efficient binomial channel capacity computation with an ... · efficient binomial channel capacity...

45
Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily E. Wesel, Lieven Vandenberghe, Christos Komninakis, and Muriel Medard 1 2018 Information Theory and its Applications Workshop February 13, 2018

Upload: others

Post on 14-Mar-2020

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

Efficient Binomial Channel Capacity Computation

with an Application to Molecular Communication

Richard D. Wesel, Emily E. Wesel,

Lieven Vandenberghe, Christos Komninakis, and

Muriel Medard

1

2018 Information Theory and its Applications Workshop

February 13, 2018

Page 2: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

• The Binomial Channel

• Capacity-Achieving Distribution

• Csiszar’s Min-Max Capacity Theorem

• Dynamic Assignment Blahut-Arimoto

• Application to a Molecular Channel

2

Outline

Page 3: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

Channel output Y is number of

successes in n Bernoulli trials.

The Binomial Channel

Channel input X is

probability of

success in a

Bernoulli trial.

Page 4: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

• The input alphabet is the unit interval, so

it is uncountably infinite.

• …so Blahut-Arimoto is awkward.

• However, the capacity-achieving input

distribution has at most n+1 mass points

from [Witsenhausen, Dubins].

4

Input Alphabet, Capacity Achieving Support

Page 5: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

5

Capacity Achieving Distributions

Page 6: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

6

Csiszar’s Min-Max Capacity Theorem

This theorem instructs us to find the

capacity-achieving output distribution.

Page 7: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

7x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D(P

y|x

||P

y)

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

D(Py|x||Py) as a function of x for capacity-achieving PX

, n=4

Page 8: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

8

A Stopping Criterion

is an upper bound.

For any PX and corresponding PY :

I(X;Y) is a lower bound.

When -I(X;Y) is small

enough, declare victory.

Page 9: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

x0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D(P

y|x

||P

y)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

D(Py|x||Py) as a function of x for PX

from n-1, n=4, I difference = 0.38

9

Page 10: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

10x0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D(P

y|x

||P

y)

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4D(Py|x||Py)from iteration 1, n=4, I difference = 0.00

Blahut-Arimoto found n=4 capacity

Page 11: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

11

Use the n=4 solution for n=5

x0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D(P

y|x

||P

y)

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

D(Py|x||Py) as a function of x for PX

from n-1, n=5, I difference = 0.23

Page 12: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

12

n=3 solution for n=4, after Blahut-Arimoto

x0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D(P

y|x

||P

y)

1.2

1.25

1.3

1.35

1.4

1.45

1.5D(Py|x||Py)from iteration 0, n=5, I difference = 0.0181

Page 13: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

13

Split the center, shift towards maxima

x0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D(P

y|x

||P

y)

1.2

1.25

1.3

1.35

1.4

1.45

1.5D(Py|x||Py)from iteration 1, n=5, I difference = 0.0171

Page 14: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

14

Shift towards maxima

x0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D(P

y|x

||P

y)

1.2

1.25

1.3

1.35

1.4

1.45

1.5D(Py|x||Py)from iteration 2, n=5, I difference = 0.0144

Page 15: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

15

Shift towards maxima

x0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D(P

y|x

||P

y)

1.2

1.25

1.3

1.35

1.4

1.45

1.5D(Py|x||Py)from iteration 3, n=5, I difference = 0.0111

Page 16: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

16

Shift towards maxima

x0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D(P

y|x

||P

y)

1.2

1.25

1.3

1.35

1.4

1.45

1.5D(Py|x||Py)from iteration 4, n=5, I difference = 0.0079

Page 17: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

17

Shift towards maxima

x0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D(P

y|x

||P

y)

1.2

1.25

1.3

1.35

1.4

1.45

1.5D(Py|x||Py)from iteration 5, n=5, I difference = 0.0052

Page 18: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

18

Shift towards maxima

x0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D(P

y|x

||P

y)

1.2

1.25

1.3

1.35

1.4

1.45

1.5D(Py|x||Py)from iteration 6, n=5, I difference = 0.0032

Page 19: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

19

Shift towards maxima

x0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D(P

y|x

||P

y)

1.2

1.25

1.3

1.35

1.4

1.45

1.5D(Py|x||Py)from iteration 8, n=5, I difference = 0.0010

Page 20: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

20

Shift towards maxima

x0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D(P

y|x

||P

y)

1.2

1.25

1.3

1.35

1.4

1.45

1.5D(Py|x||Py)from iteration 9, n=5, I difference = 0.0005

Page 21: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

21

Shift towards maxima

x0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D(P

y|x

||P

y)

1.2

1.25

1.3

1.35

1.4

1.45

1.5D(Py|x||Py)from iteration 10, n=5, I difference = 0.0002

Page 22: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

22

Shift towards maxima

x0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D(P

y|x

||P

y)

1.2

1.25

1.3

1.35

1.4

1.45

1.5D(Py|x||Py)from iteration 11, n=5, I difference = 0.0001

Page 23: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

23

Shift towards maxima

x0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D(P

y|x

||P

y)

1.2

1.25

1.3

1.35

1.4

1.45

1.5D(Py|x||Py)from iteration 13, n=5, I difference = 0.0000

Page 24: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

24

Shift towards maxima

x0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D(P

y|x

||P

y)

1.2

1.25

1.3

1.35

1.4

1.45

1.5D(Py|x||Py)from iteration 14, n=5, I difference = 0.0000

Page 25: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

25

Done!

x0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D(P

y|x

||P

y)

1.2

1.25

1.3

1.35

1.4

1.45

1.5D(Py|x||Py)from iteration 15, n=5, I difference = 0.0000

Page 26: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

26

Now for n=6, start with n=5 solution

x0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D(P

y|x

||P

y)

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

D(Py|x||Py) as a function of x for PX

from n-1, n=6, I difference = 0.25

Page 27: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

27

n=5 solution for n=6, after Blahut-Arimoto

x0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D(P

y|x

||P

y)

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65D(Py|x||Py)from iteration 0, n=6, I difference = 0.1077

Page 28: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

28

15 iterations later

x0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D(P

y|x

||P

y)

1.25

1.3

1.35

1.4

1.45

1.5

1.55

D(Py|x||Py) vs. x for capacity-achieving PX

, n=6, 15 iterations

Page 29: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

29

Now for n=9, start with n=8 solution

x0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D(P

y|x

||P

y)

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

D(Py|x||Py) as a function of x for PX

from n-1, n=9, I difference = 0.12

Page 30: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

30

n=8 solution for n=9, after Blahut-Arimoto

x0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D(P

y|x

||P

y)

1.45

1.5

1.55

1.6

1.65

1.7

1.75D(Py|x||Py)from iteration 0, n=9, I difference = 0.0240

Page 31: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

31

Bump in the middle. Need new mass point.

x0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D(P

y|x

||P

y)

1.45

1.5

1.55

1.6

1.65

1.7

1.75D(Py|x||Py)from iteration 1, n=9, I difference = 0.0171

Page 32: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

32

Bump in the middle. Need new mass point.

x0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D(P

y|x

||P

y)

1.45

1.5

1.55

1.6

1.65

1.7

1.75D(Py|x||Py)from iteration 2, n=9, I difference = 0.0033

Page 33: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

33

All is well, with 5 mass points for n=9.

x0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D(P

y|x

||P

y)

1.45

1.5

1.55

1.6

1.65

1.7

1.75

D(Py|x||Py) vs. x for capacity-achieving PX

, n=9, 41 iterations

Page 34: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

34

Capacity Achieving Distributions

Page 35: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

35

Dynamic Assignment Blahut-Arimoto (DAB)

Page 36: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

36

DAB rocks!

Number of Bernoulli Trials0 5 10 15 20 25

Tim

e in

Secon

ds

0

500

1000

1500Binomial channel capacity computation time using three algorithms

Number of Bernoulli Trials0 5 10 15 20 25

Num

ber

of

Ite

ratio

ns

0

1000

2000

3000

4000

5000

6000

7000

8000Number of Ellipsoid/DAB Iterations for the three algorithms

Page 37: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

A Molecular Communication Channel

Transmitter

Page 38: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

A Molecular Communication Channel

Generates 𝑛 particles in time 𝜏.

Page 39: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

A Molecular Communication Channel

Generates 𝑛 particles in time 𝜏.

Particles selected for release with probability σ.

Page 40: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

A Molecular Communication Channel

Generates 𝑛 particles in time 𝜏.

Particles selected for release with probability σ.Selected particles actually released with probability 𝛼.

Page 41: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

A Molecular Communication Channel

Generates 𝑛 particles in time 𝜏.

Particles selected for release with probability σ.Selected particles actually released with probability 𝛼.Particles make it to receiver with probability 𝜌.

receiver

Particles detected by receiver with probability β.

Page 42: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

Channel output Y is number of

detected particles of n generated.

A Binomial Channel!

Channel input X is

probability of

Success at every

step. Lies on

[0, 𝛼𝜌𝛽]

Page 43: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

43

Molecular Communication Capacity Results

Page 44: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

44

Molecular Communication Capacity Results

Page 45: Efficient Binomial Channel Capacity Computation with an ... · Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication Richard D. Wesel, Emily

• Dynamic Assignment Blahut-Arimoto uses

Csiszar’s Min-Max Capacity Theorem to

compute capacity in cases where the

alphabet is uncountable but capacity is

achieved by a (small) finite support.

• It’s much faster (and easier) than the

ellipsoid algorithm.

• We used this method to study a molecular

communication channel.45

Conclusions