effects of light-emitting diode light on human...

6
Effects of Light-Emitting Diode Light on Human Electroencephalogram in Comparison with Fluorescent Light Gwan-Taek Lee 1 , Chany Lee 1 , Daeyoung Kim 2 , HyunTaek Kim 3 , SungHo Woo 3 and Ki-Young Jung 1 1 Department of Neurology, Korea University Medical Center, Korea University College of Medicine, Seoul, 2 Department of Neurology, Samsung Seoul Hospital, Seoul, 3 Department of Psychology, College of Liberal Arts, Korea University, Seoul, Korea Received November 21, 2012 Revised December 19, 2012 Accepted December 19, 2012 Address for correspondence Ki-Young Jung, MD Department of Neurology, Korea University Medical Center, Korea University College of Medicine, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Korea Tel: +82-2-920-6649 Fax: +82-2-925-2472 E-mail: [email protected] Objectives: Selecting suitable illumination is an integral part of increasing productivity in the office or fac- tory, because poor lighting conditions may often cause decreased work efficiency. Light emitting diode (LED) light is becoming recognized as one of the most promising general sources of illumination. We con- ducted spectral power analysis of electroencephalograms (EEGs) obtained during resting and cognitive task activities to identify the effects on human arousal and cognitive performance under LED light compared with conventional fluorescent light. Methods: irteen healthy, right-handed students participated in the present study. Each subject took part in two experimental sessions, one under fluorescent and one under LED lighting conditions. e experimental measurements consisted of a resting state EEG, an event-related potential (ERP) during a visual working memory (VWM) task, and a questionnaire about subjective feel- ings regarding the lighting conditions. e EEG power spectra, the amplitude and latency of the P300 ERP component, the behavioral responses for the VWM task, and the questionnaire data were compared for the two lighting conditions. Results: e EEG spectral power showed no difference between the LED and flu- orescent lighting conditions. e amplitude of the P300 component decreased significantly with increasing numbers of items, while there were no differences between the two lighting conditions. Additionally, be- havioral responses and subjective feelings were the same under the two lighting conditions. Conclusions: Our study suggests that there are no significant differences between LED light and fluorescent light on the human arousal state and VWM. J Korean Sleep Res Soc 2012;9:28-33 Key Words: LED, Fluorescent, EEG, Visual working memory, P300, ERP. 28 Copyright © 2012 Korean Sleep Research Society ORIGINAL ARTICLE J Korean Sleep Res Soc 2012;9:28-33 ISSN 1738-608X Introduction We cannot imagine any working environment without il- lumination in modern society, because humans greatly rely on optical information for their productivity. Workplaces with poor lighting conditions oſten cause laborers to be st- ressed or even to have serious work accidents. This occurs because light exerts not only visual effects but also nonvisual effects on numerous physiological variables, such as the hu- man sleep-wake cycle and cognitive performance, primarily through properties such as dose, duration, timing, and wave- length. 1 us, selecting suitable illumination is an integral part of increasing productivity in the office or factory. Although fluorescent lamps are still the dominant source of artificial illumination in modern living environments, light emitting diodes (LEDs) have begun to attract interest as one of the most promising candidates for sources of general illumin- ation in the near future. In fact, according to a market resear- ch report from BCC Research, the global market for LED li- ghts noticeably increased by more than 85% during the pe- riod 2005-2009. 2 LEDs provide technical advantages over fluorescent lamps, such as lower power consumption, longer lifetime, greater eco-friendliness due to not using mercury, and easier processing due to their small size and adaptable shape. 3 It is well known that lighting can cause acute emotional, be- havioral, and cognitive changes. 4-6 Additionally, a large body of research shows the chronic effects of lighting on sleep and neu- rocognitive function. 1,7,8 ese effects of light may depend on parameters such as intensity, wavelength, and source of light. us, prior to a shiſt to new a lighting source (i.e., LED light) in artificial luminous environments, issues of whether it might af- fect human physiology or cognition should be considered to ensure that workplace efficiency are maintained. To our know- ledge, only one study has reported on this issue, finding that online © ML Comm

Upload: others

Post on 29-May-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Effects of Light-Emitting Diode Light on Human ...s-space.snu.ac.kr/bitstream/10371/91816/1/87... · Effects of Light-Emitting Diode Light on Human Electroencephalogram in Comparison

Effects of Light-Emitting Diode Light on Human Electroencephalogram in Comparison with Fluorescent Light

Gwan-Taek Lee1, Chany Lee1, Daeyoung Kim2, HyunTaek Kim3, SungHo Woo3 and Ki-Young Jung1

1Department of Neurology, Korea University Medical Center, Korea University College of Medicine, Seoul, 2Department of Neurology, Samsung Seoul Hospital, Seoul,3Department of Psychology, College of Liberal Arts, Korea University, Seoul, Korea

Received November21,2012Revised December19,2012Accepted December19,2012

Address for correspondenceKi-YoungJung,MDDepartmentofNeurology,KoreaUniversityMedicalCenter,KoreaUniversityCollegeofMedicine,73Inchon-ro,Seongbuk-gu,Seoul136-705,KoreaTel:+82-2-920-6649Fax:+82-2-925-2472E-mail:[email protected]

Objectives: Selectingsuitableilluminationisanintegralpartofincreasingproductivityintheofficeorfac-tory,becausepoorlightingconditionsmayoftencausedecreasedworkefficiency.Lightemittingdiode(LED)lightisbecomingrecognizedasoneofthemostpromisinggeneralsourcesofillumination.Wecon-ductedspectralpoweranalysisofelectroencephalograms(EEGs)obtainedduringrestingandcognitivetaskactivitiestoidentifytheeffectsonhumanarousalandcognitiveperformanceunderLEDlightcomparedwithconventionalfluorescentlight.Methods: Thirteenhealthy,right-handedstudentsparticipatedinthepresentstudy.Eachsubjecttookpartintwoexperimentalsessions,oneunderfluorescentandoneunderLEDlightingconditions.TheexperimentalmeasurementsconsistedofarestingstateEEG,anevent-relatedpotential(ERP)duringavisualworkingmemory(VWM)task,andaquestionnaireaboutsubjectivefeel-ingsregardingthelightingconditions.TheEEGpowerspectra,theamplitudeandlatencyoftheP300ERPcomponent,thebehavioralresponsesfortheVWMtask,andthequestionnairedatawerecomparedforthetwolightingconditions.Results: TheEEGspectralpowershowednodifferencebetweentheLEDandflu-orescentlightingconditions.TheamplitudeoftheP300componentdecreasedsignificantlywithincreasingnumbersofitems,whiletherewerenodifferencesbetweenthetwolightingconditions.Additionally,be-havioralresponsesandsubjectivefeelingswerethesameunderthetwolightingconditions.Conclusions: OurstudysuggeststhattherearenosignificantdifferencesbetweenLEDlightandfluorescentlightonthehumanarousalstateandVWM. J Korean Sleep Res Soc 2012;9:28-33

Key Words: LED,Fluorescent,EEG,Visualworkingmemory,P300,ERP.

28 Copyright © 2012 Korean Sleep Research Society

ORIGINAL ARTICLEJ Korean Sleep Res Soc 2012;9:28-33 ISSN 1738-608X

Introduction

Wecannotimagineanyworkingenvironmentwithoutil-luminationinmodernsociety,becausehumansgreatlyrelyonopticalinformationfortheirproductivity.Workplaceswithpoorlightingconditionsoftencauselaborerstobest-ressedoreventohaveseriousworkaccidents.Thisoccursbecauselightexertsnotonlyvisualeffectsbutalsononvisualeffectsonnumerousphysiologicalvariables,suchasthehu-mansleep-wakecycleandcognitiveperformance,primarilythroughpropertiessuchasdose,duration,timing,andwave-length.1Thus,selectingsuitableilluminationisanintegralpartofincreasingproductivityintheofficeorfactory.

Althoughfluorescentlampsarestillthedominantsourceofartificialilluminationinmodernlivingenvironments,lightemittingdiodes(LEDs)havebeguntoattractinterestasoneofthemostpromisingcandidatesforsourcesofgeneralillumin-

ationinthenearfuture.Infact,accordingtoamarketresear-chreportfromBCCResearch,theglobalmarketforLEDli-ghtsnoticeablyincreasedbymorethan85%duringthepe-riod2005-2009.2LEDsprovidetechnicaladvantagesoverfluorescentlamps,suchaslowerpowerconsumption,longerlifetime,greatereco-friendlinessduetonotusingmercury,andeasierprocessingduetotheirsmallsizeandadaptableshape.3

Itiswellknownthatlightingcancauseacuteemotional,be-havioral,andcognitivechanges.4-6Additionally,alargebodyofresearchshowsthechroniceffectsoflightingonsleepandneu-rocognitivefunction.1,7,8Theseeffectsoflightmaydependonparameterssuchasintensity,wavelength,andsourceoflight.Thus,priortoashifttonewalightingsource(i.e.,LEDlight)inartificialluminousenvironments,issuesofwhetheritmightaf-fecthumanphysiologyorcognitionshouldbeconsideredtoensurethatworkplaceefficiencyaremaintained.Toourknow-ledge,onlyonestudyhasreportedonthisissue,findingthat

online © ML Comm

Page 2: Effects of Light-Emitting Diode Light on Human ...s-space.snu.ac.kr/bitstream/10371/91816/1/87... · Effects of Light-Emitting Diode Light on Human Electroencephalogram in Comparison

www.sleepnet.or.kr 29

Lee GT et al.

LEDlighthadpositiveeffectsonworkerbehavioralperfor-manceduringseveralcognitivetasks,comparedwithtradi-tionalfluorescentlamps.9However,sincethestudydidnotev-aluatetheconcurrentelectrophysiologicalresponsesofbrainactivity,informationprocessingatacorticallevelwasnotde-monstrated.

Electroencephalography(EEG)provideasensitivemeansofmeasuringpsychologicalaswellasphysiologicalhumanst-ates.TherestingstateEEGreflectsaparticularlyimportantst-ateofarousal,whichcanbecharacterizedusingfrequencyan-alysis.Inaddition,event-relatedpotentials(ERPs)provideaneurophysiologicalindexofasubject’scognitivefunctioning.Becausethelightingconditionexertsadirectinfluenceonvisualfunction,theERPparadigmusingvisualstimuliisusedtoinvestigatethelights’effects.Specifically,ERPmeasure-ments,suchasexaminingtheP300andbehavioralresponsesduringthevisualworkingmemory(VWM)task,allowobjec-tiveassessmentsofcognitionandbehaviorthroughvisualfunctioning.Thus,thestudyofEEGsandERPsincombina-tionappearstobeusefulforexploringhumanneurophysiol-ogyreflectingarousalstates,cognitions,andtaskperform-ance.Nevertheless,nostudyhasyetaddressedtheelectro-physiologicaldifferencesbetweenLEDandfluorescentlight.

Inthepresentstudy,toidentifytheeffectsofLEDlightonEEGsduringrestandduringperformanceofacognitivetask,comparedwithconventionalfluorescentlight,weanalyzedthespectralpowerofEEGsobtainedduringrestingstatesandERPduringVWMtasks.

Methods

SettingTheexperimentstookplaceinalaboratorywiththewin-

dowcompletelycoveredwithblackcurtainstopreventout-sidelightfromenteringtheroom.Fourtube-straightthree-bandfluorescentlamps(FLU)andfoursimilarlyshapedbi-nary-complementarywhiteLEDlampswerealternatelypl-acedtwometersabovethefloor.ThespectrairradianceofeachlightisshowninFig.1.Eachsubjectunderwenttheexpe-rimentalprocedureswhilesittinginacomfortablechairab-outonemeterfromtheinstalledlighting.

Experimental procedure

Thirteenhealthy,right-handeduniversitystudents(sixma-les,7females;aged23.3±1.6years)participatedinthisstudy.Eachsubjectgavewritteninformedconsenttoparticipate.TheexperimentalprotocolwasapprovedbytheInstitutionalRe-viewBoardofKoreaUniversityMedicalCenter.Participantsvisitedourlaboratoryat19:00.Eachsubjectperformedtwoexperimentalsessions,oneundereachlightingcondition:

fluorescentandLED.OnesessionconsistedofspontaneousEEGfor10minutes,ERPduringaVWMtaskfor15minutes,andaquestionnairetoobtainthevisualanaloguescore(VAS).Aresttimeof5minuteswasgivenbetweenthetwosessions.Atthebeginningofeachsession,theilluminancewasadjust-edsothatthetwolightingconditionswerematched,andthencolortemperaturewasmeasured.TheorderoffluorescentandLEDsessionswascounterbalancedamongtheparticipantstocontroltheordereffect.

The resting state EEG

TheEEGswererecordedusinga64-channeldigitalEEGmachine(GrassNeurodataAcquisitionSystem,GrassTech-nologies,Quincy,MA,USA)withacapelectrode(Quick-Cap,CompumedicsNeuroscan,Charlotte,NC,USA).Therefer-enceelectrodewassettolinkedearlobes,impedancewaskeptbelow10kΩ,andtheband-passfiltersettingwas0.3-70Hzwithasamplingrateof1600Hz.Twoelectrooculographych-annels(placedontheleftandrightoutercanthi)wereaddedtoconfirmeyeballmovements.

TherestingstateEEGofeachsubjectwasreviewedforof-flineanalysis,and10artifact-free2-sepochsintheeye-openstatewereselectedpersubject.EachepochwastransformedintothefrequencydomainusingFastFourierTransforms,andthenthepowerspectraldensityfunctionforeachsubjectwasevaluated.Absolutepowerforthefivefrequencybands(delta:1-3Hz,theta:4-7Hz,alpha:8-12Hz,beta:13-30Hz,andgam-ma:30-45Hz)wasdeterminedatFz,Cz,andPzelectrodes.

Visual working memory task

AVWMtaskwasusedtoestimateparticipants’behavioralandcognitiveresponsesundereachlightingcondition.Allstimuliwerepresentedona17-inchLCDmonitorwithagreybackgroundusingcommercialsoftware(PRESENTATION;Neurobehavioralsystems,Berkeley,CA,USA).Eachpartici-

5

4

3

2

1

0380430480530580630680730

(nm)

Fig. 1. The spectra irradiances of the LED (solid line) and the fluo-rescent tube (dotted line). LED: light emitting diode, FLU: fluores-cent lamp.

LEDFLU

Page 3: Effects of Light-Emitting Diode Light on Human ...s-space.snu.ac.kr/bitstream/10371/91816/1/87... · Effects of Light-Emitting Diode Light on Human Electroencephalogram in Comparison

30

Effect of LED on EEG

pantunderwent300trialsineachcondition.Thetestarraywasshownfor2s,at1safterthememoryarrayonsetineachtrial.Participantswereinstructedtoindicatewhetherornottwoarrayswereidenticalbypushingoneoftwobuttonsasquicklyaspossibleaftertheywerepresentedwiththetestar-ray.Astimulusarrayconsistedof1,2,3,4,8or12itemsthatwerecoloredsquares.Thecolorofeachitemwasrandomlyselectedfromred,blue,violet,green,yellow,black,orwhite.Itempositionswerealsorandomizedineachtrial.Thecolorofonlyoneiteminthetestarraywasdifferentfromthecorre-spondingiteminthememoryarrayin50%ofthetrials.Theywereidenticalintheremainingtrials.

Event-relatedpotentialepochswereextractedatbetween-200and+1200msafterthememoryarrayonsetandsavedforlateroff-lineanalysis.Baselineswerecorrectedbysubtract-ingtherootmeansquareofthepre-stimulusintervalfromthewholeepochlengths.OnlythosetrialswithcorrectresponseswereincludedintheERPanalysis.Independentcomponentanalysiswasappliedtocorrectstereotypedocularandmus-cularartifacts(Jungetal.2000).ERPepochswereaveragedfordifferentnumbersofitemsinthememoryarrayseparate-ly.ERPlatenciesandamplitudesweremeasuredrelativetotheirpre-stimulusbaseline.TheP300componentwasdefinedaspointswithpositivepeakamplitudesbetween300and500msatthePzrecordingsite.TheamplitudesoftheP300com-ponentswereaveragedoverthe±25mstimewindowrelativetothelatencyofeachpeak.

Questionnaire

Subjectivebrightness,visualfatigue,andsatisfaction(from0to10points)wascheckedasvisualanaloguescale(VAS)inthequestionnaireforsubjectstoassesseachlightingconditionimmediatelyaftertheERPtasks.

Statistical analysisElectroencephalograms,ERP,andbehavioralresponses

wereanalyzedbyrepeatedmeasuresanalysisofvariance(AN-OVA).Thewithin-subjectvariablesofthespectralpowerforeachfrequencyband(delta,theta,alpha,beta,andgamma)oftherestingstateEEGwerechannel(threelevels:Fz,Cz,andPz)andlight(twolevels:fluorescentandLED).TheamplitudeandlatencyoftheP300componentduringVWMtaskingwereeachanalyzedatthePzrecordingsite;thewithin-sub-jectvariableswerenumberofitems(sixlevels:1,2,3,4,8,and12)andlight(twolevels:fluorescentandLED).Forthehitrateandthereactiontimeofbehavioralresponses,thewithin-subjectvariableswereidenticaltothosefortheP300analysis.TheGreenhouse-GeissercorrectionwasusedtoevaluateFra-tiosinordertocontrolforType1errorintherepeatedmea-suresdesign.Bonferroniposthoctestswereusedtoidentifythesourcesofsignificantvariance.Thequestionnaireresultswereanalyzedusingpairedt-testsforcomparisonswithun-equalvarianceforthefluorescentandLEDlights.Thedepen-dentvariablesweretheVASscoresofbrightness,visualfa-tigue,andsatisfactionbasedonthequestionnaires.Statisticalsignificancewasdefinedaspvaluesof<0.05.

Results

ThefluorescentandLEDlightinghadcolortemperaturesof8690and6660K,respectively.Lightintensitieswerema-tched,with340luxinbothconditions.

EEG power spectra

ElectroencephalogramsspectralpowersforeachfrequencybandatthethreemidlineelectrodesareshowninFig.2.Foreachfrequencyband,ANOVArevealedthatlightshowedno

Fig. 2. Mean electroencephalogram spectral power within each frequency band for all subjects at Fz, Cz, and Pz electrodes (δ: 1-3 Hz, θ: 4-7 Hz, α: 8-12 Hz, β: 13-30 Hz, γ: 30-45 Hz).

102

101

100δθαβγ

Frequencyband

LEDFLU

Fz

Pow

er(µ

V2 /H

z)

102

101

100δθαβγ

Frequencyband

LEDFLU

Cz

Pow

er(µ

V2 /H

z)

102

101

100δθαβγ

Frequencyband

LEDFLU

Pz

Pow

er(µ

V2 /H

z)

Page 4: Effects of Light-Emitting Diode Light on Human ...s-space.snu.ac.kr/bitstream/10371/91816/1/87... · Effects of Light-Emitting Diode Light on Human Electroencephalogram in Comparison

www.sleepnet.or.kr 31

Lee GT et al.

significantmaineffect,althoughsignificantmaineffectwasobservedwithchannel.Theinteractionbetweenchannelandlightwasnotsignificant(Table1).

ERP analysis

Event-relatedpotentialwaveformsatthePzelectrodesiteareshowninFig.3.TheP300componentswereidentifiedap-proximately350msafterthememoryarrayonset.Thenum-berofitemsshowedasignificantmaineffectontheP300am-plitudes(F2.11,23.26=9.97,p=0.001),whilelightdidnot(F1.0,11.0=0.04,p>0.05),andtheinteractionbetweenthenumberofitemsandthelightdidnot(F3.17,34.92=1.45,p>0.05).Thenum-berofitems(F3.39,37.33=1.32,p>0.05),thelight(F1.0,11.0=3.1,p>0.05),andtheinteractionofnumberofitemsandlight(F3.35,

36.83=0.59,p>0.05)showednosignificanteffectsonlatency.

Behavioral responsesFig.4.showsthechangeinbehavioralresponsesasthe

numberofitemsincreased,withasignificantmaineffectonhitrate(F2.62,28.83=199.17,p<0.001)andreactiontime(F1.8,19.8=

24.73,p<0.001).Thelightshowedneithersignificantmainef-fectonhitrate(F1.0,11.0=3.82,p>0.05)norreactiontime(F1.0,11.0=

0.02,p>0.05),andtheinteractionbetweenlightandnumberofitemsalsoshowednosignificanteffectonbehavioralre-sponses(hitrate:F2.44,26.83=1.52,p>0.05;reactiontime:F2.08,22.85=1.09,p>0.05).

Questionnaire

Theresultsofthesubjectiveassessmentoflightingcondi-tionsareshowninTable2.PairwisecomparisonsoftheVASscoresforbrightness,visualfatigue,andsatisfactionshowednosignificantdifferencesbetweenLEDandfluorescentlight-

Table 1. Summary of analysis of variance of electroencephalogram power spectra

FactorChannel Light Channel×Light

F p F p F pDelta 10.662 0.006 2.121 NS 0.328 NSTheta 9.706 0.003 1.011 NS 6.485 0.020Alpha 10.751 0.001 0.031 NS 3.065 NSBeta 3.356 0.087 0.016 NS 1.216 NSGamma 3.352 NS 0.853 NS 0.633 NS

NS:notsignificant

20

10

0

-10

20

10

0

-10

(µV)

(µV)

0300600(ms)

0300600(ms)

Item:1

Item:4

20

10

0

-10

20

10

0

-10

(µV)

(µV)

0300600(ms)

0300600(ms)

Item:2

Item:8

20

10

0

-10

20

10

0

-10

(µV)

(µV)

0300600(ms)

0300600(ms)

Item:3

LEDFLU

LEDFLU

LEDFLU

LEDFLU

LEDFLU

LEDFLU Item:12

Fig. 3. Grand averaged ERP waveforms at Pz electrode. Each panel corresponds to the number of items during the visual working mem-ory task, from one (top left) to twelve (bottom right). Arrows indicate P300 ERP components. FLU: fluorescent lamp, LED: light-emitting diode, ERP: event-related potential.

Page 5: Effects of Light-Emitting Diode Light on Human ...s-space.snu.ac.kr/bitstream/10371/91816/1/87... · Effects of Light-Emitting Diode Light on Human Electroencephalogram in Comparison

32

Effect of LED on EEG

ingconditions.

Discussion

Inthisstudy,weanalyzedtheEEGspectralpowermeasuredduringarestingstate,ERPcomponentselicitedbyaVWMtask,andsubjectivedataobtainedwithaquestionnaireinor-dertocomparetheeffectsofLEDandfluorescentlightonhumancognitions,behaviors,andsubjectivefeelings.Inourstudy,theintensityoflightwasmatchedbetweentwolight-ingconditions.Althoughthecolortemperaturecouldnotbematchedperfectlyduetooriginaldifferencesinthespectralirradianceofthetwolightsources,thisisunlikelytoaffecttheresultsbecausethespectralcompositionhasnoeffectontheperformanceofsimplecognitivetasks.10)

TheEEGreflectsaparticularlyimportantphysiologicalstateofarousalwhichcanbecharacterizedusingfrequencyan-alysis.11)Inparticular,alphaoscillationisasensitivemeasureofattentionaldemandsincognitivetasks,12)andfurther,fluore-scentlightwithlowfrequencyballastshassignificantlydecr-easedalphapowercomparedwithhighfrequencyballasts.6)Nevertheless,wefundnosignificantdifferencesinEEGspec-tralpoweralongallfrequencybands,betweentheLEDandfl-uorescentlightconditionsinourstudy.ThisindicatesthatLEDlightingdoesnotdisturbhumanattention,comparedwithconventionallighting.

TheamplitudeandlatencyoftheP300aresensitivetotaskprocessingdemandsandthetimerequiredfordetectingandevaluatingastimulus.Theseindexesvarywithindividualdif-ferencesincognitivecapability.13)OurfindingsindicatethatincreasingthenumberofitemssignificantlydecreasesP300amplitude;however,thelightingconditiondidnotaffectP300

amplitudeorlatency.Similarly,thehitrateandreactiontimewerenotchangedbythelightingcondition,buttheywereaf-fectedbythetaskdifficulty.Inaddition,VASscoresforthetwolightingconditionswerenotsignificantlydifferent,whichmeansthatthesubjectsreportednonoticeabledifferencesinsubjectivefeelingsregardingbrightness,visualfatigue,andsatisfactionbetweenfluorescentandLEDlighting.

Hawesetal.9)recentlyreportedthatLEDlightingmayhavepositiveimplicationsforworkperformance,comparedtotraditionalfluorescentlighting.However,thisfindingcouldleadtomisunderstandingbecausethefluorescentlightingus-edintheirexperimenthadlowerluminanceandcolortem-peraturethantheLEDlighting.Incontrast,ourresultsindi-catethattheLEDlightingdoesnotsignificantlyeffectoncog-nitiveandbehavioralperformance.Inconclusion,ourfind-ingssuggestthattherearenodifferencesintheeffectsonthehumanarousalstateorcognitiveperformancebetweenthelightingconditionsprovidedbyLEDandfluorescentlightsources.Asweinvestigatedonlyshort-termeffectwithrelati-velysmallsample,long-termeffectofLEDlightshouldbestu-diedfurtherinthefuture.

AcknowledgmentsThisworkwassupportedbyIndustrialStrategicTechnologyDevelop-

mentProgram(ProjectNo:10037416,EstablishmentofinfrastructureforLED-marineconvergencetechnologysupportandtechnologydevelop-mentforcommercialization)fundedbytheMinistryofKnowledgeEcon-omy(MKE,Korea).

REFERENCES

1.ChellappaSL,GordijnMCM,CajochenC.Chapter7-Canlightmakeusbright?Effectsoflightoncognitionandsleep.In:VanDongenHPA,KerkhofGA.ProgressinBrainResearch.HumanSleepandCognitionPartII:ClinicalandAppliedResearch.Vol190.NewYork:Elsevier,2011;119-133.

2.EckardR.Energy-efficientTechnologies:TheGlobalMarket.2009.3.MehtaR,DeshpandeD,KulkarniK,SharmaS,DivanD.LEDs-A

CompetitiveSolutionforGeneralLightingApplications.Energy 2030 conference. ENERGY 2008. IEEE,2008;1-5.

4.VandewalleG,SchwartzS,GrandjeanD,etal.Spectralqualityoflightmodulatesemotionalbrainresponsesinhumans.Proc Natl Acad Sci U S A2010;107:19549-19554.

5.vanBommelWJ.Non-visualbiologicaleffectoflightingandtheprac-

Table 2. The results of the subjective assessment of lighting con-ditions

Group LED FLU pBrightness 6.21±1.86 6.01±1.46 NSVisualfatigue 4.87±2.42 4.51±2.63 NSSatisfaction 5.63±1.89 5.34±1.96 NS

LED:lightemittingdiode,FLU:fluorescentlamp,NS:notsignificant

A B

Fig. 4. Hit rate (A) and reaction time (B) with respect to the number of items during the visual working me-mory task.

100

90

80

70

60

501234812

Thenumberofitems

Hit

rate

(%)

680

640

600

560

520

4801234812

Thenumberofitems

Reac

tion

time(

ms)

LEDFLU

LEDFLU

Page 6: Effects of Light-Emitting Diode Light on Human ...s-space.snu.ac.kr/bitstream/10371/91816/1/87... · Effects of Light-Emitting Diode Light on Human Electroencephalogram in Comparison

www.sleepnet.or.kr 33

Lee GT et al.

ticalmeaningforlightingforwork.Appl Ergon2006;37:461-466.6.KüllerR,LaikeT.Theimpactofflickerfromfluorescentlightingon

well-being,performanceandphysiologicalarousal.Ergonomics1998;41:433-447.

7.GooleyJJ,ChamberlainK,SmithKA,etal.Exposuretoroomlightbe-forebedtimesuppressesmelatoninonsetandshortensmelatonindu-rationinhumans.J Clin Endocrinol Metab2011;96:E463-E472.

8.CajochenC,ZeitzerJM,CzeislerCA,DijkDJ.Dose-responserelation-shipforlightintensityandocularandelectroencephalographiccorre-latesofhumanalertness.Behav Brain Res2000;115:75-83.

9.HawasBK,BrunyéTT,MahoneyCR,SullivanJM,AallCD.Effectsoffourworkplacelightingtechnologiesonperception,cognitionandaf-fectivestate.International Journal of Industrial Ergonomics 2012;42:

122-128.10. BorayPF,GiffordR,RosenbloodL.Effectsofwarmwhite,coolwhite

andfull-spectrumfluorescentlightingonsimplecognitiveperform-ance,moodandratingsofothers.Journal of Environmental Psychology1989;9:297-307.

11. JungKY,KooYS,KimBJ,etal.Electrophysiologicdisturbancesduringdaytimeinpatientswithrestlesslegssyndrome:furtherevidenceofcognitivedysfunction?Sleep Med2011;12:416-421.

12.WardLM.Synchronousneuraloscillationsandcognitiveprocesses.Trends Cogn Sci2003;7:553-559.

13.PolichJ.UpdatingP300:anintegrativetheoryofP3aandP3b.Clin Neurophysiol2007;118:2128-2148.