ejercicios de investigacion operativa

Post on 01-Mar-2016

30 views

Category:

Documents

1 download

Embed Size (px)

DESCRIPTION

Ejercicios resuletos de investigacion operativa para desarrollar y practicas a su gusto suerte.

TRANSCRIPT

Ejercicios Propuestos de Investigacin de operaciones Resueltos1. Con motivo del 5 centenario del nacimiento de un clebre pintor, un importante museo ha decidido restaurar cinco de sus obras, para lo cual ha contratado tres equipos de restauracin. Cada equipo ha presentado el presupuesto de restauracin para cada una de las obras, como se recoge en el siguiente cuadro, en miles deeuros.

O1O2O3O4O5

R160--90--120

R270908010080

R3--7012090100

(Donde -- significa que dicho equipo no restaurar en ningn caso la obra

correspondiente)El primer equipo restaurador est compuesto por seis personas, el segundo por cuatro y el tercero por tres. En la restauracin de cada una de las obras son necesarias dos personas. Cada persona de un equipo slo restaura una obra.a) A qu tabla se debe aplicar el Mtodo Hngaro para realizar las cinco restauraciones, con el menor coste posible, teniendo en cuenta que cada una de ellas debe ser realizada por un nico equipo restaurador, y que los tres equipos deben participar en dichas restauraciones?b) Dado que el coste de restauracin de las cinco obras es muy elevado, la directiva del museo decide restaurar nicamente tres, asignando una nica obra a cada equipo. Determinar, aplicando el Mtodo Hngaro, todas las posibles asignaciones que minimicen el coste total.

Solucin:

a) Aplicaremos el Mtodo Hngaro a la siguiente tabla:

O1O2O3O4O5F

R160M90M1200

R160M90M1200

R160M90M1200

R2709080100800

R2709080100800

R3M7012090100M

Con M positivo suficientemente grande.

b) Aplicamos el Mtodo Hngaro a la siguiente tabla:

O1O2O3O4O5

R160M90M120

R270908010080

R3M7012090100

F100000

F200000

Con M positivo suficientemente grande.

www.investigaciondeoperaciones.net Grupo HETUES

iopsolution@gmail.com 2. La compaa Ordenata S.A. desea planificar el ensamblaje de dos nuevos modelos de ordenador el Core Duo KS500 y el Core Duo KS600. Ambos modelos precisan del mismo tipo de carcasa y lector ptico. En el modelo KS500 se ensambla la carcasa con 2 lectores pticos. En el modelo KS600 se ensambla la carcasa con un lector ptico y adems se aade un lector de tarjetas. Se dispone semanalmente de 1000 lectores pticos, 500 lectores de tarjetas y de 600 carcasas. El ensamblaje de un KS500 lleva una 1 hora de trabajo y proporciona un beneficiode 200 euros y el del KS600 lleva 1.5 horas de trabajo y su beneficio es de 500 euros.Teniendo en cuenta las restricciones anteriores, el director de la compaa desea alcanzar las siguientes metas en orden de prioridad:Prioridad 1. Producir semanalmente al menos 200 ordenadores KS500. Prioridad 2. Ensamblar al menos 500 ordenadores en total a la semana. Prioridad 3. Igualar el nmero de horas totales de trabajo dedicadas al ensamblaje de los dos tipos de ordenador.Prioridad 4. Obtener un beneficio semanal de al menos 250000 euros.

Obtener e interpretar la solucin ptima del problema relajado, planteando y resolviendo grficamente cada una de las metas.Solucin:Definimos las variables de decisin siguientes:x1 = unidades ensambladas semanalmente del ordenador Core Duo KS500x2 = unidades ensambladas semanalmente del ordenador Core Duo KS600La modelizacin queda como sigue:

Min

L( y1 , y2 , y3

y3 , y4 )2 x1 x2 1000 (1)x2 500 (2)x1 x2 600 (3)

x1 y1

y1

200 (4)

s.a

x1 x2 y2

y2

500 (5)x1 1.5x2 y3

y3

0 (6)200 x1 500x2 y4

y4

250000 (7)x1 0,

x2 0 y enterasyi 0,

yi 0

i 1, 2, 3,4

3. En un hospital comarcal se pueden realizar operaciones de rin, de corazn y de vescula. Por problemas de personal cada da se realizan operaciones como mucho de dos clases. Debido al gran nmero de operaciones pendientes se deben realizar al menos tantas operaciones de vescula como de rin. Por otra parte, no se pueden realizar ms de 50 operaciones de vescula diarias. Cada operacin de rin requiere la presencia de dos mdicos y se realiza en una hora. Las operaciones de corazn requieren 3 mdicos y se realizan en 5 horas. Cada operacin de vescula slo requiere un mdico y se realiza en una hora Para estos tipos de operaciones el hospital tiene asignados 20 mdicos y cuenta con 60 horas diarias de quirfano.a) (6 puntos) Modelizar el problema como un problema de programacin lineal entera para maximizar el nmero de operaciones diarias.b) (4 puntos) El hospital recibe una subvencin y se plantea o bien modernizar el hospital y, as, poder realizar tambin operaciones de cataratas, o bien contratar dos nuevos mdicos. Las operaciones de cataratas requieren un mdico y una hora de quirfano, adems, si se opera de cataratas se deben realizar como mnimo 5 operaciones al da y no ms de 10. Modelizar el problema como un problema de programacin lineal entera para maximizar el nmero de operaciones.Solucin:

a) Definimos las variables de decisin siguientes:x1 = nmero de operaciones de rin al dax2 = nmero de operaciones de corazn al dax3 = nmero de operaciones de vescula al da

1 si se realizan operaciones de riny1 0 en caso contrario

1 si se realizan operaciones de corazny2 0 en caso contrario

1 si se realizan operaciones de vesculay3 0 en caso contrario

La modelizacin queda como sigue:

Max ( x1 x2 x3 )2 x1 3x2 x3 20

s.a

x1 5x2 x3 60 y y y 2 1 2 3

x1 x3

x1 My1x My2 2

x3 50 y3xi 0

i 1, 2, 3 y enteras yi

0, 1

i 1, 2, 3

Con M positivo suficientemente grande.b) Sea definen adems de las variables del apartado anterior:

1 si se decide realizar operaciones de cataratasz 0 en caso contrario

x4 = nmero de operaciones de cataratas al da

La modelizacin queda como sigue:

Max ( x1 x2 x3 x4 )2x1 3x2 x3 x4 20 2(1 z)

s.a

x1 5x2 x3 x4 60 y y y z 2 1 2 3

x1 x3

x1 My1x My2 2

x 50 y

3 35z x4 10zxi 0

i 1, 2, 3,4 y entera

z 0, 1

Con M positivo suficientemente grande.

0, 1

i 1, 2

4. Roperos S.AC produce dos tipos de roperos: roperos modelo A y, roperos modelo B.lo mximo a vender de escritorios modelo A son 600 unidades y modelo B son 400 unidades .Fabricar un escritorio modelo A requiere 1 hora y fabricar un escritorio modelo B requiere 2 horas. la capacidad de produccin es 1300 horas en total por los dos modelos, cabe resaltar que no es posible trabajar horas extras. Cada ropero modelo A entrega una utilidad de $15.Todo lo que se fabrica se vende.La gerencia, adems, ha establecido las siguientes metasMeta 1: Alcanzar una utilidad semanal por lo menos de $11000.Meta 2: Que no exista capacidad de produccin ociosa.Meta 3: Que se produzcan 600 de 2 cajones.Meta 4: Que se produzcan 400 escritorios de 3 cajones.La meta 1 es de primera prioridad; la meta 2, de segunda; la 3, de tercera y la meta 4 tiene la ltima prioridad de cumplimiento.

1) Defina las variables de decisin y formule el modelo de programacin lineal por metas correspondiente.2) Presentar un informe administrativo de la solucin ptima, indicando que metas se cumplen o no, es necesario realizar la grfica.

Solucin:Parte 1:X: Numero de roperos Modelos A a producirY: Numero de roperos Modelos B a producir

Metas:1)Min Z=P1(d1)10X+15Y+d1-e1=11000(>=)

2) Min Z=P2(d2)1X+2Y+d1=1300(=)

3) Min Z=P3(d3)1X+d3=600(=)4) Min Z=P4(d4)Y+d4=400(=)NO HAY RESTRICCIONES DURASObjetivo:Min Z=P1d1+P2+d2+P3d3+P4d4

Parte 2:Grfica:Puntos de interseccion:A(500,400)B(600,350)C(600,333.33)

Metas:1) P1d1 =La Regin ABC Cumple2) P2d2 =Recta AB3) P3d3 =Punto B4) P4d4 =No CumpleSe Toma el punto B(600,350)MetasX=600 Y=350Cumplen?

1d1=0 e1=250si

2d2=0si

3d3=0si

4d4=50NO

Se debe producir 600 roperos A y 350 roperos B Para que se llegue a una utilidad de $ 11,250, Donde se cumplen las metas 1,2 y 3.

5. Un ayuntamiento tiene previsto construir cuatro instalaciones deportivas diferentes dentro del municipio. El ayuntamiento se compone de cuatro distritos A, B, C y D y quiere asegurar la construccin de un polideportivo en los distritos ms grandes: A y B. Adems, cabra la posibilidad de construir dos polideportivos en el distrito B. La siguiente tabla muestra el nmero de usuarios semanales (en centenas) que se estiman para cada tipo de instalacin deportivasegn en el distrito en que se construya.

Polideportivo

DistritoP1P2P3P4

A12141719

B16192417

C10121815

D1392017

Resolver mediante el Mtodo Hngaro el problema de dnde se deben construir los

4 polideportivos si el ayuntamiento desea maximizar el nmero de usuarios semanales.

Solucin:

Aplicamos el Mtodo Hngaro a la siguiente tabla:

P1P2P3P4F1

A-12-14-17-19M

B-16-19-24-17M

B-16-19-24-170

C-10-12-18-150

D-13-9-20-170

Con M positivo suficientemente grande.

P1P2P3P4F1

A-12-14-17-19M

B-16-19-24-17M

B-16-19-24-170

C-10-12-18-150

D-13-9-20-170

+16+19+24+19

Con M positivo suficientemente grande.

P1P2P3P4F1