e&g - quaternary science journal vol. 60 no 1: loess in europe

208
Vol. 60 No 1 2011 ISSN 0424-7116 | DOI 10.3285/eg.60.1 Edited by the German Quaternary Association Editor-in-Chief: Holger Freund Eiszeitalter und Gegenwart Quaternary Science Journal GEOZON E & G LOESS IN EUROPE GUEST EDITOR Manfred Frechen

Upload: geozon-science-media

Post on 27-Nov-2014

128 views

Category:

Documents


5 download

DESCRIPTION

The papers of this Special Issue give remarkable new results and conclusions on loess from Europe underlining the excellence of loess archives for past climate and environment reconstructions from a local and regional perspective and their relationship to a more global interpretation (Frechen 2011 a, b). Loess is a clastic predominantly silt-sized sediment, which is formed by the accumulation of wind-blown dust. According to Pye (1995) four fundamental requirements are necessary for it formation: a dust source, adequate wind energy to transport the dust, a suitable accumulation area, and a sufficient amount of time. During the Quaternary, loess and loess-like sediments were formed in periglacial environments on mid-continental shield areas in Europe and Siberia, on the margins of high mountain ranges like in Tajikistan and on semi-arid margins of some lowland deserts like in China.

TRANSCRIPT

Vol. 60 No 12011issn 0424-7116 | DOi 10.3285/eg.60.1Edited by the German Quaternary AssociationEditor-in-Chief: Holger FreundEiszeitalter und GegenwartQuaternary Science Journal GEOZONE&GLOEss in EurOpE GuEst EditorManfred FrechenEditorDEUQUADeutsche Quartrvereinigung e.V. OfceStilleweg 2D-30655 HannoverGermanyTel: +49 (0)511-643 36 13E-Mail: info (at) deuqua.dewww.deuqua.orgProduCtion EditorSAbinE HElMS, Greifswald (Germany) Geozon Science MediaPostfach 3245D-17462 GreifswaldGermanyTel. +49 (0)3834-80 40 60E-Mail: helms (at) geozon.netwww.geozon.netAims & sCoPEThe Quaternary Science Journal publishes original articles of quaternary geology, geography, palaeontology, soil science, archaeology, climatology etc.; special issues with main topics and articles of lectures of several scientifc events.mAnusCriPt submissionPlease upload your manuscript at the on-line submission system at our journal sitewww.quaternary-science.net. Please note the instructions for authors before.FrEQuEnCyFour numbers at volumesubsCriPtionFree for DEUQUA-Members! Prices for stand-ing order: single number 27, Euro; double number 54, Euro; plus shipping costs. We ofer discounts for libraries and bookstores. Please subscribe to the journal at the pub-lisher Geozon Science Media.JournAL EXCHAnGEif you are interested in exchange your journal with the Quaternary Science Journal, please contact: Universittsbibliothek HalleTauschstelle, Frau WintherAugust-bebel-Strae 13D-06108 Halle (Saale), GermanyTel. +49 (0)345-55 22 183E-Mail: tausch (at) bibliothek.uni-halle.derEordEr Reorders are possible at the publishing house. See full list and special prices of available numbers on page 207.PubLisHinG HousEGeozon Science Media UG (haftungsbeschrnkt)Postfach 3245D-17462 GreifswaldGermanyTel. +49 (0)3834-80 40 80E-Mail: info (at) geozon.netwww.geozon.netPrintPrinted in Germany on 100% recycled paperclimate neutral producedCovEr PHotoJuliane Herrmann (liAG) Aufschlu Stt in nordungarn riGHtsCopyright for articles by the authorsLiCEnsEDistributed under a Creative Commons Attribution license 3.0http://creativecommons.org/licenses/by/3.0/Editor-in-CHiEFHOlGER FREUnD, Wilhelmshaven (Germany)iCbM GeoecologyCarl-von-Ossietzky Universitt OldenburgSchleusenstr 1D-26382 WilhelmshavenGermanyTel.: +49 (0)4421-94 42 00Fax: +49 (0)4421-94 42 99E-Mail: holger.freund (at) uni-oldenburg.deFormEr Editors-in-CHiEFPAUl WOlDSTEDT (19511966)MARTin SCHWARzbACH (19631966)ERnST SCHnHAlS (19681978)REinHOlD HUCkRiEDE (19681978)HAnS DiETRiCH lAnG (19801990)JOSEF klOSTERMAnn (19911999)WOlFGAnG SCHiRMER (2000)ERnST bRUnOTTE (20012005)EditoriAL boArdkARl-ERnST bEHRE, Wilhelmshaven (Germany)HAnS-RUDOlF bORk, kiel (Germany)ARnT bROnGER, kiel (Germany)JRGEn EHlERS, Hamburg (Germany)ETiEnnE JUViGn, lige (belgium)WiGHART VOn kOEniGSWAlD, bonn (Germany)ElSE kOlSTRUP, Uppsala (Sweden)JAn PiOTROWSki, Aarhus (Denmark)lUDWiG REiSCH, Erlangen (Germany)JEF VAnDEnbERGHE, Amsterdam (The netherlands)bERnD zOliTSCHkA, bremen (Germany)GuEst EditorMAnFRED FRECHEn, Hannover (Germany)Vol ume60/number1/2011/DOi : 10. 3285/eg. 60. 1/i SSn0424-7116/www. quaternar y-sci ence. net/Foundedi n1951Eiszeitalter und GegenwartQuaternary Science Journal E&G3E&G / Vol. 60 / no. 1 / 2011 / 35 / DOi 10.3285/eg.60.1.00 / Authors / Creative Commons Attribution LicenseE&GQuaternary Science Journal Volume 60 / number 1 / 2011 / 35 / DOi 10.3285/eg.60.1.00www.quaternary-science.net GEOzOn SCiEnCE MEDiAiSSn 0424-7116Loess in EuropeGuest Editorial Manfred FrechenAddress of author:M. Frecen,LeibnizInstituteforAppliedGeophysics(LIAG),Geocronology&IsotopeHydrology,Stilleweg2,30655Hannover,Germany.E-Mail:Manfred.Frecen@liag-hannover.deTepapersofthisSpecialIssuegiveremarkablenewresultsandconclusionsonloessfromEuropeunderliningtheexcel-lenceofloessarcivesforpastclimateandenvironmentre-constructionsfromalocalandregionalperspectiveandtheirrelationship to a more global interpretation (Frechen 2011a, b). Loess is a clastic predominantly silt-sized sediment,whic is formed by the accumulation of wind-blown dust.AccordingtoPye(1995)fourfundamentalrequirementsarenecessaryforitformation:adustsource,adequatewinden-ergytotransportthedust,asuitableaccumulationarea,anda sufcient amount of time. During the Qaternary, loessandloess-likesedimentswereformedinperiglacialenviron-mentsonmid-continentalshieldareasinEuropeandSiberia,on the margins of high mountain ranges like inTajikistanand on semi-arid margins of some lowland deserts like inChina.TetermLwasfrstdescribedinCentralEuropebyKarl Csar von Leonhard (1823/24) who reported yel-lowish brown, silty deposits along the Rhine valley nearHeidelberg. Charles Lyell (1834) brought this term intowidespread usage by observing similarities between loessand loess derivatives along the loess blufs in the Rhineand Mississippi. At that time it was thought that the yel-lowishbrownsilt-ricsedimentwasoffuvialoriginbeingdeposited by the large rivers. It took until the end of the19thcenturyuntiltheaeolianoriginofloesswasrecognized(VirletD'Aoust1857),especiallytheconvincingobserva-tions of loess in China by Ferdinand von Richthofen's(1878). A tremendous number of papers have been pub-lished since then, focusing on the formation of loess andonloess/palaeosolsequencesasarcivesofclimateanden-vironment cange (e.g. Pye 1995; Smalley 1995; Pcsi &Richter1996).Muc efort was put into the seting up of regional andlocalloessstratigraphiesandtheircorrelation(Kukla1970,1975, 1977). But even the cronostratigraphical position ofthe last interglacial soil correlating to marine isotope sub-stage 5e has been a mater of debate, owing to the lac ofrobust and reliable numerical dating, as summarized forexample in Zller et al. (1994) and Frechen, Horvth &Gbris(1997)fortheAustrianandHungarianloessstratig-raphy,respectively.Sincethe1980s,thermoluminescence(TL),opticallystim-ulatedluminescence(OSL)andinfraredstimulatedlumines-cence (IRSL) dating are available providing the possibilityfor dating the time of loess (dust) deposition, i.e. the timeelapsedsincethelastexposureofthemineralgrainstoday-light. During the past decade luminescence dating has sig-nifcantlyimprovedbynewmethodologicalimprovements,especially the development of single aliquot regenerative(SAR)protocols(Murray&Wintle2000)resultinginreli-ableages(orageestimates)withanaccuracyofupto5and10%forthelastglacialrecord.Morerecentlyluminescencedatinghasalsobecomearobustdatingtecniqueforpenul-timateandantepenultimateglacialloess(e.g.Thieletal.thisissue;Schmidtetal.thisissue)allowingforareliablecor-relationofloess/palaeosolsequencesforatleastthelasttwointerglacial/glacialcyclesthroughoutEuropeandtheNorth-ernHemisphere(Frechen2011a).Furthermore,thenumeri-caldatingprovidesthebasisforquantitativeloessresearcapplyingmoresophisticatedmethodstodetermineandun-derstandhigh-resolutionproxydata,sucasthepalaeodustcontentoftheatmosphere,variationsoftheatmosphericcir-culationpaternsandwindsystems,palaeoprecipitationandpalaeotemperature.TepapersofthisSpecialIssueonLoessinEuropegivethe basis for substantial further callenging developmentsin loess researc and are summarised geographically fromnorthtosouth.Litle is known about the timing of loess accumulationand soil formation as well as the setlement history in theAltmornengebietinnorthernGermany.Urban,Kunz&Gehrt(thisissue)providesomeevidenceforthehumanim-pactonsoildevelopmentsincethelateNeolithicbymeansofsedimentology,pedologyandpalynologyaswellasOSLandradiocarbondating.Wagner (this issue) carried out a spatial compilationandvisualisationofloessparametersforloessandloess-likesediments in theWeser-Aller catcment, including parts ofsouthern Lower Saxony and northern Hesse in NorthwestGermany. In this study, very detailed maps of loess prop-erty paterns including loess thicness, granulometry andstratigraphywerecollectedfrompublicationsandhistorical-lymapspublishedbetween1876and2007resultinginmorethan600loesslocationsprovidingthebaseinformationfortheareaunderstudy.Te loess/palaeosol sequences from Saxony were re-in-vestigated by Meszner, Fuchs & Faust (this issue), who4presentanewcompositeprofleincludingnewstratigraph-ic marker horizons and palaeosols. Tey identifed threepalaeosols for the so far poorly diferentiated WeicselianPleniglacialrecordinSaxony.In the Lower Rhine Embayment, detailed loess/palale-osolsequenceshavebeendescribedfromthekm-wideex-posuresofthebrowncoalopen-castminesandfrommanybricyards, e.g. Grafenberg, Rheindahlen and Erkelenz.MostofthestudiedsectionsgiveevidenceforricPalaeo-lithic(andyoungerperiods)artefactsandsetlementstruc-tures.Pawlik&Thissen(thisissue)presentresultsfromaMiddle Palaeolithic arcaeological layer in the open castbrowncoalmineInden,whictheycorrelatetotheEemianinterglacial. Te studied artefacts give evidence for bircpitc fxed tools, either as hafed impliments fxed withbirc pitc onto shafs or being used for successive haf-ing-and-retrolingactivities.Pawlik&Thissen(thisissue)pointoutthatbircpitcresiduesevidencehumanuseofadhesive and multicomponent tool making already in theMiddlePalaeolithic.At the Scwalbenberg section, a very detailedWeicse-lian Middle Pleniglacial loess record is exposed (Frechen& Schirmer this issue). Eight weak interstadial palaeosolsincluding Ah and Bcv (calcic cambisol) horizons are inter-calatedinloessandreworkedloess.Tecronostratigraphi-cal units show litle or no age increase with depth indicat-ingfastaccumulationofsedimentandfastformationofthesoils;similarobservationsweremadefortheEarlyWeicse-lianrecordattheTncesbergsection(Boenigk&Frechen2001).MaarlakesanddrymaarsoftheWestEifelVolcanicFieldare excellent sediment traps and provide sediment recordswith the possibility to arcive event-laminated sediments.Dietrich&Sirocko(thisissue)describethepotentialofmi-croX-rayfuorescence(XRF)scanningtostudybulksedi-ment cemical data for major and trace elements in maarlake sediments to determine the elemental stratifcationwithinsedimentcores.TecoresunderstudyfromtheDeh-nerdrymaarandtheScalkenmehrenmaarshowbothfullyglacialaswellaswarmandwetclimateconditionsandgiveevidenceforthemajordustdepositionevents.Dietrich&Sirocko(thisissue)showevidencethatacombinationoftheCacontentandthegrayscalevaluescorrelatesbestwiththesignalofaeoliansedimentinput.Reliable dating of maar sediments is a real callenge.Schmidt et al. (this issue) studied sediments from theJungfernweiherlocatedintheWestEifelVolcanicFieldusingluminescencedating.TeIRSLdatingstudyindicatesthatthesedimentsfrom16mbelowsurfacehaveluminescenceageof250kaandincreaseupto400kafortheoldestsampledsedi-mentsabout94mbelowmodernsurface.However,oneoftheco-authors (F. Sirocko, see appendix of Schmidt et al. thisissue a) has a diferent interpretation based on radiocarbondatingandfurtherrelativedatingmethods,sucassedimentmagnetisation,tuningofgreyscalevariationswithGreenlandicecoreandintercalatedtephrahorizonsindicatingalastgla-cialrecord.Tediferentopinionsshowthatcronologicalap-proacesareverycallenging.At the gravel quarry Gaul located nearWeilbac in thesouthernforelandoftheTaunusMountains,aMiddletoUp-per Pleistocene loess/palaleosol sequence is exposed corre-latingwiththelastthreeglacialcycles.Teoldestloessgavepost-IR IRSL at 225 age estimates of at least 350 ka (MIS10)ago(Schmidt,Semmel&Frechenthisissue).Ahumic-richorizon(WeilbacerHumuszone)correlatestothelatephaseofthepenultimateinterglacial(MIS7).TeuppermostloesscorrelatestotheUpperWrmian.Thieletal.(thisissue)investigatedthreeimportantPleis-tocenekeyloesssectionsinLowerAustria,theseareJocing,PaudorfandGtweig.Tepost-IRIRSLageestimatesallowfor a correlation of the pedocomplexPaudorfer Bodenbil-dung with the last interglacial (MIS 5), whic is in agree-mentwithpreviousTLageestimatesofZlleretal.(1994).However, the pedocomplexGtweigerVerlehmungszoneis signifacantly older (350 ka) than the last interglacialsoil.Thieletal.(thisissue)foundoutthatdiscontinuitiesinloess/palaeosol records observed in Lower Austria are sig-nifcant making a simple counting from the top approacunreliable. Tus, the Lower Austrian loess stratigraphy in-cludingthetimingoftheintercalatedpalaeosolsremainsun-derdiscussionandrequiresfurtherluminescencebasedagedetermination.LoessdepositsfromtheHagenbacKlammlocatedinthenorthernViennaForestweredatedusingluminescencedat-ingbyFranketal.(thisissue).Temolluscassemblagesin-dicateveryhumidandcoolclimaticconditionsfortheUp-per Pleniglacial (UpperWrmian). Frank et al. (this issue)observedgoodagreementbetweenmalcalogicalresultsandthoseofnumericaldatingincluding14CandIRSLages.Tedating results make a loess accumulation prior to the LastGlacialMaximummostlikely.Zech et al. (this issue) give an overview on the mostrecent proxy developments concerning biomarkers andcompound-specifc stable isotopes. Te aim of these novelmethodological approaces is to determine more quantita-tive palaeoclimate proxies for reconstruction of vegetationhistory,palaeotemperatureandpalaeoclimate/aridity.Wacha et al. (this issue) investigated a very detailedloess/palaeosol sequence on Susak. Radiocarbon ages andluminescence age estimates indicate an Upper PleistocenerecordincludingaverydetailedandthicMiddlePlenigla-cialrecord(MIS3)includingnumerousintercalatedpalale-osols and at least three tephra layers, most likely from theItalianVolcanicprovinces.TeislandofSusakisuniqueinthe North Adriatic Sea because the geomorphology of theislandhasallcaracteristicsofaloessplateaudissectedbynumerousgorges,steepblufsandgullies(Wachaetal.thisissue).Te Late Pleistocene/Holocene morphological and geo-logicalhistoryoftheParaguayanChacoandtheArgentinePampaPlain(Chaco-PampaPlain)wasstudiedbyKrucketal.(thisissue).Satelliteimageswereusedtosynthesisepre-viousandnewmultidisciplinaryresultsofthisvast-extend-edarea.Krucketal.(thisissue)localisedsourceregionsofloess,loess-likesedimentsandsandydepositsinthesouth-westernPampaandtheneighbouringAndeanslopesandtheAltiplano,thusindicatingasedimenttransporttowardseastandlaternortheast.E&G / Vol. 60 / no. 1 / 2011 / 35 / DOi 10.3285/eg.60.1.00 / Authors / Creative Commons Attribution License5E&G / Vol. 60 / no. 1 / 2011 / 35 / DOi 10.3285/eg.60.1.00 / Authors / Creative Commons Attribution LicensereferencesBoenigk,W.&Frechen,M.(2001):TeloessrecordinsectionsatKoblenz-MeternicandTncesbergintheMiddleRhineArea.QaternaryInternational,76/77:201209.Dietrich,S.&Sirocko,F.(thisissue):Tepotentialofdustdetectionbymeans of !XRF scanning in Eifel maar lake sediments. QaternaryScienceJournal(EuG),60(1).Frank,C.,Terhorst,B.,Damm,B.,Thiel,C.,Frechen,M.&Peticzka,R.(thisissue):PleistoceneloessdepositsandmolluscassemblagesintheEasternPre-Alps.QaternaryScienceJournal(EuG),60(1).Frechen, M. (2011a): Loess in Eurasia. Qaternary International, xyxy,13.Frechen, M. (2011b): Timing and Vegetation History of Interglacials innorthernEurasia.QaternaryInternational,141:12.Frechen, M., Horvth, E. & Gbris, G. (1997): Geocronology of Mid-dleandUpperPleistoceneloesssectionsinHungary.QaternaryRe-searc,48:291312.Frechen,M.&Schirmer,W.(thisissue):LuminescenceChronologyoftheScwalbenbergIILoessintheMiddleRhineValley.QaternarySci-enceJournal(EuG),60(1).Kruck, W., Helms, F., Geyh, M.A., Suriano, J.M., Marengo, H.G. &Pereyra, F. (this issue): Late Pleistocene-Holocene History ofChaco-Pampa Sediments in Argentina and Paraguay. Qaternary ScienceJournal(EuG),60(1).Kukla, G. (1970): Correlation between loesses and deep-sea sediments. GeologiskeForeningenFoerhandlingar,92:148180;Stocholm.Kukla,G.J.(1975):LoessstratigraphyofCentralEurope.InK.W.Butzerand G.L. Isaac, Eds., Afer the Australopithecus, pp. 99188; Mouton,TeHague.Kukla,G.J.(1977):PleistoceneLand-SeaCorrelationsI.Europe.EarthSci-enceReviews,13:307374.Leonhard, K.C. von (1823/24): Charakteristik der Felsarten. 3Vols., J.EngelmannVerlagHeidelberg,pp.772.Lyell,C.(1834):Observationsontheloamydepositscalledloessoftheba-sinoftheRhine.EdinburghNewPhilosophicalJournal,17:110113,118120.Meszner,S.,Fuchs,M.&Faust,D.(thisissue):Loess-Palaeosol-SequencesfromtheloessareaofSaxony(Germany).QaternaryScienceJour-nal(EuG),60(1).Murray,A.S.&Wintle,A.G.(2000):Luminescencedatingofquartzus-ing an improved single aliquot regenerative-dose protocol. RadiationMeasurements32:5773.Novothny,A.,Horvath,E.&Frechen,M.(2002):TeloessprofleatAl-bertirsa, Hungary improvements in loess stratigraphy by lumines-cencedating.QaternaryInternational,9596:155163.Pawlik,A.F.&Thissen,J.(thisissue):TePalaeolithicProspectionintheIndeValleyProject.QaternaryScienceJournal(EuG),60(1).Pcsi,M.(1990):Loessisnotjusttheaccumulationofdust.QaternaryInternational,7/8:121.Pcsi,M.&Richter,G.(1996):Lss:HerkunfGliederungLandscaf-ten.ZeitscriffrGeomorphologie,NeuFolgeSupplementband98,Berlin.Pye, K. (1995): Te nature, origin and accumulation of loess.- QaternaryScienceReviews,14:653667.Richthofen,F.von(1878):BemerkungenzurLbildung.VerhGeolRe-icsanst,Berlin,pp113.Schmidt,E.D.,Semmel,A.&Frechen,M.(thisissue):Luminescencedat-ingoftheloess/palaeosolsequenceatthegravelquarryGaul/Weilbac,SouthernHesse(Germany).QaternaryScienceJournal(EuG),60(1).Schmidt,E.D.,Murray,A.S.,Sirocko,F.,Tsukamoto,S.&Frechen,M.(thisissue):IRSLSignalsfromMaarLakeSedimentsStimulatedatVari-ousTemperatures.QaternaryScienceJournal(EuG),60(1).Smalley,I.(1995):Makingthematerial:theformationofsilt-sizedpromarymineralpariclesforloessdeposits.QaternaryScienceReviews,14:645651.Thiel, C., Buylaert, J.P., Murray, A.S., Terhorst, B., Tsukamoto, S.,Frechen,M.&Sprafke,T.(thisissue):Investigatingthecronostratig-raphy of prominent palaeosols in Lower Austria using post-IR IRSLdating.QaternaryScienceJournal(EuG),60(1).Urban,B.,Kunz,A.,Gehrt,E.(thisissue):GenesisanddatingofLatePleis-tocene-Holocene soil sediment sequences from the Lneburg Heath,NorthernGermany.QaternaryScienceJournal(EuG),60(1).Virlet D'Aoust, P.T. (1857): Observations sur un terrain d`originemtorique ou de transport aerien qui existe au Mexique et sur lephnomnedestrombesdepoussireauquelildoitprincipalementsonorigine.Geol.Soc.France,Full.,2d,Ser.2,129139.Wacha,L.,MikulcicPavlakovic,S.,Frechen,M.,Crnjakovic,M.(thisissue):TeLoessChronologyoftheIslandofSusak,Croatia.Qater-naryScienceJournal(EuG),60(1).Wagner, B. (this issue): Spatial analysis of loess and loess-like sedimentsintheWeser-Allercatcment(LowerSaxonyandNorthernHesse,NWGermany).QaternaryScienceJournal(EuG),60(1).Zech,M.,Zech,R.,Buggle,B.,Zller,L.(thisissue):Novelmethodologi-calapproacesinloessresearcinterrogatingbiomarkersandcom-pound-specifcstableisotopes.QaternaryScienceJournal(EuG),60(1).Zller,L.,Oches,E.A..&McCoy,W.D.(1994):Towardsarevisedcronos-tratigraphyofloessinAustriawithrespecttokeysectionsintheCzecRepublic and in Hungary. Qaternary Geocronology (QaternaryScienceReviews),13:465472.6E&G / Vol. 60 / no. 1 / 2011 / 626 / DOi 10.3285/eg.60.1.01 / Authors / Creative Commons Attribution LicenseE&GQuaternary Science Journal Volume 60 / number 1 / 2011 / 626 / DOi 10.3285/eg.60.1.01www.quaternary-science.net GEOzOn SCiEnCE MEDiAiSSn 0424-7116Genesis and dating of Late Pleistocene-Holocene soil sediment sequences from the Lneburg Heath, northern Germanybrigitte Urban, Alexander kunz, Ernst GehrtAbstract: Te stratigraphy and setlement history of the loess-areas in Central Europe is well known for the glacial periods and theHolocene. In contrast there are no recent investigations in the sandy loess areas of the so calledAltmornengebiet in north-ernGermanyontheageofthesediments,timingofsoilformationandsetlementhistory.InthisstudytwosoilproflesintheLneburgHeathareinvestigated.Tesoilshavebeenstudiedbymeansofsedimentology,pedologyandpalynology.Datingwasdone by optically stimulated luminescence (OSL) and radiocarbon. Te results give the frst evidence from the Altmornenge-bietforhumanimpactonsoildevelopmentasearlyasthelateNeolithic.Inthesoilprofles,periodsoferosionandaccumulationwithenricmentinorganicricmaterialareindicated. (Genese und datierung sptpleistozn-holozner Palobodensequenzen in der Lneburger Heide, norddeutschland)Kurzfassung: WhrendindenLssgebietenMiteleuropasdieLssstratigraphieunddiemenscliceBesiedlungderLssgebietesowohleiszeit-licwieaucimHolozngutbekanntsind,liegenzudenSandlssgebietenderAltmornengebietekeineneuerenErkenntnissezurzeitlicenStellungderSedimenteoderzurSiedlungsgescicteundzumEinfussaufdieBodenentwiclungvor.InderArbeitwerdenauseinemSandlssgebietinderLneburgerHeidezweiBodenproflevorgestelltderenGliederungeinenEinblicindieGenesedervergangenen10000Jahreerlaubt.DieProflewurdensedimentologisc,pedologiscundpalynologiscuntersuctundcarakterisiert.DieDatierungderProfleerfolgtemitelsoptiscstimulierterLumineszenz(OSL)undRadiokarbondatierung.DieErgebnisselegeneinenmensclicenEinfussaufdieBdenabdemsptenNeolithikumnahe.DaruntersindErosions-undAk-kumulationsprozesseundinsbesondereeineAnreicerungmitorganiscemMaterialzufassen.ErstmalsknnenmitdieserStudieDatierungenvonSedimentenundBdendesAltmornengebietesprsentiertwerden.Keywords: loess, palaeosols, luminescence dating, pollen analysis, palaeoenvironment, human impactAddresses of authors:B.Urban, Institute of Ecology, Leuphana University Lneburg, Herbert-Meyer-Str. 7, 29556 Suderburg, Germany. E-Mail:[email protected];A. Kunz,SectionS3:GeocronologyandIsotopeHydrology,LeibnizInstituteforAppliedGeophysics,Hannover,Germany(presentaddress:DepartmentofGeosciences,NationalTaiwanUniversity,Taipeh,Taiwan(R.O.C.).E-Mail:[email protected];E. Gehrt,StateAuthorityforMining,EnergyandGeologyofLowerSaxony(LBEG),Stilleweg2,30655Hannover,Germany.E-Mail:e.gerth@lbeg.niedersacsen.de1introductionTepresentmorphologyoftheLneburgHeathwasmain-ly formed by the Saalian glaciation (Oxygen Isotope Stage68),whentheareawascoveredatleastthreetimesbyice.Weicselian glaciers (Oxygen Isotope Stage 25d) did notreac the area whic was strongly infuenced by perigla-cial processes, like erosion and solifuction. Te landscapeof the Lneburg Heath is hence caracterised by groundmoraines, terminal moraines, outwash plains, glaciofuvi-al deposits and, in some limited areas, by loess deposits(Fig.1)(Hagedorn1964,Caspersetal.1995).From soil mapping it is known that 70 to 90 cm thichumic horizons in the soils of the sandy loess areas arecommon. Tese horizons occur in depressions but also ontopographic highs. Te formation of typical Plaggic An-throsols(Blume& Leineweber 2004) is not knownfor theLneburg Heath. Tere are still questions about the age ofthesehumichorizonsandabouttheirformationprocesses.Our investigations concentrate on an area south ofLneburg, near the village of Seedorf (Figs. 1 and 2) thatiswell-knownforitshighlyfertilesoils,whichavedevel-oped on sandy loess (Sandlss) (Gehrt 2000). Te sandyloess was deposited during the Upper Weicselian (Geo-logical Map GK 25 2929) and is generally overlying Saal-ianandLowerandMiddleWeicseliansediments.Tepre-vailing soil types developed on sandy loess in the Lne-burg Heath were described by Roeschmann in Kuntze etal. (1995) and by Gehrt (2000). Tey range from Luvisols,stagnic Luvisols, Cambisols and Podzols to Fluvisols andGleysols in the small brook valleys (Soil Map BK50 L2928,Bad Bevensen) (Fig. 3). Figure 4 shows the distribution ofthe caracteristic deep humic horizons in the study area,whic are classifed as colluvium and generally overly thediagnostic B horizons. Tere is arcaeological evidence ofan Iron Age cultural stage of the Jastorf culture (Seedorf-Stufe, Schwantes 1952, Hssler 1991) though as well asof Neolithic setlements (Sprochof 1975, Heege & Maier1991, Geebers 1995, Richter 2002) in the area and of anumber of arcaeobotanical investigations from prehistor-icsites.Tefewdataavailablefrompeatbogsthoughpro-vide bacground information on landscape development(Becker 1995, Kirleis 2003, Becker & Urban 2006). Tisstudy of a Gleysol/Colluvisol developed in a brook valleyand of a Colluvisol/stagnic Luvisol sequence developed onsandy loess at higher topographic elevation near the vil-7E&G / Vol. 60 / no. 1 / 2011 / 626 / DOi 10.3285/eg.60.1.01 / Authors / Creative Commons Attribution LicenseHannoverBremenBremerhavenHamburgKielSchwerinMagdeburgKasselBielefeldDsseldorfDKNLNorth SeaBaltic SeaFrisianIslandsSyltSeedorfUelzenLneburg40 km12347568910111213 14151617181920 212223Fig. 1: Location of Seedorf, county of Uelzen, Lower Saxony and distribution of loess and sandy loess in northern Germany. Grey shad-ed area shows the location of the Luenburg Heath. Hatced area marks the northern most distribution of loess. Sandy loess areas are marked by cross-hatces. 1 = Lower Rhine Area; 2 = Reclinghausen; 3, 4 = Soester Brde; 5 = Mnster; 6 = Bersenbrc; 7 = Damme; 8 = Wehden; 9 = Wunstorf, Rehurg; 10 = Goldenstedt; 11 = Syke; 12 = Apensen; 13 = Harburg; 14 = Garlsdorf; 15 = Uelzen, Bevensen; 16 = Clenze; 17 = Bergen, Jetebruc; 18 = Witingen; 19 = Kltze; 20 = Peine, Braunscweig; 21 = Helmstedt; 22 = Haldensleben; 23 = Magdeburg.Abb. 1: Lage von Seedorf (Landkreis Uelzen) in Niedersacsen und Verbreitung von Lss und Sandlss in Nord-Deutscland. Die graue Flce zeigt die Lage der Lneburger Heide. Die scraferte Flce markiert die nrdlicste Verbreitung von Lss in Deutscland. Sandlssgebiete sind durc Kreuzscrafur markiert. 1 = Niederrhein; 2 = Reclinghausen; 3, 4 = Soester Brde; 5 = Mnster; 6 = Ber-senbrc; 7 = Damme; 8 = Wehden; 9 = Wunstorf, Rehurg; 10 = Goldenstedt; 11 = Syke; 12 = Apensen; 13 = Harburg; 14 = Garlsdorf;15 = Uelzen, Bevensen; 16 = Clenze; 17 = Bergen, Jetebruc; 18 = Witingen; 19 = Kltze; 20 = Peine, Braunscweig; 21 = Helmstedt;22 = Haldensleben; 23 = Magdeburg8E&G / Vol. 60 / no. 1 / 2011 / 626 / DOi 10.3285/eg.60.1.01 / Authors / Creative Commons Attribution LicenseSeedorf70605 0505050505050404056,0.54,2.MhlenbachKartoffelfeldSchulwieseE 10.491 E 10.506 E 10.521 E 10.536E 10.491 E 10.506 E 10.521 E 10.536N 53.088N 53.079N 53.074N 53.088N 53.079N 53.0740 500 1000 mFig. 2: Location of soil profles Sculwiese and Kartofelfeld near the village of Seedorf, county of Uelzen.Abb. 2: Lage der untersucten Profle Sculwiese und Kartofelfeld in Seedorf (Landkreis Uelzen).lage of Seedorf (Figs. 2 and 4) aims at dating and recon-structing (palaeo) environmental conditions of soil genesisandhumanimpactonlandscapeevolutioninthenorthern-mostpatcysandloessregionatthemarginoftheWesternEuropeancontiguousloessbelt.2materials and methods2.1description of the soils of the studied sitesTwo sites have been selected for in-depth studies of theirgenetic development, whic difer strongly in topographyand hydrological conditions as well as in the type of landuse. Te prevailing soil types in the foodplains are Gley-sols developed on alluvial deposits and Histosols that aremainlyusedaspasture,andstagnicLuvisolsthatarewide-spread at higher elevations and support arable agriculture(Fig.3).Teupperlayers/horizonsofthesoilsinbothtopo-graphic positions are caracterized by colluvial cover de-posits.Teproflesofthetwosites,SculwieseandKartofelfeld, have been described in the feld using the German soilmappinginstructions(KA52005)(Tabs.1and2),soilcolourwasdeterminedbyMunsellsoilcolourcarts.Te investigated section Sculwiese (Figs. 2 and 4)(53.08N,10.52E,38ma.s.l.)islocatedonaslip-ofslopeinafoodplainofasmallwatercourseclosetothevillageofSeed-orfinthewesternpartoftheLneburgHeath.Tesequenceconsistsof1.75mthicsilty,clayeysoil-sedimentwithfuvicand gleyic features. Te uppermost 46 cm are made up ofa colluvial cover layer. Te entire sequence has a silty tex-ture,whicismoderatelyclayeytomediumclayeyfromthemiddle part of the profle downwards (Tab. 1, Fig. 5). Teprofleiscarbonate-freeandtheorganiccontentrangesbe-tweenweaktostronghumic.TeprofleSculwiesehasbeensubdivided vertically using the international nomenclature(IUSS 2006) (Fig. 5). By applying the German soil classif-cationsystem(KA52005),theverticalsequencewassubdi-videdintoAp(014cm)/M-Go(1446cm)/aGo(4672cm)/fAa+Gr(72104cm)/aGr(104114cm)/fAa+aGr(114130cm)/aGr(130156cm)/aGr(156175cm)(Kucz2006).TeApandtheBg1horizonaredevelopedinaloesscolluvium(M-Go).Te profle Kartofelfeld (53.08N, 10.52E) is locatednortheastofthevillageofSeedorfat47.80ma.s.lonanel-evatedplateau(Figs.2and4). Te basalpartofthe1.70 mthicprofleismadeupbySaalianglacialtillunderlainbyglaciofuvialsands;thesoiltypedevelopedonthesiltysandsisastagnicLuvisol.From133cmupwardsthestagnicLuvi-sol is overlain by a (sandy) loess colluvium showing weakcambic properties (Tab. 2). Te organic content assessedranges from weak to very weak humic. Te profle Kartof-felfeld isverticallysubdivided(IUSS2006)intothehorizonsAp-Bw1-Bw2-Bw3-2Btb/Bgb1-2Bwb1/Bgb1-3Bwb2/Bgb2/C(Fig. 6). By applying the German soil classifcation system(KA52005)thesequenceofhorizonscanbedescribedasAp(030 cm) /M (3054 cm) /M (5482 cm) /M (82110 cm) /Swd-Bt(110133cm)/Swd-Bv(133138cm)/Swd-Bv(1389E&G / Vol. 60 / no. 1 / 2011 / 626 / DOi 10.3285/eg.60.1.01 / Authors / Creative Commons Attribution License162 cm) /Cv (162170 cm) (Kucz 2006). Te Ap and Bw1,Bw2,Bw3horizonsdevelopedwithintheloesscolluvium(M30110cm).2.2sedimentological and pedological analysisTetextureofthehorizonswasdeterminedbythehydrome-termethod(vanReeuwijk1992).Forphysico-cemicalanal-ysis,thesamesamplesweretakenandanalyzedfortheirpHina1:2.50.01MCaCl2-suspension,fororganiccarbon(Corg)accordingtotheWalkley-Blacprocedure(Pageetal.1982)and organic nitrogen using the Kjeldahl procedure. Major(Al, Fe, and Mn) and trace (S, Cr, Cu, Pb, Zn, Co, Ni, Cd,Sr,Hg,V)elementsweredeterminedusinganX-rayfuores-cence (XRF) spectrometer (SpectroXepos-Benctop-Roent-genfuoreszenz-Spektrometer) equipped with a Rh tube(Chen et al. 2001). Qality control of the analytical proce-durewasestablishedusingthreeinternationallyrecognizedstandard reference materials (SRMs) viz., ISE, BCSS-1, andMESS-1.Basedonthesestandards,theaccuracyandpreci-sionoftheanalysiswerewithin1%formajorelementsandwithin5%fortraceelements.OxalateFeoanddithioniteFed

extractableiron(Holmgren1967)weremeasuredbyinduc-tively coupled plasma spectrometry (ICP). Te soil organicmater(SOM)hasbeencalculatedasC%*1.72.AllanalyseswerecarriedoutatLeuphanaUniversityLneburg,Germa-ny.2.3Age determinationTe depositional ages of the sediments were determinedmainly by optically stimulated luminescence (OSL) withone sample for radiocarbon dating taken from the profleSculwiese. Te sampling positions are shown in Tabs. 7and8.2.3.1optically stimulated luminescence (osL) datingOSL is one of the dosimetric dating methods and is an ex-cellent tool for determining the depositional time of sedi-ments.Temethodisbasedontheaccumulationofelectronsindefectsofthecrystallaticeinducedbythenaturalradio-activity in the surrounding sediment. Due to the physicalmecanism of theOSL method, reliable and precise resultsFig. 3: Soil map of Uelzen (BK50 L2928, Bad Bevensen).Abb. 3: Bodenkarte von Uelzen (BK50 L2928, Bad Bevensen). > W^ > ' , > W^ > ' ,10E&G / Vol. 60 / no. 1 / 2011 / 626 / DOi 10.3285/eg.60.1.01 / Authors / Creative Commons Attribution LicenseFig. 4: Distribution of deep humic horizons, fuvial and colluvial layers and forest cover in the area of Seedorf/Bad Bevensen, county of Uelzen.Abb. 4: Verbreitung von tief-humosen Bden, fuvialen und colluvialen Lagen und Waldbedecung in der Umgebung von Seedorf/Bad Bevensen (Landkreis Uelzen).forwell-bleacedaeoliansedimentslikeloessordunescanbedetermined.Terefore,OSLhasbeenappliedsuccessfullytothesedeposits.LoessandloesslikesedimentshavebeeninvestigatedanddatedwithOSLinmanystudies(Roberts2008).LoessresearcinGermanyhasamorethan175yeartradition with sections in the loess areas in the Rhineland(westernGermany) and in southernGermany having beeninvestigated in detail. Te geocronological studies withthermoluminescence and OSL dating are summarized inFrechen et al. (2003). For loess and loess like sediments innorthwestGermanygeocronologicalstudiesarestillmiss-ing.TerearedetailedsedimentologicalinvestigationsdonebyDewers(1932),Fiedler&Altermann(1964)andLang(1974,1990).TisstudywillprovidethefrstOSLagesforthesandyloessareainnorthwestGermany.Samples forOSL dating were collected in steel tubes ham-mered into vertical sediment exposures afer cleaning thewall.Tecylindersweresealedtoprotectthesamplesfromlight exposure. Preparation of fne grained material wasdone following the description from Frechen et al. (1996).For the OSL measurement, the grain size fraction between411mwastaken.ARisReaderTL/OSL-DA-15wasusedforthemeasure-mentoftheluminescencesignal.Tepolymineralfnegrainsamples were stimulated with infrared LEDs with a wave-length of 875 nm and a maximum power of 135 mW cm-2.TeemitedlightwasdetectedwithabialkaliEMI9235QAphotomultiplier tube. For the measurement of the feldsparemission a combination of a Scot BG 39 and a Corning759 flter was used. Irradiation of the samples was donebyanataced90Sr/90Ybetasourcewithadoserateof0.16Gys-1.AccordingtostudiesfromMauz&Lang(2004)andMauz et al. (2006), the dose rate has to be reduced for thecalculationoftheequivalentdoseobtainedwithaluminiumdiscs. Our experiments showed that the dose rate for ourreader using fne grains on aluminium discs has to be 16%lowerthanforcoarsegrains(quartz)onstainlesssteeldiscs.Feldspars sufer from an efect called anomalous fading.Tisisanon-thermallossofcargefromkineticallystabletraps due to quantum mecanical tunnelling whic resultsin age underestimation (Spooner 1994, Visocekas 2002,Visocekasetal.1994,Wintle1973).Aquantitativecorrec-tionmethodforsamplesyoungerthan20kawasproposedby Huntley & Lamothe (2001). Tis method for fadingcorrection was applied to correct the ages for all samplesinthisstudy.Te natural luminescence signal is mainly the result ofthenaturalradioactivityfromuraniumandthoriumcainsand40Kandaminorportionofsomeotherradioisotopesandcosmic radiation. For the age calculation it is essential toknowtheannualdoserateofthesurroundingsediment.Inthisstudythedoseratewasmeasuredbygammaspectrome-11E&G / Vol. 60 / no. 1 / 2011 / 626 / DOi 10.3285/eg.60.1.01 / Authors / Creative Commons Attribution LicensetrywithanHPGe(High-PurityGermanium)N-typecoaxialdetector in the laboratory. Te results of the gamma spec-trometryareshowninTable3.Forthedosimetrytheinfnitematrixapproacisassumed(Aitken1998).Tismeansforavolumehavingdimensionsgreaterthantherangeofradia-tion,thattherateofenergyabsorptionisequaltotherateofenergyemission.Tegammaspectrometryallowsthemoni-toringforanyradioactivedisequilibrium.Forallsamplesra-dioactiveequilibriumcouldbeobserved.Forpotassium-ricfeldsparthealphacontributionhastobecorrectedbyafac-tor:thea-value(alphaefciency).Inthisstudyana-valueof0.080.01wasused,asproposedbyRees-Jones(1995)forpolymineralfnegrainsamples.Tecontributionofthecos-micradiation,whicdependsonlatitude,longitude,altitudeand thicness of the sediment cover, was calculated usingtheapproacofPrescott&Hutton(1994)andPrescott& Stephan (1982). Te values for the cosmic radiation areshowninTable3.Teintensityofthenaturalradioactivityinthesedimentis atenuated by the water in the sediment. Terefore theannualdoseratehastobecorrected.Forthesamplesfromthe profle Sculwiese the water content was measured inthelabfromadditionalsamplestakenduringtheOSLsam-pling. Te water content for the upper samples is around12%.TisisatypicalvalueforEuropeanloess(Pcsi1990).Te samples at lower positions are within the infuence ofthe ground water. Here the water content is between 19and25%.Totakeseasonalfuctuationsofthewatercontentinto account, the error was set quite large. For the uppersamplesitis5%andforthelowersamples10%(Tab.3).ForthesamplesfromtheprofleKartofelfeld(Tab.3)nowatercontentwasmeasuredbecausetherewasnotenoughsam-pling material collected to measure the water content inthe lab. In this case the water content had to be estimatedusingthevaluesfromthehigherpartofthenearbyprofleSculwiese.Te OSL-ages are calculated by dividing the equivalentdose(De)bythedoserateofthesedimentincludingthecon-tributionofthecosmicraysandtheatenuationbythewatercontent. Te obtained ages were fading corrected with theg-value by the method described in Huntley & Lamothe(2001).Teequivalentdosesarecalculatedusingtheweight-ed mean. Te results of the age calculation are shown inTab.4.TedistributionoftheequivalentdoseswascecedusingtheKolmogorov-Smirnov-Test(K-S-test)whicshowsifthereisanormaldistributionornot.Foranormaldistri-butiontheobtainedK-S-valuefromthistestshouldbelowerthan the critical test value. Te results of the K-S-test areshown in Tab. 4. All samples show a normal distribution.Basedontheseresultsanincompletebleacingofthesam-plesisunlikely.Horizon (KA5 2005) Horizon (iuss 2006) depth [cm] texture munsell ColorAp Ap014 silt 2.5Y5/4M-Go Bg1 1446 silt2.5Y5/4aGo Bg2 4672 Moderate clayey silt 2.5Y4/4fAa+Gr 2Ahb/Crb 72104 Medium clayey silt 2.5Y4/3aGr 2Crb 104114 Medium clayey silt 2.5Y4/3fAa+Gr 3Ahb/Crb 114130 Moderate clayey silt 2.5Y2.5/1aGr 3Crb1 130156 Moderate clayey silt 2.5Y4/2aGr 3Crb2 156175 Moderate clayey silt not determinedTable 1: Field soil description of soil profle Sculwiese (Gleysol/Colluvisol).Tabelle 1: Bescreibung der Bodenhorizonte des Profls Sculwiese ((Kolluvisol-)Gley).Horizon (KA5 2005) Horizon (iuss 2006) depth [cm] texture munsell ColorAp Ap030 silt 2.5Y5/4M Bw1 3054 silt2.5Y6/4M Bw2 5482 Moderate sandy silt 2.5Y5/4M Bw3 82110 Moderate sandy silt 2.5Y5/6swd-Bt2Btb/Bgb1 110133strong silty sand 2.5Y6/8swd-Bv 2Bwb1/Bgb1 133138Medium silty sand 2.5Y6/6swd-Bv3Bwb2/Bgb2 138162Weak silty sand 2.5Y6/6CvC 162170Weak silty sand 2.5Y5/6Table 2: Field soil description of soil profle Kartofelfeld (Stagnic Luvisol/Colluvisol).Tabelle 2: Bescreibung der Bodenhorizonte des Profls Kartofelfeld (Kolluvisol, Pseudogley-Parabraunerde).12E&G / Vol. 60 / no. 1 / 2011 / 626 / DOi 10.3285/eg.60.1.01 / Authors / Creative Commons Attribution LicenseFig. 5: Profle Sculwiese (Gleysol/Colluvisol) and grain size distribution. Soil description based on IUSS (2006) and in bracets on KA 5 (2005). 1 = clay (0.5to>2m(fewdata)wasselected.- Te thicness data of the loess map of Merkt (1968)were copied, if no further information (loess locations,descriptions)wereavailable.-Tesamewasdone,iftheloesslocationsandthethic-nessintheloessmapweresimilar.- New thicness patces were outlined, when the loesslocations showed higher values, than the loess map ofMerkt(1968).Te advantage of the method is the combination of difer-ent input data. Basal map information from the loess mapof Merkt (1968) was used and regions with higher loessthicness were added. Nevertheless, the loess locationswith thicness values are not distributed equally. In someregionsnoorfewloesslocationswerereportedintheliter-ature. Additionally, authors mentioned minimal thicnessvalues or combined thicness values of loessic sedimentsandothermaterialintheirpublications.GranulometryIn the GIS project a query was applied to display all ob-jects (loess locations andexplanations) with data aboutpetrography, grain sizes, and typical sediment sequenc-es. Te granulometric descriptions of the loess maps of37E&G / Vol. 60 / no. 1 / 2011 / 2746 / DOi 10.3285/eg.60.1.02 / Authors / Creative Commons Attribution LicenseMerkt (1968),Wortmann (1942), and the geological map(GK200) were visualized. Tese input data vary in qual-ity and quantity. Some loess locations have detailed grainsizemeasurementsandgrainsizecurves.Incontrast,manyothers have only rough descriptions, the loess maps dis-playingonlytheuppermostloessicsedimentinoneregion.As a result, small-scale details were not separated, but ageneralsubdivisioninaloesscoverlayerandabasallayerwas carried out. Te cover layer represents the homogene-ous upper part of the loess deposits. Te underlying basallayer can vary widely in thicness, granulometry, pedog-enetic overprint, intercalations, and distribution. Te coverlayerwasseparatedinto:- sandy facies (sandy loess, sand-stripped loess and derivates)-loessicfacies-thinornosandyfacies(verythincoverwithgaps)-thinornoloessicfacies(verythincoverwithgaps)Te lower part (base layer) of the loess cover was subdi-videdinto:-unknownbaselayer-mixedlayerorstonelayer-reworkedloessAll regions with the same cover layer and the same baselayer were outlined. Ten, the following combinations ofthesetwolayersweregenerated:-sandyfaciesonunknownbaselayer-sandyfaciesonmixed/stonelayer-sandyfaciesonreworkedloess-thinornosandyfaciesonreworkedloess-loessicfaciesonunknownbaselayer-loessicfaciesonmixed/stonelayer-loessicfaciesonreworkedloess-thinornoloessicfaciesoverreworkedloessTese granulometric types were ataced to the GK200polygons. During the analysis the outline of the new re-gions followed the boundaries of the map sheets. In casethat a map sheet had no information about the base layer,theclassunknownbaselayerwasselected.Fig. 5: Ticness map displaying regional thicness ranges of loess and loess-like sediments (including loamy loess, reworked loess, sandy loess, sand-band-ed loess and cover sand). (DEM: ASTER GDEM is a product of METI and NASA; river network: OpenStreetMap, published under CC-BY-SA 2.0)Abb. 5: Mctigkeitskarte der regionalen Mctigkeitsbereice von Lssen und lss-hnlicen Sedimenten (Lsslhem, Scwemmlss, Sandlss, Sandstreifen-lss, Decsand). (DGM: Globales ASTER-DGM ist ein Produkt von METI und NASA; Flussnetzwerk: OpenStreetMap, verfentlict unter CC-BY-SA 2.0)3500000 3550000 36000005700000575000058000000 10 20 30 40 5kmLegendRegional loess thickness> 0,5 to > 2 m (few data)