),  and  1-­‐Myristoyl-­‐2-­‐[12-­‐[(5-­‐dimethylamino-­‐1-­‐

naphthalenesulfonyl)amino]dodecanoyl]-­‐sn-­‐glycero-­‐3-­‐phosphocholine  (DAN)  were  

purchased  from  Avanti  Polar  Lipids,  Inc.  (Alabaster,  AL).      

Chloroform  for  liposome  preparation  was  purchased  from  Fischer-­‐Scientific  

(Pittsburgh,  PA).    

  Quillaja  A  saponin  (QuilA)  was  supplied  by  Unilever.  The  partially  purified  

powder  (27.8  wt%  saponin)  was  rehydrated  using  1x  PBS  to  a  final  saponin  

concentration  of  1.61  e-­‐5  mol/mL.  

     

2.2   Preparation  of  Small  Unilamellar  Vesicles  (SUV)       SUVs  were  prepared  in  a  three  step  process;  dehydration,  rehydration,  and  

pressure  extrusion.    Stock  solutions  of  DOPC,  DPPC,  DHE,  and  DAN  were  prepared  in  

Page 17: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

6  

chloroform.    Each  SUV  formulation  was  prepared  by  pipetting  the  lipid  solutions  

into  a  round  bottom  flask,  then  dried  under  a  vacuum  rotary  evaporator  for  two  

hours.    Table  1  shows  the  SUV  formulations  for  each  type.    Each  batch  of  liposomes  

contained  a  total  of  1.0  e-­‐5  moles,  where  the  volumes  of  lipids  were  calculated  

according  to  this  final  mole  value  and  the  lipid  percentage  in  the  membrane.    The  

films  were  rehydrated  in  buffers  appropriate  for  the  experiment  (see  sections  2.3  –  

2.4),  sonicated  for  five  minutes,  then  mixed  on  a  stir  plate  for  30  minutes  at  60  °C.    

The  lipid  solution  was  then  passed  through  two  stacked  polycarbonate  filters  

(Nuclepore,  Whatman  Inc.,  Clifton,  NJ)  five  times  (200  nm)  and  seven  times  (100  

nm)  to  yield  SUVs  with  a  mean  liposome  diameter  of  120  nm.    After  extrusion,  FRET  

SUVs  were  stored  in  4  °C  until  use.    Calcein  SUV  solutions  were  put  through  size  

exclusion  chromatography  (SEC)  in  a  Sephadex  G50-­‐packed  column  to  remove  

unencapsulated  dye.    The  column  was  eluted  with  a  1x  PBS  solution.  

     Table  1:  Liposome  Formulations  for  All  Experiments.    Mole  percents  are  in  terms  of  1.0e-­‐5  total  moles.  

   

Liposome(Type Test(Use Cholesterol((mol%) DOPC((mol%) DPPC((mol%) DHE((mol%) DAN((mol%) Rehydrated(with(A Calcein 50 50 0 0 0 70,mM,CalceinB Calcein 50 0 50 0 0 70,mM,CalceinC Calcein 0 50 50 0 0 70,mM,CalceinD Calcein 25 10 65 0 0 70,mM,CalceinE Calcein 26 65 10 0 0 70,mM,CalceinF Calcein 0 100 0 0 0 70,mM,CalceinG Calcein 0 0 100 0 0 70,mM,CalceinH Calcein 25 37.5 37.5 0 0 70,mM,CalceinI Calcein 50 25 25 0 0 70,mM,CalceinC FRET 0 47.5 47.5 5 0 1x,PBSF FRET 0 95 0 5 0 1x,PBSG FRET 0 0 95 5 0 1x,PBSC FRET 0 45 45 5 5 1x,PBSF FRET 0 90 0 5 5 1x,PBSG FRET 0 0 90 5 5 1x,PBSC FRET 0 42.5 42.5 5 10 1x,PBSF FRET 0 85 0 5 10 1x,PBSG FRET 0 0 85 5 10 1x,PBS

Page 18: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

7  

     

  Figure  2  shows  the  placement  of  all  nine  liposome  types  on  a  ternary  

diagram.    This  diagram  maps  out  the  concentration  of  unsaturated  lipid  (DOPC),  

saturated  lipid  (DPPC),  and  cholesterol.    

     

 

Figure  2:  Ternary  diagram  for  liposome  compositions.    The  bottom  edge  corresponds  to  the  percentage  of  DPPC  (saturated  lipid).    The  left  side  corresponds  to  the  percentage  of  DOPC  (unsaturated  lipid).    The  right  side  corresponds  to  the  percentage  of  cholesterol.    The  shaded  region  in  the  middle  corresponds  to  a  two-­‐phase  system  where  the  membrane  components  are  not  miscible  in  one  another  and  segregate  into  distinct  domains.  

        Figure  3  below  shows  where  the  liposome  compositions  from  this  

experiment  fall  on  the  ternary  diagram  created  from  Demana  et  al.’s  data.  

Page 19: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

8  

 

Figure  3:  Liposome  compositions  overlaid  on  Demana  et  al.'s  phase  diagram  [7].    The  left  edge  corresponds  to  the  saponin  level.    The  right  edge  corresponds  to  the  cholesterol  level.    The  bottom  edge  corresponds  to  the  lipid  level.    As  the  lipid  composition  in  this  phase  diagram  is  not  specified,  the  arrows  denote  the  path  along  the  saponin  levels  from  0%  to  75%.  

     

2.3   Calcein  Leakage  Assay       Leakage  from  liposomes  was  measured  by  the  dequenching  of  self-­‐quenched  

calcein  encapsulated  in  the  SUV.    When  calcein  is  in  concentration  of  70  mM,  the  

fluorescent  probe  is  self-­‐quenched  [9].    Once  released,  the  concentration  decreases  

sufficiently  for  the  calcein  to  fluoresce.    The  fluorescence  of  the  encapsulated,  self-­‐

quenched  calcein  was  recorded  and  subtracted  from  the  leaked  fluorescence  

intensity  to  account  for  fluorescence  as  a  result  of  unleaked  calcein.    The  calcein  was  

excited  at  a  wavelength  of  488  nm  and  the  intensity  of  the  emitted  light  at  

wavelength  527  nm  was  recorded.    

A,  I,  B E,  H,  D F,  C,  G

Page 20: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

9  

  Leakage  was  calculated  from  fluorescence  data  with  respect  to  the  Triton  

release  and  unleaked,  pure  liposome  sample  for  each  liposome  type:    

                                   %  Leakage =

!!"#$%&!!!"#$  !"#$%$&'!!"#$%&!!!"#$  !"#$%$&' !

!!"#$%&!!!"#$  !"#$%$&'!!"#$%&!!!"#$  !"#$%$&' !"# !"#  !""  !"#$%$&'  !"#$%

                                     (1)  

where  i  denotes  the  individual  liposome  type  and  I  represents  fluorescence  

intensity.    The  subscript  ‘sample’  differentiates  among  the  different  saponin  

concentrations  for  each  liposome  type.    The  numerator  in  equation  1  was  calculated  

for  each  data  point  (liposome  type,  saponin  level,  time).    Liposome  type  B  resulted  

in  the  largest  value  for  all  saponin  levels.    Therefore,  the  maximum  fluorescence  of  

liposome  B  for  each  saponin  level  (5%,  15%,  40%,  75%)  was  set  as  the  maximum  

for  all  liposome  types,  and  was  used  as  the  denominator  in  equation  1.  

     

2.4   Förster  Resonance  Energy  Transfer  (FRET)  Assay       FRET  SUVs  of  liposome  types  C,  F,  and  G  were  created  according  to  section  

2.2.    Each  composition  was  made  three  times  with  constant  levels  of  DHE  (5%)  and  

varying  levels  of  DAN  (0%,  5%,  10%).    All  liposomes  were  rehydrated  using  1x  PBS.    

All  liposomes  were  tested  within  3  days  of  preparation.    Each  liposomes  type  was  

subjected  to  0%,  5%,  15%,  40%,  or  75%  mol  saponin.      

  Fluorescence  was  measured  by  an  excitation  wavelength  of  300  nm  and  

recording  emission  wavelength  intensity  from  330  nm  –  550  nm.    This  range  of  

wavelength  encompasses  both  the  DHE  and  DAN  fluorescence.    The  maximum  

Page 21: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

10  

emission  wavelength  for  DHE  and  DAN  were  taken  to  be  385  nm  and  515  nm  

respectively.    Fluorescence  data  were  recorded  over  the  course  of  2  hours.  

  The  FRET  data  had  to  be  corrected  to  account  for  the  saponin  fluorescence  at  

these  wavelengths  and  the  scattering  effect  of  the  spherical  liposomes  using  

equation  2.      

                                                                                         I!"##$!%$& = I!"#×10! − I!"#$%&%                                                                            (2)  

where  turbidity  data  (τ)  for  the  pure  liposomes  were  recorded  according  to  

section  2.7.    The  corrected  data  were  then  plotted  corrected  intensity  versus  

emission  wavelength  (Figures  10  -­‐  15).  

The  peak  ratios  of  DHE  and  DAN  maximum  emission  intensities  were  also  

used  with  equation  3  to  further  describe  the  effect  of  saponin  levels  on  FRET  for  

each  liposome  type  and  DAN  level.      

                                                                                       Peak  Ratio =!!"##$!%$&  !"#

!!"##$!%$&  !"#  !"!#!$%!!"##$!%$&  !"#

!!"##$!%$&  !"#  !"!#!$%

                                                                                   (3)  

where  Icorrected  DHE  and  Icorrected  DAN  correspond  to  the  maximum  emission  

wavelength  intensity  of  385  nm  and  515  nm  respectively  for  each  saponin  level.    

Likewise,  Icorrected  DHE  initial  and  Icorrected  DAN  initial  correspond  to  the  emission  wavelength  

intensities  for  the  initial  fluorescence  level,  or  0%  saponin.  These  peak  ratios  were  

then  plotted  versus  the  saponin  levels  (Figure  16).  

           

Page 22: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

11  

2.5   Fluorescence  Spectroscopy       Fluorescence  measurement  were  taken  with  a  TECAN  Infinite  ®  200  PRO.    

Separate  programs  files  were  created,  specifically  for  each  test  (sections  2.3  –  2.4).    

All  of  the  programs  contained  some  common  steps.    The  instrument  mixed  each  

sample  for  1  second  before  each  data  measurement.    The  temperature  of  the  

instrument  was  maintained  between  19  –  23  °C.    Measurements  were  taken  from  

the  top  of  the  plate  well.    Each  sample  set  used  a  clear  plastic,  96-­‐well  plate.  

           

2.6   Dynamic  Light  Scattering  (DLS)       Liposome  sizes  were  determined  in  a  separate  experiment  before  and  after  

saponin  addition  (separately  from  the  fluorescence  measurements),  using  a  

Brookhaven  90Plus  dynamic  light  scattering  apparatus.    Effective  diameter  of  the  

particles  were  calculated  using  the  Stokes-­‐Einstein  equation:  

                                                                                                                     𝐷!"" =  !!!!!"#

                                                                                                             (4)  

where  kB  is  the  Boltzmann  constant,  T  is  the  temperature  of  the  system  (25°C),  ν  is  

the  solvent  viscosity  (taken  to  be  water),  and  D  is  the  diffusivity  calculated  from  the  

cumulate  fit  of  the  data.  

             

Page 23: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

12  

2.7   Turbidity  Measurement       The  turbidity  of  the  samples,  as  a  result  of  particulate  formation,  was  

measured  using  Perkin-­‐Elmer  Instruments  Lambda  40  UV/Vis  Spectrometer.      

For  each  calcein  liposome  formulation  (A-­‐I),  absorbance  of  light  at  527  nm  

was  measured  ever  five  minutes  over  the  course  of  two  hours  after  the  addition  of  

saponin.    This  wavelength  of  light  was  selected  as  it  was  the  emission  wavelength  of  

calcein.    The  absorbance  or  scattering  of  527  nm  light  may  have  explained  lower  

fluorescence  intensity  than  expected,  especially  with  the  higher  saponin  levels.      

For  each  FRET  liposome  formulation  (C,  F,  G),  absorbances  for  a  range  of  

wavelengths  (330  nm  –  550  nm)  were  recorded  in  5  nm  increments.    These  

measurements  were  taken  for  pure  liposomes  (no  saponin)  in  order  to  correct  for  

the  scattering  of  light  due  to  the  spherical  liposomes.  

   

Page 24: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

13  

CHAPER  3:  RESULTS  

3.1   Calcein  Leakage  Assay    

All  fluorescence  data  was  first  corrected  using  equation  1.    The  corrected  

data  were  then  plotted  versus  time  and  separated  by  saponin  mole  percentage.    Due  

to  precipitation  turbidity  effects,  40%  and  75%  saponin  results  were  not  considered  

representative  of  the  actual  calcein  leakage.    

     

 

Figure  4:  %  Leakage  vs.  Time  Data  for  5  mol%  Saponin  Samples.  Each  data  set  corresponds  to  a  liposome  type  according  to  table  1  with  5%  saponin.    All  samples  were  run  in  triplicate  and  then  averaged  together  with  an  overall  error  of  0.5%  (error  bars  not  shown).    Raw  fluorescence  data  were  corrected  using  equation  1.  Error  bars  (not  shown)  are  on  the  order  of  0.5%  of  the    

Page 25: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

14  

 

Figure  5:  %  Leakage  vs.  Time  Data  for  15  mol%  Saponin  Samples.  Each  data  set  corresponds  to  a  liposome  type  according  to  table  1  with  15  mol%  saponin.    All  samples  were  run  in  triplicate  and  then  averaged  together  with  an  overall  error  of  0.5%  (error  bars  not  shown).    Raw  fluorescence  data  were  corrected  using  equation  1.      

     

Figures  4  and  5  indicate  that  these  trends  are  comparable  for  both  saponin  

levels.    The  end  points  of  liposome  leakage  group  together  correlating  to  cholesterol  

content.    Liposomes  with  50%  cholesterol  (types  A,  B,  and  I)  show  higher  final  

percent  leakages  than  liposomes  with  25%  cholesterol  (types  D,  E,  and  H),  while  

liposomes  with  0%  cholesterol  (types  C,  F,  and  G)  show  the  lowest  final  percent  

leakages.  

Leakage  levels  were  then  plotted  against  saponin  levels  according  to  

cholesterol  content  in  order  to  more  clearly  observe  the  differences  between  

cholesterol  levels.      

 

Page 26: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

15  

 

Figure  6:  Final  %  Leakage  vs.  Saponin  Level  for  0%  Cholesterol  Liposomes.  The  final  percent  leakage  values  for  each  liposome  type  without  cholesterol  (liposome  C,  F,  and  G)  and  saponin  level  were  plotted.      

   

 

Figure  7:  Final  %  Leakage  vs.  Saponin  Level  for  25%  Cholesterol  Liposomes.  The  final  percent  leakage  values  for  each  liposome  type  with  25%  cholesterol  (liposome  D,  E,  and  H)  and  saponin  level  were  plotted.      

Page 27: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

16  

 

Figure  8:  Final  %  Leakage  vs.  Saponin  Level  for  50%  Cholesterol  Liposomes.  The  final  percent  leakage  values  for  each  liposome  type  with  50%  cholesterol  (liposome  A,  B,  and  I)  and  saponin  level  were  plotted.      

     

Figures  6  -­‐  8  indicate  that  leakage  increases  dramatically  as  the  cholesterol  

content  in  the  lipid  membrane  increases.    Figures  6  -­‐  8  also  show  that  saponin  levels  

appear  to  reach  a  maximum  effect  at  5%  saponin  and  the  effects  are  approximately  

equivalent  between  15-­‐75%.  

Table  2  summarizes  the  effect  of  saponin  levels  and  lipid  membrane  

composition  on  particle  size.    Due  to  the  excessive  particle  sizes  after  the  addition  of  

saponin,  the  particles  that  were  being  detected  were  not  assumed  to  be  the  

liposomes,  but  instead  precipitation.    This  precipitation  could  have  been  as  a  result  

of  the  saponin/liposome  interactions  or  the  impurities  in  the  saponin  solution.    The  

distinction  between  these  two  possibilities  cannot  be  made  at  this  time  without  a  

pure  saponin  compound.  

Page 28: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

17  

Table  2:  Summary  of  Particle  Size  vs.  Saponin  Level.    Each  liposome  type  (refer  to  Table  1)  was  subjected  to  5,  15,  40,  or  75  mol%  saponin.    Particle  size  of  each  mixture  was  determined  using  DLS  (section  2.6).    Missing  entries  for  liposome  A  were  due  a  lack  of  the  liposome  sample.    Empty  entries  for  liposomes  F  and  G  were  due  to  the  particle  size  exceeding  the  measurement  capacity  of  the  instrument.        

       

Table  3  summarizes  the  effect  of  liposome  membrane  composition  and  

saponin  levels  on  precipitate  formation.    The  sample  turbidities  were  taken  by  

measuring  the  absorptivity  of  light  at  527  nm.    The  difference  in  the  incident  and  

transmitted  light  of  each  sample  represents  the  light  either  scattered  or  absorbed  by  

the  solution.    As  neither  saponin  nor  the  liposomes  absorb  or  emit  light  at  527  nm,  

the  different  is  attributed  to  scattering  by  particles.  These  data  correspond  to  the  

visual  observations  made,  in  which  precipitation  increased  with  decreasing  

cholesterol  amounts.    A  solution  of  only  liposomes  would  present  similar  

absorptivity  levels.    The  differences  in  these  data  are  can  be  attributed  to  the  

differences  in  precipitate  formation.    Liposome  types  C,  F,  and  G  resulted  in  the  

highest  amount  of  precipitation,  while  liposome  types  A,  B,  and  I  resulted  in  the  

lowest  amount.    

     

Sample Liposome+Type/Saponin+Levels 0 0.05 0.15 0.4 0.75A 50:50+Chol:DOPC 264.6 454.0 474.7 @@@ @@@B 50:50+Chol:DPPC 163.6 1173.4 940.7 739.9 464.6C 50:50+DOPC:DPPC 262.9 2146.3 4000.0 3500.0 3500.0D 25:10:65+Chol:DOPC:DPPC 148.6 171.2 232.2 188.3 110.5E 25:65:10+Chol:DOPC:DPPC 143.0 258.2 289.7 292.8 335.7F 100+DOPC 144.7 584.3 5148.1 5558.9 @@@G 100+DPPC 144.6 3177.4 @@@ @@@ @@@H 25:37.5:37.5+Chol:DOPC:DPPC 144.8 231.9 229.5 217.9 203.5I 50:25:25+Chol:DOPC:DPPC 139.6 258.4 268.0 800.4 321.1

Particle+Size+(nm)

Page 29: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

18  

Table  3:  Summary  of  Turbidity  vs.  Saponin  Level  (Stand  in  for  Precipitate  Formation).  Each  liposome  type  (refer  to  Table  1)  was  subjected  to  5,  15,  40,  or  75  mol%  saponin.    Particle  size  of  each  mixture  was  determined  via  section  2.7.    Missing  entries  for  liposomes  A  and  C  were  due  a  lack  of  the  liposome  sample.    

       

Figure  9  below  shows  the  liposome/saponin  solutions  for  liposome  B,  D,  and  

G,  respectively,  after  24  hours  in  4  °C.    Precipitate  levels  were  directly  related  to  the  

cholesterol  content  in  the  lipid  membrane.    Liposomes  with  50%  cholesterol  did  not  

produce  any  visible  precipitate,  while  liposomes  with  0%  cholesterol  developed  

dark  precipitate  immediately  after  saponin  addition.    Precipitate  formation  also  

increased  with  saponin  levels.  

     

 

Figure  9:  Qualitative  Visual  Data  for  Precipitate  Formation  after  24  hours  in  4  °C.    Each  set  of  curvettes  are  arranged  in  order  of  increasing  saponin  level,  0%,  5%,  15%,  40%,  and  75%.    The  first  set  of  cuvettes  is  liposome  type  B  (50%  cholesterol).    The  second  set  is  liposome  type  D  (25%  cholesterol).    The  third  set  is  liposome  type  G  (0%  cholesterol).    Note  the  lack  of  visible  precipitate  in  liposome  B  sample,  the  thin  layer  of  white  precipitate  in  liposome  D  samples,  and  the  thicker  layer  of  dark  precipitate  in  liposome  G  samples.  

     

Sample Liposome+Type/Saponin+Levels 0 0.05 0.15 0.4 0.75A 50:50+Chol:DOPC >>> >>> >>> >>> >>>B 50:50+Chol:DPPC 1.207 1.440 1.521 1.506 1.551C 50:50+DOPC:DPPC >>> >>> >>> >>> >>>D 25:10:65+Chol:DOPC:DPPC 1.602 1.786 1.836 1.867 1.930E 25:65:10+Chol:DOPC:DPPC 0.962 1.048 1.054 1.146 1.237F 100+DOPC 2.227 2.654 2.820 2.944 3.020G 100+DPPC 1.680 1.869 1.828 1.871 1.917H 25:37.5:37.5+Chol:DOPC:DPPC 1.493 1.683 1.703 1.769 1.796I 50:25:25+Chol:DOPC:DPPC 1.149 1.319 1.358 1.398 1.464

Absorbtivity

Page 30: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

19  

These  data  generally  agree  with  the  data  from  Demana  et  al.,  with  the  

exception  of  liposomes  with  no  cholesterol  (liposomes  C,  F,  and  G).    Demana  et  al.  

concluded  that  membranes  with  no  cholesterol  form  lipic  layered  structures,  which  

suggests  that  the  liposomes  unfold  completely.    This  mechanism  would  release  all  

encapsulated  calcein  in  liposome  types  C,  F,  and  G,  which  does  not  agree  with  the  

above  calcein  leakage  data.    The  remainder  of  the  study  was  then  focused  on  further  

examining  the  effects  of  lipid  membrane  composition  in  the  absence  of  cholesterol  

(liposome  types  C,  F,  and  G).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 31: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

20  

3.2   FRET  Assay    

All  fluorescent  data  were  corrected  using  equations  2  and  3.    The  corrected  

data  were  then  plotted  versus  emission  wavelength  and  separated  by  liposome  type  

and  DAN  concentration.      

     

 

Figure  10:  FRET  Curves  for  Liposome  C  with  5%  DAN.    Liposome  C  with  5%  dansyl  (refer  to  Table  1)  was  excited  with  a  wavelength  of  300  nm.    Each  curve  corresponds  to  a  different  saponin  level.    Raw  fluorescence  data  was  corrected  using  equation  2.    Each  sample  tested  in  triplicate  and  averaged  together  for  plotted  data.    Error  bars  (not  shown)  are  on  the  order  of  101  or  0.5%  of  fluorescence  intensity  (smaller  than  marker  size).  

 

     

Page 32: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

21  

 

 

 

 

Figure  11:  FRET  Curves  for  Liposome  C  with  10%  DAN.    Liposome  C  with  10%  dansyl  (refer  to  Table  1)  was  excited  with  a  wavelength  of  300  nm.    Each  curve  corresponds  to  a  different  saponin  level.    Raw  fluorescence  data  was  corrected  using  equation  2.    Each  sample  tested  in  triplicate  and  averaged  together  for  plotted  data.    Error  bars  (not  shown)  are  on  the  order  of  101  or  0.5%  of  fluorescence  intensity  (smaller  than  marker  size).  

 

 

Page 33: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

22  

       

 

Figure  12:  FRET  Curves  for  Liposome  F  with  5%  DAN.  Liposome  F  with  5%  dansyl  (refer  to  Table  1)  was  excited  with  a  wavelength  of  300  nm.    Each  curve  corresponds  to  a  different  saponin  level.    Raw  fluorescence  data  was  corrected  using  equation  2.    Each  sample  tested  in  triplicate  and  averaged  together  for  plotted  data.    Error  bars  (not  shown)  are  on  the  order  of  101  or  0.5%  of  fluorescence  intensity  (smaller  than  marker  size).  

 

Page 34: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

23  

       

 Figure  13:  FRET  Curves  for  Liposome  F  with  10%  DAN.  Liposome  F  with  10%  dansyl  (refer  to  Table  1)  was  excited  with  a  wavelength  of  300  nm.    Each  curve  corresponds  to  a  different  saponin  level.    Fluorescence  data  was  corrected  using  equation  2.    Each  sample  tested  in  triplicate  and  averaged  together  for  plotted  data.    Error  bars  (not  shown)  are  on  the  order  of  101  or  0.5%  of  fluorescence  intensity  (smaller  than  marker  size).  

 

 

Page 35: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

24  

       

 Figure  14:  FRET  Curves  for  Liposome  G  with  5%  DAN.  Liposome  G  with  5%  dansyl  (refer  to  Table  1)  was  excited  with  a  wavelength  of  300  nm.    Each  curve  corresponds  to  a  different  saponin  level.    Fluorescence  data  was  corrected  using  equation  2.    Each  sample  tested  in  triplicate  and  averaged  together  for  plotted  data.    Error  bars  (not  shown)  are  on  the  order  of  101  or  0.5%  of  fluorescence  intensity  (smaller  than  marker  size).  

 

Page 36: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

25  

       

 Figure  15:  FRET  Curves  for  Liposome  G  with  10%  DAN.  Liposome  G  with  10%  dansyl  (refer  to  Table  1)  was  excited  with  a  wavelength  of  300  nm.    Each  curve  corresponds  to  a  different  saponin  level.    Fluorescence  data  was  corrected  using  equation  2.    Each  sample  tested  in  triplicate  and  averaged  together  for  plotted  data.    Error  bars  (not  shown)  are  on  the  order  of  101  or  0.5%  of  fluorescence  intensity  (smaller  than  marker  size).  

     

Figures  10  -­‐  15  show  the  fluorescence  intensity  of  DAN  (peak  at  515  nm)  

decreases  while  fluorescence  intensity  of  DHE  (peak  at  385  nm)  increases  as  more  

saponin  is  added.    This  is  indicative  of  FRET  alleviation.    To  take  a  closer  look  at  the  

effects  of  saponin  on  fluorescence,  the  peak  ratios  between  DHE  and  DAN  were  

calculated  and  plotted  versus  saponin  levels.    It  should  be  noted  that  the  75%  

saponin  data  points  for  liposome  F  (both  DAN  concentrations)  were  removed  from  

the  data  set,  as  they  were  determined  to  be  outliers.    A  least-­‐squares  analysis  was  

completed  in  Excel  to  determine  these  outliers.  

Page 37: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

26  

       

 

Figure  16:  DHE/DAN  Max  Emission  Peak  Ratios  vs.  Saponin  Level  for  All  Liposome  Types  and  DAN  Levels.    FRET  fluorescence  data  was  corrected  using  equations  2  and  3.    Peak  ratios  for  each  liposome  type  (refer  to  Table  1)  were  plotted  against  saponin  level  to  track  the  effect  of  saponin  level  on  membrane  reorganization.    A  larger  peak  ratio  signifies  greater  structural  changes.  

       Table  4:  Summary  of  Linear  Fit  for  Figure  16.    Each  data  set  from  Figure  16  was  fit  with  a  linear  trend  line.      The  slopes  are  summarized  below.    Slopes  were  related  to  the  rate  of  lipid  membrane  reorganization.    The  larger  the  slope,  the  more  the  membrane  was  restructured.  

       

Liposome(Type %(DAN SlopeC 5 0.1736F 5 0.1361G 5 0.1352C 10 0.2796F 10 0.3003G 10 0.2076

Page 38: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

27  

  These  data  show  that  the  amount  of  saponin  and  the  type  of  liposome  affect  

the  FRET.    The  addition  of  more  saponin  results  in  more  FRET  alleviation.    Liposome  

F,  100%  unsaturated  lipids,  saw  the  greatest  rate  of  FRET  alleviation,  while  

liposome  G,  100%  saturated  lipids,  saw  the  slowest  rate  of  FRET  alleviation.    The  

rates  of  FRET  alleviation  were  taken  to  be  the  slope  of  the  plots  in  Figure  16,  

summarized  in  Table  4,  and  were  assumed  to  be  representative  of  the  extent  of  

structural  reorganization.  

  Comparing  Figures  6  -­‐  8  with  Figure  16  shows  that  increasing  the  amount  of  

saponin  did  not  generally  increase  the  calcein  fluorescence  in  the  absence  of  

cholesterol,  however,  additional  saponin  continued  to  reorganize  the  lipid  

membrane  structure.  

   

Page 39: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

28  

CHAPTER  4:  DISCUSSION       Demana  et  al.’s  work  on  saponin  focused  on  the  effect  on  liposome  structure.    

They  conclude  that  liposomes  without  cholesterol,  a  pseudo-­‐binary  system  of  

saponin  and  lipids  results  in  lipidic  particles  and  layered  structures.    After  the  

addition  of  saponin,  they  describe  the  resulting  structures  to  contain  mostly  stacked  

layers  of  bilayer  membranes,  not  organized  into  a  spherical  liposome  form,  “QuilA  

appears  to  hinder  vesicle  formation  despite  forming  bilayers  structures  with  PC,  

possibly  by  altering  lipid  packing”  [7].    The  formation  of  layered  structures  from  

liposomes  leads  to  the  conclusion  that  these  layered  structures  are  formed  by  the  

opening  of  the  liposome  to  form  a  flat  sheet  of  lipid  bilayer.    Additional  saponin  

resulted  in  the  further  reorganization  of  the  layered  lipid  structures  into  micelles.    

This  mechanism  for  saponin/lipid  membrane  interaction  differs  greatly  from  the  

liposome  types  that  include  cholesterol,  which  were  shown  to  form  ISCOM  matrices  

and  various  forms  of  micelles  [7].  

  Demana  et  al.’s  study  focused  on  long-­‐term  (1  day  to  2  months)  effects  of  

saponin  on  liposome  structure.  This  study  evaluated  more  immediate  effects  (up  to  

2  hours)  and  used  fluorescence  instead  of  microscopy  to  observe  structural  changes.    

It  should  also  be  noted  that  Demana  et  al.  study  used  egg  yolk,  which  contains  an  

unquantified  mixture  of  lipids  for  the  membrane.    This  study  was  designed  to  assess  

the  effect  of  saponin  as  a  function  of  lipid  membrane  composition,  paying  

particularly  close  attention  to  the  types  of  lipids  that  make  up  the  membrane.  

  Figures  4  and  5,  as  well  as  Figures  27  and  28  in  the  Appendix  A,  show  the  

calcein  fluorescence  in  terms  of  leakage  for  each  saponin  level  over  2  hours.    The  

Page 40: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

29  

leakage  trends  roughly  group  into  each  liposome’s  composition  subset,  in  that  the  

liposomes  that  contain  the  most  cholesterol  (types  A,  B,  and  I)  show  the  highest  

leakage,  the  liposomes  with  the  least  cholesterol  (types  C,  F,  and  G)  show  the  lowest  

leakage,  and  liposomes  with  an  intermediate  amount  of  cholesterol  (types  D,  E,  H)  

show  an  intermediate  leakage.      

Liposome  G  demonstrates  a  negative  percent  leakage  value.    Figure  23  in  

Appendix  A  shows  that  the  addition  of  saponin  to  liposome  G  did  result  in  a  small  

level  of  fluorescence.    However,  applying  equation  1  to  the  raw  calcein  fluorescence  

data  resulted  in  a  negative  value.    As  demonstrated  in  Table  3,  the  0%  cholesterol  

liposomes  produced  significant  amounts  of  precipitate,  which  scatter  the  emitted  

light,  artificially  lowering  the  fluorescence  intensity  data.    It  is  important  to  note  that  

unlike  the  FRET  data,  the  calcein  release  data  were  not  corrected  for  this  

precipitation-­‐induced  scattering.    Correction  for  light  scattering  in  the  FRET  data  

resulted  in  an  overall  increase  of  fluorescence  values,  but  not  a  change  in  the  trends.    

Therefore,  it  can  be  assumed  that  if  the  calcein  release  data  were  corrected  for  the  

precipitation  induced  light  scattering,  then  the  overall  trends  would  not  change,  but  

would  be  shifted  up  to  higher  percent  leakage  values.      

The  results  for  50%  cholesterol  and  25%  cholesterol  liposomes  are  

consistent  with  Demana  et  al.’s  data.      

According  to  Demana  et  al.,  liposomes  containing  50%  cholesterol  form  

mostly  ring-­‐like  micelles,  which  requires  almost  complete  opening  and  reformation  

of  the  liposome  structure,  consistent  with  a  high  amount  of  leakage.    Liposomes  

containing  25%  cholesterol  form  mostly  ISCOM  matrices,  in  which  the  liposome  still  

Page 41: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

30  

retains  some  form  of  structure  that  can  trap  some  level  of  calcein,  which  accounts  

for  the  intermediate  level  of  leakage  seen  in  this  study.    However,  the  calcein  

leakage  and  Demana’s  data  for  0%  cholesterol  liposomes  are  not  consistent.    The  

formation  of  lipidic/layered  structures  requires  that  the  liposome  is  completely  

opened  to  for  the  flat  bilayer  necessary  for  layering.    This  mechanism  should  result  

in  a  high  level  of  calcein  leakage,  as  it  does  in  the  formation  of  ring-­‐like  micelles.  

Instead,  liposomes  containing  0%  cholesterol  result  in  the  smallest  amount  

of  calcein  leakage.    In  addition  to  this  inconsistency,  the  leakage  trends  for  0%  

cholesterol  liposome  types  C,  F,  and  G  were  very  different  from  each  other  (Figures  

4  -­‐  5).    Liposomes  C  and  F  showed  a  small  immediate  jump  in  leakage,  but  while  F  

stayed  constant  after  that  initial  change,  C  leakage  slowly  increased  before  reaching  

a  maximum  level.    Liposome  G  showed  no  initial  leakage  jump  and  remained  at  

essentially  0%  leakage  for  the  length  of  the  2-­‐hour  experiment.  

Another  noticeable  difference  among  the  liposome  types  was  the  amount  of  

precipitation  that  formed  after  the  addition  of  saponin.    The  50%  cholesterol  subset  

had  little  to  no  visible  precipitation,  even  after  several  days.    The  25%  cholesterol  

subset  had  a  minimal  amount  of  precipitation,  which  appeared  only  after  storage  at  

4  °C  overnight.    The  0%  cholesterol  subset  formed  a  significant  amount  of  

precipitation  immediately  upon  saponin  formation.    

The  discrepancy  between  0%  cholesterol  liposomes  and  the  other  types,  as  

well  as  the  discrepancy  among  the  0%  liposome  types  lead  to  the  narrowing  of  the  

scope  of  this  study  to  liposome  types  C,  F,  and  G  for  the  FRET  analysis.  

Page 42: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

31  

The  FRET  data  from  liposome  types  C,  F,  and  G  indicated  a  clear  alleviation  of  

energy  transfer  (Figures  10  -­‐  15).    Further  manipulation  of  the  peak  intensities  

revealed  that  Liposome  F  experienced  the  greatest  rate  of  alleviation,  followed  by  C,  

then  G.    Figure  16  and  table  4  summarize  the  results.    The  rate  of  FRET  alleviation  

was  taken  to  be  the  slope  of  the  peak  ratios  versus  saponin  level.    These  data  mirror  

the  calcein  leakage  data,  in  that  the  liposome  type  with  the  least  saturated  lipids  saw  

the  greatest  structural  change  (largest  final  peak  ratio)  and  underwent  that  change  

faster  (larger  slope).      

There  is  a  distinct  discrepancy  between  the  calcein  leakage  and  FRET  

analysis  data  for  liposome  G.    FRET  suggests  that  liposome  G  undergoes  a  not  

insignificant  structural  change,  yet  calcein  leakage  shows  that  this  structural  change  

must  result  in  minimal  leakage.    Therefore,  the  explanation  for  the  structural  change  

is  not  likely  to  be  pore  formation.  

One  possible  mechanism  for  saponin  lipid  membrane  reorganization  is  a  

budding  of  the  outer  membrane  [2].    This  budding  phenomenon  may  explain  the  

structural  change  without  calcein  leakage.    However,  according  to  Lorent  et  al.,  this  

budding  phenomenon  is  only  seen  with  δ-­‐hederin  saponin  molecules,  or  

triterpenoid  molecules  with  a  one-­‐sugar  head  group  [2]  and  QuilA  saponin  is  

designated  as  an  α-­‐hederin  [2,  6].    Previous  studies  on  α-­‐hederin  saponin  show  that  

these  forms  of  saponin  mostly  interact  with  lipid  membranes  by  associating  with  

cholesterol  to  form  highly  curved  regions  of  the  membrane.  These  regions  first  form  

pores,  and  then  continue  to  curve  to  form  rolled  lip  structures  while  continually  

increasing  the  pore  diameter  [2].    This  kind  of  structural  change  is  not  likely  in  the  

Page 43: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

32  

case  of  liposome  type  G,  as  continually  growing  pores  would  release  encapsulated  

calcein  efficiently.    It  is  worth  noting  that  the  Lorent  study  used  GUVs  (giant  

unilaminar  vesicles)  that  contained  cholesterol,  which  differed  greatly  from  the  

SUVs  (small  unilaminar  vesicles)  without  cholesterol  in  this  study.    In  the  absence  of  

cholesterol,  an  α-­‐hederin  saponin  such  as  QuilA  could  promote  a  different  

mechanism  for  lipid  membrane  rearrangement.      

FRET  can  also  be  used  to  indicate  a  vesicle-­‐to-­‐micelle  transition  [8].    Vesicle-­‐

to-­‐micelle  transition  is  the  phenomenon  when  a  single,  large  vesicle  (in  this  case,  the  

liposome)  undergoes  a  molecular  reorganization  to  form  many,  smaller  micelles,  

which  contain  approximately  the  same  composition  of  lipids  as  the  original  

liposome.    However,  these  micelles  have  a  much  larger  surface  area-­‐to-­‐volume  

ratios  and  curvatures  compared  to  the  liposome,  thus  increasing  the  distance  

between  probes.    The  micelles  can  also  diffuse  through  the  solution  away  from  the  

parent  vesicle.    This  increases  the  distance  between  micelles  and  therefore,  the  

probes.  

  Previous  studies  on  saponin’s  effect  on  lipid  membranes  all  agree  that  

cholesterol  is  vital  to  facilitate  the  interaction  between  saponin  and  the  lipid  

membrane.    Cholesterol  appears  to  be  necessary  for  the  saponin  to  physically  get  

into  the  membrane.    The  resulting  structural  change  is  due  to  the  structure  of  the  

saponin  molecule.    The  two-­‐sugar  head  group  of  the  saponin  with  the  linear  

aglycone  creates  wedge-­‐like  molecules,  which  induces  curvature  of  the  membrane.    

This  curvature  can  then  result  in  multiple  forms,  such  as  pores  [2],  ISCOM  matrices,  

ring-­‐like,  and  worm-­‐like  micelles  [7].    In  the  absence  of  cholesterol,  the  saponin  is  

Page 44: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

33  

prevented  from  inserting  itself  directly  into  the  membrane,  but  can  still  alter  the  

structure  of  the  lipid  membrane.      

  The  extent  of  the  structural  change  appears  to  be  highly  dependent  on  the  

lipid  membrane  composition.    The  calcein  release  data  indicates  that  leakage  

happens  fastest  for  liposomes,  without  cholesterol,  with  pure  unsaturated  lipids,  or  

liposome  F.    Leakage  for  liposomes  with  pure  saturated  lipids,  liposome  G,  showed  

no  leakage  at  all.    Liposome  C,  which  contained  50%  saturated  and  50%  unsaturated  

lipids,  fell  between  the  two  limiting  cases.    These  results  correlate  to  the  FRET  data.    

Pure  unsaturated  liposomes  saw  the  greatest  structural  change,  pure  saturated  

liposomes  saw  the  least,  but  not  negligible,  change,  and  mixed-­‐lipid  liposomes  fell  in  

between.      

  The  relatively  low  calcein  leakage  results  for  the  0%  cholesterol  liposomes  

but  still  significant  structural  changes  suggest  that  the  saponin/lipid  mechanism  in  

the  absence  of  cholesterol  is  likely  a  vesicle-­‐to-­‐micelle  transition.      

  Liposome  F,  pure  unsaturated  lipids,  probably  undergoes  a  quick,  immediate  

micellization.    This  accounts  for  the  initial  jump  in  fluorescence  followed  by  a  

constant  fluorescence.    An  immediate  micellization,  which  requires  multiple  

phospholipids  being  pulled  out  at  once,  could  happen  too  fast  for  the  membrane  to  

“heal”  itself  fast  enough  to  completely  prevent  encapsulated  calcein  leakage.    The  

liposomes  were  not  completely  transformed  into  micelles,  because  the  maximum  

calcein  leakage  was  far  below  that  of  the  control  liposomes  that  were  completely  

micellized  by  a  detergent,  Triton  (Figure  23  in  Appendix  A).    Therefore,  the  saponin  

must  have  reached  a  limiting  constrain  on  how  many  micelles  could  be  formed.  

Page 45: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

34  

  Liposome  G,  pure  saturated  lipids,  probably  experiences  a  very  slow  

micellization  process.    The  saturated  lipids  appear  to  greatly  impede  vesicle-­‐to-­‐

micelle  transformation.    The  phospholipids  are  removed  slow  enough  that  the  

phospholipid  diffusion  across  the  membrane  to  repair  fill  in  the  void  is  faster  than  

the  calcein  diffusion  through  those  sparse,  small  openings.    This  results  in  

membrane  structure  reorganization  but  little  to  no  calcein  leakage.  

  Liposome  C,  a  mixture  of  unsaturated  and  saturated  lipids,  appears  to  

undergo  a  steady  rate  of  micellization.    Unlike  liposome  F,  which  micellizes  to  its  

fullest  extent  quickly,  the  fraction  of  saturated  lipids  appears  to  slow  down  the  

micellization  process.    Instead  of  an  immediate  micellization  of  the  liposome,  the  

lipids  are  constantly  pulled  from  the  membrane,  resulting  in  fluorescent  dye  flux  

that  slows  down  as  the  micellization  limit  is  reached,  analogous  to  the  maximum  

micellization  achieved  by  liposome  F.  

  A  vesicle-­‐to-­‐micelle  transition  will  result  in  liposomes  of  smaller  sizes  than  

the  starting  liposome.    Specifically  for  the  calcein  release  assay,  the  diffusion  of  

calcein  from  inside  the  liposome  to  the  outside  is  normally  dependent  on  the  size  of  

the  vesicle.    Decreasing  the  volume  of  a  vesicle  increases  the  overall  surface  area-­‐to-­‐

volume  ratio.    A  smaller  volume  for  a  spherical  vesicle  decreases  the  distance  that  a  

particle  would  need  to  diffuse  before  being  released  from  the  liposome.    However,  in  

the  calcein  release  assay,  the  concentration  of  calcein  inside  the  liposome  is  

sufficiently  large  compared  to  the  concentration  outside  in  the  bulk  fluid  that  this  

vesicle-­‐to-­‐micelle  transition  can  be  assumed  to  be  reaction  rate  limited.      The  calcein  

encapsulated  in  the  liposomes  is  assumed  to  immediately  diffuse  at  a  steady  rate  

Page 46: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

35  

into  the  bulk  fluid  upon  the  formation  of  an  opening  in  the  membrane.    It  should  also  

be  noted  that  the  calcein  does  not  diffuse  through  the  entirety  of  the  surface  of  the  

liposome.    In  order  to  be  transported  from  the  inside  of  the  liposome  to  the  bulk  

solution,  the  calcein  must  pass  through  an  opening.    Therefore,  the  overall  increase  

in  surface  area  as  volume  decreases  affects  only  the  rate  at  which  the  saponin  

interacts  with  the  membrane.    Because  the  interaction  of  saponin  with  lipid  

membranes  in  the  absence  of  cholesterol  is  so  slow,  it  can  be  assumed  that  the  slight  

increase  in  surface  area  does  not  have  a  significant  effect  on  the  rate  of  opening  

formation  or  calcein  release.    

  The  difference  between  the  saturated  and  unsaturated  lipids  was  expected.    

The  unsaturated  lipids  used  in  this  study  (DOPC)  have  a  melting  point  of  -­‐17  °C  [10],  

while  the  saturated  lipids  (DPPC)  have  a  melting  point  of  40  °C  [10].    As  these  

experiments  were  conducted  between  19  –  23  °C,  the  saturated  lipids  were  in  a  

semi-­‐solid  gel  phase  while  the  unsaturated  lipids  were  much  more  fluid.    The  

difference  between  these  “oil”  and  “butter”  lipid  phases  can  support  that  conclusion  

that  the  saponin  has  an  easier  time  interacting  with  the  free  unsaturated  lipids  than  

with  the  rigid  saturated  lipids.      

  In  the  biological  lipid  membrane,  cholesterol  is  necessary  for  creating  a  

highly  fluid  environment,  in  order  to  facilitate  imbedded  protein  transport  around  

the  membrane.    In  the  absence  of  cholesterol,  the  pure  unsaturated  lipids  provide  

the  environment  that  most  closely  resembled  a  biological  lipid  membrane,  so  the  

saponin  is  likely  to  have  a  greater  structural  effect.      

   

Page 47: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

36  

CHAPTER  5:  FUTURE  WORK    

Further  analysis  is  necessary  to  determine  the  cause  of  precipitation  in  the  

samples.    As  the  QuilA  provided  contained  only  27.8%  saponin,  the  solution  used  

consisted  of  a  majority  of  unknown  impurities.    There  was  a  strong  correlation  

between  precipitation  and  cholesterol  content  in  the  lipid  membrane.    This  

relationship  would  be  interesting  to  further  examine.    However,  it  must  first  be  

determined  that  the  precipitation  is  caused  by  the  interaction  of  saponin  and  lipid  

membrane,  and  not  due  to  some  kind  of  impurity  from  the  saponin.      

FRET  analysis  on  the  other  liposome  types  (A,  B,  D,  E,  H,  and  I)  may  provide  

some  more  information  on  pore  formation  versus  micellization.    Liposome  types  

similar  to  D,  E,  H,  and  I  are  known  to  form  pores  [2],  so  obtaining  a  FRET  response  

from  those  liposome  types  may  help  distinguish  between  pore  formation  and  other  

structural  changes.  

A  second  leakage  experiment  using  encapsulated  FITC-­‐dextran  could  be  used  

to  determine  the  pore/opening  size  distribution.    The  leakage  can  be  directly  

correlated  to  pore  size  by  comparing  the  fluorescence  intensities  of  various  sizes  of  

FITC-­‐dextran  molecules.    This  experiment  could  be  accomplished  by  either  a  

dequenching  assay  like  the  calcein  leakage  experiment  (encapsulated  FITC  is  self-­‐

quenched  and  fluoresces  upon  release)  or  a  quenching  assay  (encapsulated  FITC  

fluoresces  and  is  quenched  upon  release)  by  controlling  the  pH  of  the  bulk  solution  

in  addition  to  a  quenching  agent  trypan  blue  [11].  

   

Page 48: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

37  

CHAPTER  6:  LIST  OF  REFERENCES    

[1]  Ö.  Güçlü-­‐Üstündağ,  “Saponins:  Properties,  Applications  and  Processing,”  Cric.  Rev.  in  Food  Sci.  and  Nutr.,  vol.  47,  no.  3,  pp.  231-­‐258,  2007    [2]  J.  Lorent,  “Induction  of  Highly  Curved  Structures  in  Relation  to  Membrane  Permeabilization  and  Budding  by  the  Triterpenoid  Saponins,  α-­‐  and  δ-­‐Hederin,”  J.  Biol.  Chem.,  vol.  288,  pp.  14000-­‐14017,  Mar.  25  2013    [3]  S.  Mitra,  “Micellar  Properties  of  Quillaja  Saponin.  1.  Effects  of  Temperature,  Salt,  and  pH  on  Solution  Properties,”  J.  Agric.  Food  Chem.,  vol.  45,  pp.  1587-­‐1595,  1997    [4]  S.  Resnik,  “Quillaia  Extracts,”  Chem.  And  Tech.  Ass.,  vol.  61,  pp.  1-­‐9,  2004    [5]  T.  Blijdenstein,  “On  the  link  between  foam  coarsening  and  surface  rheology:  why  hydrophobins  are  so  different,”  Soft  Matter,  vol.  6,  pp.  1799-­‐1808,  2010    [6]  J.  Lorent,  “Domain  Formation  and  Permeabilization  Induced  by  the  Saponin  α-­‐Hederin  and  Its  Aglycone  Hederagenin  in  a  Cholesterol-­‐Containing  Bilayer,”  Langmuir,  vol.  30,  no.  16,  pp.  4556-­‐4569,  2014    [7]  P.  Demana,  “Pseudo-­‐ternary  phase  diagrams  of  aqueous  mixtures  of  Quil  A,  cholesterol  and  phospholipid  prepared  by  the  lipid-­‐film  hydration  method,”  Int.  J.  of  Pharm.,  vol.  270,  pp.  229-­‐239,  2004    [8]  S.  Wrenn,  “Characterization  of  model  bile  using  fluorescence  energy  transfer  from  dehydroergosterol  to  dansylated  lecithin,”  J.  of  Lipid  Res,  vol.  42,  pp.  923-­‐934,  2001    [9]  Q.  Yan,  “Reconstitution  of  Transporters”  in  Membrane  Transporters:  Methods  and  Protocols,  vol.  227,  Totowa,  NJ,  Humana  Press  Inc.,  2003,  pp.  146    [10]  Avanti  Polar  Lipids  Inc.,  “Phase  Transition  Temperatures  for  Glycerophospholipids,”  2014,  Available  FTP:  http://avantilipids.com/index.php?option=com_content&id=1700&Itemid=419    [11]  S.  Sahlin,  “Differentiation  between  attached  and  ingested  immune  complexes  by  a  fluorescence  quenching  cytofluorometric  assay,”  J.  of  Immuno.  Meth.,  vol.  60,  no.  1-­‐2,  pp.  115-­‐124,  May  1983    [12]  TdB  Consultancy,  “FITC-­‐Dextran”  Dec  2010,  Available  FTP:  www.tdbcons.se/tdbcons2/attachment/fitcdextran2.pdf    

Page 49: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

38  

APPENDIX  A:  ADDITIONAL  CALCEIN  DATA          

Table  5:  Plate  Layout  for  All  Experiments.    Template  for  96-­‐well  plate  for  a  single  test.    Each  test  was  run  in  triplicate,  in  which  200  μL  of  liposome  was  added  to  different  amounts  of  detergent  (Triton)  or  saponin.    Three  tests  were  conducted  at  once  using  1  plate.  

       

 Figure  17:  Calcein  Fluorescence  Intensity  vs.  Time  Data  for  Liposome  A.    Calcein  fluorescence  intensity  (raw  data)  for  liposome  type  A  over  2  hours.    Calcein  dye  was  excited  at  488  nm  and  fluorescence  of  527  nm  was  measured.  Error  bars  (not  shown)  are  on  the  order  of  101  or  0.5%  of  fluorescence  intensity  (smaller  than  marker  size)  

 

 

Row/Column 1 2 3 4 5 6 7 8 9 10 11 12A 200#μl#Liposome 200#μl#Liposome 200#μl#LiposomeB 200#μl#Liposome#+#200#μL#1%#Triton 200#μl#Liposome#+#200#μL#1%#Triton 200#μl#Liposome#+#200#μL#1%#TritonC 200#μl#Liposome#+#0.387#μL#Saponin#(5%) 200#μl#Liposome#+#0.387#μL#Saponin#(5%) 200#μl#Liposome#+#0.387#μL#Saponin#(5%)D 200#μl#Liposome#+#1.10#μL#Saponin#(15%) 200#μl#Liposome#+#1.10#μL#Saponin#(15%) 200#μl#Liposome#+#1.10#μL#Saponin#(15%)E 200#μl#Liposome#+#4.14#μL#Saponin#(40%) 200#μl#Liposome#+#4.14#μL#Saponin#(40%) 200#μl#Liposome#+#4.14#μL#Saponin#(40%)F 200#μl#Liposome#+#18.6#μL#Saponin#(75%) 200#μl#Liposome#+#18.6#μL#Saponin#(75%) 200#μl#Liposome#+#18.6#μL#Saponin#(75%)GH

Page 50: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

39  

       

 Figure  18:  Calcein  Fluorescence  Intensity  vs.  Time  Data  for  Liposome  B.  Calcein  fluorescence  intensity  (raw  data)  for  liposome  type  B  over  2  hours.    Calcein  dye  was  excited  at  488  nm  and  fluorescence  of  527  nm  was  measured.  Each  sample  tested  in  triplicate  and  averaged  together  for  plotted  data.    Error  bars  (not  shown)  are  on  the  order  of  101  or  0.5%  of  fluorescence  intensity  (smaller  than  marker  size)  

 

 

Page 51: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

40  

       

 Figure  19:  Calcein  Fluorescence  Intensity  vs.  Time  Data  for  Liposome  C.  Calcein  fluorescence  intensity  (raw  data)  for  liposome  type  C  over  2  hours.    Calcein  dye  was  excited  at  488  nm  and  fluorescence  of  527  nm  was  measured.  Each  sample  tested  in  triplicate  and  averaged  together  for  plotted  data.    Error  bars  (not  shown)  are  on  the  order  of  101  or  0.5%  of  fluorescence  intensity  (smaller  than  marker  size)  

   

Page 52: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

41  

       

 Figure  20:  Calcein  Fluorescence  Intensity  vs.  Time  Data  for  Liposome  D.  Calcein  fluorescence  intensity  (raw  data)  for  liposome  type  D  over  2  hours.    Calcein  dye  was  excited  at  488  nm  and  fluorescence  of  527  nm  was  measured.    Each  sample  tested  in  triplicate  and  averaged  together  for  plotted  data.    Error  bars  (not  shown)  are  on  the  order  of  101  or  0.5%  of  fluorescence  intensity  (smaller  than  marker  size)  

 

   

Page 53: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

42  

       

 Figure  21:  Calcein  Fluorescence  Intensity  vs.  Time  Data  for  Liposome  E.  Calcein  fluorescence  intensity  (raw  data)  for  liposome  type  E  over  2  hours.    Calcein  dye  was  excited  at  488  nm  and  fluorescence  of  527  nm  was  measured.    Each  sample  tested  in  triplicate  and  averaged  together  for  plotted  data.    Error  bars  (not  shown)  are  on  the  order  of  101  or  0.5%  of  fluorescence  intensity  (smaller  than  marker  size)  

 

   

Page 54: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

43  

       

 Figure  22:  Calcein  Fluorescence  Intensity  vs.  Time  Data  for  Liposome  F.  Calcein  fluorescence  intensity  (raw  data)  for  liposome  type  F  over  2  hours.    Calcein  dye  was  excited  at  488  nm  and  fluorescence  of  527  nm  was  measured.    Each  sample  tested  in  triplicate  and  averaged  together  for  plotted  data.    Error  bars  (not  shown)  are  on  the  order  of  101  or  0.5%  of  fluorescence  intensity  (smaller  than  marker  size)  

 

   

Page 55: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

44  

       

 Figure  23:  Calcein  Fluorescence  Intensity  vs.  Time  Data  for  Liposome  G.  Calcein  fluorescence  intensity  (raw  data)  for  liposome  type  G  over  2  hours.    Calcein  dye  was  excited  at  488  nm  and  fluorescence  of  527  nm  was  measured.    Each  sample  tested  in  triplicate  and  averaged  together  for  plotted  data.    Error  bars  (not  shown)  are  on  the  order  of  101  or  0.5%  of  fluorescence  intensity  (smaller  than  marker  size)  

 

   

Page 56: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

45  

       

 Figure  24:  Calcein  Fluorescence  Intensity  vs.  Time  Data  for  Liposome  H.  Calcein  fluorescence  intensity  (raw  data)  for  liposome  type  H  over  2  hours.    Calcein  dye  was  excited  at  488  nm  and  fluorescence  of  527  nm  was  measured.    Each  sample  tested  in  triplicate  and  averaged  together  for  plotted  data.    Error  bars  (not  shown)  are  on  the  order  of  101  or  0.5%  of  fluorescence  intensity  (smaller  than  marker  size)  

 

   

Page 57: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

46  

       

 Figure  25:  Calcein  Fluorescence  Intensity  vs.  Time  Data  for  Liposome  I.  Calcein  fluorescence  intensity  (raw  data)  for  liposome  type  I  over  2  hours.    Calcein  dye  was  excited  at  488  nm  and  fluorescence  of  527  nm  was  measured.    Each  sample  tested  in  triplicate  and  averaged  together  for  plotted  data.    Error  bars  (not  shown)  are  on  the  order  of  101  or  0.5%  of  fluorescence  intensity  (smaller  than  marker  size)  

 

     

Page 58: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

47  

       

 Figure  26:  QuilA  Saponin  Fluorescence  for  Calcein  Leakage  Study.  An  analogue  to  Figures  17-­‐26,  but  with  1x  PBS  instead  of  liposome.    The  fluorescence  of  the  saponin  (at  the  respective  mole  percentages)  was  recorded  over  2  hours.    The  solutions  were  excited  at  488  nm  and  fluorescence  was  measured  at  527  nm.    The  fluorescence  intensities  are  small  enough  to  be  considered  negligible  to  the  calcein  fluorescence  data.    Each  sample  tested  in  triplicate  and  averaged  together  for  plotted  data.    Error  bars  (not  shown)  are  on  the  order  of  101  or  0.5%  of  fluorescence  intensity  (smaller  than  marker  size).  

 

                             

Page 59: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

48  

           

 Figure  27:  %  Leakage  vs.  Time  Data  for  0  mol%  Saponin  Samples.  Each  data  set  corresponds  to  a  liposome  type  according  to  table  1  with  0  mol%  saponin.    All  samples  were  run  in  triplicate  and  then  averaged  together  with  an  overall  error  of  0.5%  (error  bars  not  shown).    Raw  fluorescence  data  were  corrected  using  equation  1.      

 

0.00#

0.10#

0.20#

0.30#

0.40#

0.50#

0.60#

0.70#

0.80#

0.90#

1.00#

0.00# 20.00# 40.00# 60.00# 80.00# 100.00# 120.00# 140.00#

%"Leakage""

Time"(min)"

0.00%"Saponin"

Liposome#A#

Liposome#B#

Liposome#C#

Liposome#D#

Liposome#E#

Liposome#F#

Liposome#G#

Liposome#H#

Liposome#I#

Page 60: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

49  

       

 Figure  28:  %  Leakage  vs.  Time  Data  for  40  mol%  Saponin  Samples.  Each  data  set  corresponds  to  a  liposome  type  according  to  table  1  with  40  mol%  saponin.    All  samples  were  run  in  triplicate  and  then  averaged  together  with  an  overall  error  of  0.5%  (error  bars  not  shown).    Raw  fluorescence  data  were  corrected  using  equation  1.    Due  to  the  inconsistencies  of  liposome  B  data  (which  served  as  the  standard)  this  data  was  determine  unusable  for  further  analysis.    Inconsistencies  are  likely  due  to  light  scattering  effects  due  to  precipitation  formation.  

   

Page 61: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

50  

       

 Figure  29:  %  Leakage  vs.  Time  Data  for  75  mol%  Saponin  Samples.  Each  data  set  corresponds  to  a  liposome  type  according  to  table  1  with  75  mol%  saponin.    All  samples  were  run  in  triplicate  and  then  averaged  together  with  an  overall  error  of  0.5%  (error  bars  not  shown).    Due  to  the  inconsistencies  of  liposome  B  data  (which  served  as  the  standard)  this  data  was  determine  unusable  for  further  analysis.    Inconsistencies  are  likely  due  to  light  scattering  effects  due  to  precipitation  formation.  

 

   

Page 62: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

51  

APPENDIX  B:  ADDITIONAL  FRET  DATA        Table  6:  Turbidity  Data  for  Pure  Liposome  Solution  with  No  Saponin.    The  absorbance  of  pure  liposome  samples  (types  C,  F,  and  G  from  Table  1)  were  recorded  for  wavelengths  from  350-­‐550  nm.    These  values  were  then  used  in  equation  2  to  correct  for  light  scattering  due  to  the  liposomes.  

 

Wavelength Liposome0C Liposome0F Liposome0G350 0.863 0.882 1.65355 0.796 0.794 1.55360 0.762 0.754 1.497365 0.737 0.726 1.458370 0.712 0.701 1.421375 0.696 0.683 1.389380 0.664 0.651 1.342385 0.633 0.619 1.282390 0.615 0.601 1.253395 0.598 0.583 1.223400 0.582 0.567 1.195405 0.568 0.552 1.169410 0.555 0.538 1.144415 0.542 0.524 1.12420 0.529 0.511 1.097425 0.508 0.493 1.068430 0.505 0.49 1.054435 0.494 0.478 1.033440 0.483 0.467 1.013445 0.466 0.449 0.987450 0.463 0.447 0.975455 0.454 0.437 0.957460 0.443 0.427 0.938465 0.435 0.418 0.92470 0.426 0.409 0.902475 0.417 0.4 0.886480 0.41 0.392 0.871485 0.402 0.384 0.856490 0.394 0.377 0.841495 0.386 0.369 0.825500 0.379 0.362 0.809505 0.37 0.353 0.79510 0.362 0.345 0.772515 0.355 0.338 0.757520 0.348 0.331 0.742525 0.34 0.324 0.728530 0.333 0.317 0.715535 0.327 0.311 0.702540 0.321 0.306 0.691545 0.315 0.3 0.68550 0.309 0.294 0.669

Turbidity

Page 63: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

52  

         

 Figure  30:  QuilA  Saponin  Fluorescence  for  FRET  Experiment.  Saponin  in  1x  PBS  instead  of  liposome  was  excited  at  300  nm  and  the  fluorescence  from  350-­‐550  nm  was  recorded.    The  fluorescence  intensity  of  the  saponin  at  these  wavelengths  is  not  negligible  compared  to  the  FRET  fluorescence.    These  fluorescence  intensities  were  then  used  to  correct  the  FRET  data  in  equation  2.  Each  sample  tested  in  triplicate  and  averaged  together  for  plotted  data.    Error  bars  (not  shown)  are  on  the  order  of  101  or  0.5%  of  fluorescence  intensity  (smaller  than  marker  size)  

   

Page 64: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

53  

APPENDIX  C:  FITC-­‐Dextran  EXPERIMENT    

A  preliminary  FITC-­‐dextran  experiment  was  accomplished  with  conflicting  

results.    The  ideal  experimental  set  up  would  have  been  to  either  use  a  dequenching  

assay  where  the  FITC  was  self-­‐quenched  within  the  liposome  (analogous  to  the  

calcein  leakage  assay)  or  use  a  combination  of  pH  and  quenching  agent  to  quench  

the  fluorescence  outside  of  the  liposome.      

However,  due  to  time  and  material  restrictions,  a  dilution  assay  was  used.    In  

this  assay,  the  FITC  was  encapsulated  into  the  liposome  at  a  non-­‐self-­‐quenched  

concentration.    Theoretically,  leakage  outside  of  the  liposome  would  result  in  a  

lowered  fluorescence  due  to  a  dilution  effect.  

This  experiment  used  two  sizes  of  FITC-­‐dextran,  4  kDa  (4K)  and  250  kDa  

(250K)  as  limiting  cases.    Each  FITC  compound  was  encapsulated  into  the  liposome  

at  a  concentration  of  0.0089  mM.    These  two  types  of  FITC-­‐dextran  were  selected  

due  to  their  sizes.    4K  has  a  radius  of  1.4  nm,  which  is  slightly  larger  than  calcein  at  

0.6  nm.    250K  has  a  radius  of  11.2  nm.    The  liposomes  used  in  this  study  had  a  

diameter  of  120  nm  and  it  is  unreasonable  to  expect  a  pore  size  large  enough  to  

allow  for  the  diffusion  of  the  250K  FITC.  

   

Table  7:  Liposome  Dimensions.    The  measured  liposome  diameter  by  DLS  is  120  nm.    In  accounting  for  a  10  nm  membrane,  the  inner  diameter  is  110  nm.    The  volume  of  the  liposome  was  calculated  using  (4/3)πr3  

     

Liposome(Diameter((nm)( 120$Effective(Inner(Diameter((nm)( 110$Effective(Inner(Radius((nm)( 55$

Inner(volume((nm3)( 230.4$!

Page 65: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

54  

 Table  8:  FITC-­‐Dextran  Sizes  Relative  to  Weight  [12].    Summary  of  FITC-­‐dextran  radii  as  a  function  of  molecular  weight.    The  given  data  in  Angstroms  was  converted  to  nm  for  ease  of  comparison  to  the  liposome  volume.  

   

   

 Figure  31:  FITC-­‐dextran  Size  Graphical  Interpretation  of  Table  8.    The  data  in  table  8  was  plotted  radius  vs.  molecular  weight.    The  resulting  fit  was  then  used  to  calculate  the  radii  of  FITC  sizes  not  directly  stated  in  the  original  source  [12].  

   

  Fluorescence  data  from  the  FITC  experiments  did  not  support  the  original  

hypothesis.    In  this  experiment,  lower  fluorescence  intensities  indicate  leakage  from  

the  liposome.    Liposome  A  (Figure  31)  and  B  (Figure  33)  did  not  appear  to  result  in  

Dextran(MW((kDa) Stokes(radius((A) Radius((nm)4 14 1.410 23 2.320 33 3.340 45 4.570 60 6150 85 8.5250 112.0 11.2

Page 66: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

55  

leakage  of  4K,  as  the  fluorescence  intensities  were  greater  than  that  of  the  Triton  

control.    However,  liposome  B  (Figure  34)  suggest  that  the  250K  FITC  was  released.    

It  is  unlikely  that  250K  FITC-­‐dextran  could  be  leaked  while  the  4K  FITC  would  not.    

Liposome  C,  F,  and  G  (Figure  35  -­‐  40)  all  appeared  to  leak  the  FITC-­‐dextran,  

regardless  of  the  sizes.      These  data  indicate  an  experimental  design  error.  

 

 Figure  32:  FITC  4K  Fluorescence  vs.  Time  for  Liposome  A.  FITC-­‐dextran  fluorescence  intensity  (raw  data)  for  liposome  type  A  over  2  hours.    FITC  dye  was  excited  at  490  nm  and  fluorescence  of  520  nm  was  measured.  In  this  dilution  assay,  fluorescence  above  that  of  the  Triton  control  indicate  no  leakage.    Each  sample  tested  in  triplicate  and  averaged  together  for  plotted  data.    Error  bars  (not  shown)  are  on  the  order  of  101  or  0.5%  of  fluorescence  intensity  (smaller  than  marker  size)  

 

Page 67: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

56  

       

 Figure  33:  FITC  250  K  Fluorescence  vs.  Time  for  Liposome  A.  FITC-­‐dextran  fluorescence  intensity  (raw  data)  for  liposome  type  A  over  2  hours.    FITC  dye  was  excited  at  490  nm  and  fluorescence  of  520  nm  was  measured.      In  this  dilution  assay,  fluorescence  above  that  of  the  Triton  control  indicate  no  leakage  Each  sample  tested  in  triplicate  and  averaged  together  for  plotted  data.    Error  bars  (not  shown)  are  on  the  order  of  101  or  0.5%  of  fluorescence  intensity  (smaller  than  marker  size)  

       

Page 68: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

57  

       

 Figure  34:  FITC  4  K  Fluorescence  vs.  Time  for  Liposome  B.  FITC-­‐dextran  fluorescence  intensity  (raw  data)  for  liposome  type  B  over  2  hours.    FITC  dye  was  excited  at  490  nm  and  fluorescence  of  520  nm  was  measured.      In  this  dilution  assay,  fluorescence  above  that  of  the  Triton  control  indicate  no  leakage  Each  sample  tested  in  triplicate  and  averaged  together  for  plotted  data.    Error  bars  (not  shown)  are  on  the  order  of  101  or  0.5%  of  fluorescence  intensity  (smaller  than  marker  size)  

       

Page 69: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

58  

       

 Figure  35:  FITC  250  K  Fluorescence  vs.  Time  for  Liposome  B.  FITC-­‐dextran  fluorescence  intensity  (raw  data)  for  liposome  type  B  over  2  hours.    FITC  dye  was  excited  at  490  nm  and  fluorescence  of  520  nm  was  measured.    In  this  dilution  assay,  fluorescence  at  or  below  the  Triton  control  indicates  FITC  leakage.    Each  sample  tested  in  triplicate  and  averaged  together  for  plotted  data.    Error  bars  (not  shown)  are  on  the  order  of  101  or  0.5%  of  fluorescence  intensity  (smaller  than  marker  size)  

       

Page 70: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

59  

       

 Figure  36:  FITC  4  K  Fluorescence  vs.  Time  for  Liposome  C.  FITC-­‐dextran  fluorescence  intensity  (raw  data)  for  liposome  type  C  over  2  hours.    FITC  dye  was  excited  at  490  nm  and  fluorescence  of  520  nm  was  measured.  In  this  dilution  assay,  fluorescence  below  that  of  the  Triton  control  indicates  FITC  leakage.  Each  sample  tested  in  triplicate  and  averaged  together  for  plotted  data.    Error  bars  (not  shown)  are  on  the  order  of  101  or  0.5%  of  fluorescence  intensity  (smaller  than  marker  size)  

       

Page 71: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

60  

       

 Figure  37:  FITC  250  K  Fluorescence  vs.  Time  for  Liposome  C.  FITC-­‐dextran  fluorescence  intensity  (raw  data)  for  liposome  type  C  over  2  hours.    FITC  dye  was  excited  at  490  nm  and  fluorescence  of  520  nm  was  measured.    In  this  dilution  assay,  fluorescence  below  that  of  the  Triton  control  indicates  FITC  leakage.  Each  sample  tested  in  triplicate  and  averaged  together  for  plotted  data.    Error  bars  (not  shown)  are  on  the  order  of  101  or  0.5%  of  fluorescence  intensity  (smaller  than  marker  size)  

       

Page 72: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

61  

       

 Figure  38:  FITC  4  K  Fluorescence  vs.  Time  for  Liposome  F.  FITC-­‐dextran  fluorescence  intensity  (raw  data)  for  liposome  type  F  over  2  hours.    FITC  dye  was  excited  at  490  nm  and  fluorescence  of  520  nm  was  measured.    In  this  dilution  assay,  fluorescence  below  that  of  the  Triton  control  indicates  FITC  leakage.  Each  sample  tested  in  triplicate  and  averaged  together  for  plotted  data.    Error  bars  (not  shown)  are  on  the  order  of  101  or  0.5%  of  fluorescence  intensity  (smaller  than  marker  size)  

       

Page 73: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

62  

       

 Figure  39:  FITC  250  K  Fluorescence  vs.  Time  for  Liposome  F.  FITC-­‐dextran  fluorescence  intensity  (raw  data)  for  liposome  type  F  over  2  hours.    FITC  dye  was  excited  at  490  nm  and  fluorescence  of  520  nm  was  measured.    In  this  dilution  assay,  fluorescence  below  that  of  the  Triton  control  indicates  FITC  leakage.  Each  sample  tested  in  triplicate  and  averaged  together  for  plotted  data.    Error  bars  (not  shown)  are  on  the  order  of  101  or  0.5%  of  fluorescence  intensity  (smaller  than  marker  size)  

       

Page 74: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

63  

       

 Figure  40:  FITC  4  K  Fluorescence  vs.  Time  for  Liposome  G.  FITC-­‐dextran  fluorescence  intensity  (raw  data)  for  liposome  type  F  over  2  hours.    FITC  dye  was  excited  at  490  nm  and  fluorescence  of  520  nm  was  measured.    In  this  dilution  assay,  fluorescence  below  that  of  the  Triton  control  indicates  FITC  leakage.  Each  sample  tested  in  triplicate  and  averaged  together  for  plotted  data.    Error  bars  (not  shown)  are  on  the  order  of  101  or  0.5%  of  fluorescence  intensity  (smaller  than  marker  size)  

       

Page 75: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

64  

       

 Figure  41:  FITC  250  K  Fluorescence  vs.  Time  for  Liposome  G.  FITC-­‐dextran  fluorescence  intensity  (raw  data)  for  liposome  type  G  over  2  hours.    FITC  dye  was  excited  at  490  nm  and  fluorescence  of  520  nm  was  measured.    In  this  dilution  assay,  fluorescence  below  that  of  the  Triton  control  indicates  FITC  leakage.  Each  sample  tested  in  triplicate  and  averaged  together  for  plotted  data.    Error  bars  (not  shown)  are  on  the  order  of  101  or  0.5%  of  fluorescence  intensity  (smaller  than  marker  size)  

     

Page 76: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!

 

65  

 Figure  42:  QuilA  Saponin  Fluorescence  for  FITC  Experiment.    Saponin  in  1x  PBS  instead  of  liposome  was  excited  at  490  nm  and  the  fluorescence  at  520  nm  was  recorded.    The  fluorescence  intensity  of  the  saponin  at  these  wavelengths  is  negligible  compared  to  the  FITC  fluorescence.    Each  sample  tested  in  triplicate  and  averaged  together  for  plotted  data.    Error  bars  (not  shown)  are  on  the  order  of  101  or  0.5%  of  fluorescence  intensity  (smaller  than  marker  size)  

    It  is  more  plausible  to  conclude  that  the  inconsistencies  in  these  data  were  as  

a  result  of  poor  experimental  design.    The  “dilution”  assay  is  not  a  proper  assay,  and  

the  results  may  have  been  skewed  if  the  initial  FITC-­‐dextran  concentration  was  

close  to  the  self-­‐quenching  concentration.    It  is  possible  that  for  samples  A  and  B,  the  

4K  was  actually  partially  self-­‐quenched,  so  the  leakage  of  the  FITC-­‐dextran  actually  

resulted  in  an  increase  in  fluorescence,  not  a  decreased  as  expected.    

  This  kind  of  experiment  would  produce  value  information  regarding  the  size  

of  pore  formation  or  the  extent  of  the  vesicle-­‐to-­‐micelle  transition  and  should  be  

repeated  with  a  better  assay.

Page 77: Effect of Plant Derived Saponin on the Structure and ...4460/datastream... · Effect!of!Plant!Derived!SaponinontheStructureand!Stabilityof!Lipid! Membranesin!the!Absence!of!Cholesterol!!