ejercicios resueltos

of 55 /55
INVESTIGACIÓN DE INVESTIGACIÓN DE OPERACIONES II OPERACIONES II Ing. Luis Zuloaga Rotta Ing. Luis Zuloaga Rotta UNI-FIIS<Investigación Operaciones II> 2

Upload: jaime-enrique-higuera-obregon

Post on 01-Jul-2015

5.581 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ejercicios resueltos

1

INVESTIGACIÓN DE INVESTIGACIÓN DE OPERACIONES IIOPERACIONES II

Ing. Luis Zuloaga RottaIng. Luis Zuloaga Rotta

UNI-FIIS<Investigación Operaciones II> 2

Page 2: ejercicios resueltos

2

UNI-FIIS<Investigación Operaciones II> 3

UNI-FIIS<Investigación Operaciones II> 4

SISTEMASISTEMA

• Conjunto de entidades u objetos relacionados entre si (conforman una estructura) con una misma finalidad, alcanzar sus objetivos.

• La retroalimentación (feedback) es una característica de los sistemas para dar soporte a las actividades que les permiten alcanzar los objetivos.

Page 3: ejercicios resueltos

3

UNI-FIIS<Investigación Operaciones II> 5

SistemaSistemaInputInput OutputOutput

RequerimientosRequerimientos

ResultadosResultados

TransformacionesTransformaciones(procesos recursos)

(inputs)

(Outputs)

UNI-FIIS<Investigación Operaciones II> 6

Enfoques para el análisis de Enfoques para el análisis de SistemasSistemas

• Enfoque de la “caja negra”.– Estudiamos el comportamiento en función de los

inputs y outputs.• Enfoque de la transición de estado.

– Definimos un vector de estado para el sistema y estudiamos el comportamiento en función de cambios en las variables de estado del vector.

• Enfoque de las partes componentes.– Estudiamos al sistema en función de sus partes

componentes y de la estructura del todo.

Page 4: ejercicios resueltos

4

UNI-FIIS<Investigación Operaciones II> 7

Análisis CATDWEAnálisis CATDWE

• C : cliente• A : actor• D : dueño• T : transformación• W : weltanshaung• E : entorno

UNI-FIIS<Investigación Operaciones II> 8

ModeloModelo• Es toda representación de un sistema

real o abstracto, con la finalidad de comprender sus características y/o funcionalidad.

• Un módelo puede ser simbólico, icónico u análogo.– Ej: un mapa, un sistema de ecuaciones, un

diagrama de flujo, un avión a escala, una formula, diagrama de procesos, etc.

Page 5: ejercicios resueltos

5

UNI-FIIS<Investigación Operaciones II> 9

Función de los ModelosFunción de los Modelos

• Una ayuda para el pensamiento• Una ayuda para la comunicación• Para entrenamiento e instrucción• Una herramienta de predicción• Una ayuda para la experimentación.

UNI-FIIS<Investigación Operaciones II> 10

Cómo mejorarel sistema ?

ObjetivosRestriccionesProcesosRecursosLocacionesCostos

Sistema bajoestudio

Analista omodelador

Paradigmas

Page 6: ejercicios resueltos

6

UNI-FIIS<Investigación Operaciones II> 11

SimulaciónSimulación• Es el estudio de un sistema a través de

un modelo ayudado de un computador, con la finalidad de comprender su comportamiento en un conjunto de escenarios y plantear propuestas alternativas de mejora.

• El curso se limitará al estudio de modelos de simulación para sistemas discretos.

UNI-FIIS<Investigación Operaciones II> 12

SimulaciónSimulación

• “ ... es el proceso de diseñar un modelo de un sistema real y realizar experimentos con él para entender el comportamiento del sistema o evaluar varias estrategias para la operación del sistema ”

Robert Shannon

Page 7: ejercicios resueltos

7

UNI-FIIS<Investigación Operaciones II> 13

Para qué usar la Simulación ?Para qué usar la Simulación ?

• Para experimentar con escenarios “what-if”.• Para comprender el impacto de la

introducción de nuevas tecnologías. • Para visualizar una representación dinámica

del sistema. • Para probar/analizar un diseño previo a la

implementación.• Para analizar la performance del sistema a

los cambios que se presenten en el tiempo.

UNI-FIIS<Investigación Operaciones II> 14

Para qué usar la Simulación ?Para qué usar la Simulación ?

• Permite una experimentación controlada. • Para un análisis sin disturbios (efecto

Hawthorne) ni interrupciones en el sistema. • Por su facilidad de uso y comprensión. • Visualización realistica y convincente. • Para forzar la atención a detalles del

diseño.• Porque es muy caro experimentar

directamente sobre el sistema.

Page 8: ejercicios resueltos

8

UNI-FIIS<Investigación Operaciones II> 15

Ventajas de la SimulaciónVentajas de la Simulación• Una vez construido, el modelo puede ser modificado de manera

rápida con el fin de analizar diferentes políticas o escenarios.• Generalmente es más barato mejorar el sistema vía simulación,

que hacerlo directamente en el sistema real.• Es mucho más sencillo comprender y visualizar los métodos de

simulación que los métodos puramente analíticos.• Los métodos analíticos se desarrollan casi siempre, para

sistemas relativamente sencillos o simplificaciones, mientras que con los modelos de simulación es posible analizar sistemas de mayor complejidad o con mayor detalle.

• En algunos de los casos, la simulación es el único medio para lograr una solución.

UNI-FIIS<Investigación Operaciones II> 16

Desventajas de la SimulaciónDesventajas de la Simulación

• Los modelos de simulación en una computadora son costosos y requieren mucho tiempo para desarrollarse y validarse.

• Se requiere gran cantidad de corridas computacionales para encontrar "soluciones óptimas"; esto repercute en altos costos.

• Es difícil de comprobar que resultados de modelos de simulación son adecuados. Por lo tanto es difícil que sean aceptados.

• Los modelos de simulación no dan soluciones óptimas.• La solución de un modelo de simulación puede dar al

analista un falso sentido de seguridad.

Page 9: ejercicios resueltos

9

UNI-FIIS<Investigación Operaciones II> 17

FORMULACIÓNDEL

PROBLEMA

DEFINICIÓNDEL SISTEMA

ES ÚTIL LASIMULACIÓN ?

FORMULACIÓNDEL MODELO

PREPARACIÓNDE DATOS

TRASLACIÓNDEL MODELO

No

FIN

A B

EL MODELOES VÁLIDO ?

PLANEACIÓNESTRATÉGICA

PLANEACIÓNTÁCTICA

EXPERIMENTACIÓN

INTERPRETACIÓNES ÚTIL ?

IMPLANTACIÓN

DOCUMENTOPROPUESTAS

No

A B

EL PROCESO DE SIMULACIÓNEL PROCESO DE SIMULACIÓN

UNI-FIIS<Investigación Operaciones II> 18

Validación del ModeloValidación del Modelo

• Es el proceso de llevar a un nivel aceptable la confianza del usuario referente a que acepte cualquier inferencia acerca de un sistema que se derive de la simulación.

• No existe la “prueba de validación”. En lugar de esto, el experimentador debe realizar pruebas a lo largo del proceso de desarrollo del modelo, a fin de crear confianza.

Page 10: ejercicios resueltos

10

UNI-FIIS<Investigación Operaciones II> 19

Experimentación y análisis de Experimentación y análisis de sensibilidadsensibilidad

• La experimentación con el modelo (corrida) nos permite obtener la información deseada.

• El análisis de sensibilidad consiste en la variación sistemática de los valores de los parámetros sobre algún intervalo de interés y en la observación del efecto en la respuesta del modelo.

UNI-FIIS<Investigación Operaciones II> 20

Métodos para validar el modeloMétodos para validar el modelo• Debemos cerciorarnos de que el modelo tenga

validez de forma general.• Es posible que el modelo dé respuestas absurdas

s i se lleva los parámetros a valores extremos ?• El segundo y tercer método se basan en la

prueba de suposiciones y en la prueba de transformaciones de entrada-salida. Estas conllevan el uso de pruebas estadísticas de medias y varianzas, regresión, análisis de factores, autocorrelación, pruebas no paramétricas, etc.

Page 11: ejercicios resueltos

11

UNI-FIIS<Investigación Operaciones II> 21

DIAGRAMA DE FLUJO

UNI-FIIS<Investigación Operaciones II> 22

LAYOUTPROCESOSLAYOUT DEPROCESOS

Ruta trabajoRuta trabajo

Page 12: ejercicios resueltos

12

UNI-FIIS<Investigación Operaciones II> 23

Como comprender los Como comprender los procesos de negocioprocesos de negocio

• Para comprender, estudiar y mejorar los proceso de negocio, primero tenemos que identificarlos, definirlos y descubrir tanto su estructura como sus relaciones.

• Los procesos de negocio no son analizados como cajas negras.

• Para lograr esto, realizamos una descomposición funcional del negocio.

UNI-FIIS<Investigación Operaciones II> 24

Funciones y Procesos de NegocioFunciones y Procesos de Negocio

• Una función es un grupo de actividades de alto nivel que juntas apoyan un aspecto del negocio.

• Los procesos de negocio también son agrupamientos de actividades, pero ocurren a un nivel inferior.

• La ejecución de un proceso tiene sentido para el negocio; es una actividad que se inicia por un evento.

Page 13: ejercicios resueltos

13

UNI-FIIS<Investigación Operaciones II> 25

Cómo modelar el Sistema ?Cómo modelar el Sistema ?

UNI-FIIS<Investigación Operaciones II> 26

• Se usan gráficos (generalmente cajas y flechas) para proveer los datos acerca de la estructura del sistema, razón por la que la mayor parte de la gente piensa en modelos de procesos como representaciones pictóricas.

• Con el modelamiento de procesos se puede mirar el sistema de interés con profundidad, de modo que delicados matices de su organización puedan ser analizados, comprendidos y tal vez lo mas importante, comunicados a otros.

Cómo se modelan los procesos ?Cómo se modelan los procesos ?

Page 14: ejercicios resueltos

14

UNI-FIIS<Investigación Operaciones II> 27

ModelamientoModelamiento de Procesos de Procesos IDEFØIDEFØ

• Modelamiento de actividades IDEFØ o Procesos de Negocio, es una técnica para analizar el sistema total como un conjunto de actividades o funciones interrelacionadas.

• Las actividades (verbos) del sistema son analizadas independientemente del o de los objetos que los llevan a cabo.

UNI-FIIS<Investigación Operaciones II> 28

IDEFØ: IDEFØ: QueQue eses ??• Una técnica para modelar :

– funciones :• actividades• acciones• procesos• operaciones

– relaciones funcionales y datos (informacion y objetos) de un sistema o empresa.

Page 15: ejercicios resueltos

15

UNI-FIIS<Investigación Operaciones II> 29

IDEFØ IDEFØ eses ……• Lenguaje de modelamiento gráfico (sintaxis y

semantica) + metodología para desarrollarmodelos de procesos (utiliza técnica ICOM).

• Describe :– que hace un sistema– que controles tiene– sobre que trabaja– como ejecuta sus funciones– que produce

• En resumen IDEFØ = gráfico + texto + glosario

UNI-FIIS<Investigación Operaciones II> 30

ICOMICOM•• InputsInputs

– Items consumidos o transformados por procesos– Ejemplo : materiales, información, capital, energía, ...

•• ControlesControles– Restricciones o gobierno del proceso– Ejemplos : lineamientos, reglas de negocio, políticas, ...

•• OutputsOutputs– Resultados del proceso, esto es una entrada transformada– Ejemplos : materiales, información, ...

•• MecanismosMecanismos– Recursos utilizados para producir la salida (usada por los procesos)– Ejemplos : personal, sistemas, equipos, ...

Page 16: ejercicios resueltos

16

UNI-FIIS<Investigación Operaciones II> 31

• La actividad (o función) esrepresentada por una caja.

• Inputs son representados por la flechas fluyendo hacia el ladoizquierdo de la caja.

• Outputs son representados porflechas fluyendo desde el ladoderecho de la caja.

• Flechas que fluyen hacia la partesuperior de la caja representanrestriccioneso controles.

• Flechas fluyendo hacia el ladoinferior de la caja son losmecanismos.

IDEFØ

Actividada ejecutar Output

Mecanismo(Recurso)

Input

Restricción

• El Orden de las cajas no implica necesariamente una secuencia !! • La descomposición es Top Down !!

UNI-FIIS<Investigación Operaciones II> 32

IDEFIDEFØØ eses unauna descomposicidescomposicióónnTop DownTop Down

Mas General

Mas Detal lado

A2

2.1

2.22.3

A-0

Este diagrama es el“padre” de ...este diagrama.

A04

1 2

3

A23

2.3.1

2.3.2

2.3.3

Diagrama de ContextoDiagrama de Contexto

Diagrama de Nivel CeroDiagrama de Nivel Cero

Diagrama de Primer NivelDiagrama de Primer Nivel

Page 17: ejercicios resueltos

17

UNI-FIIS<Investigación Operaciones II> 33

Combinaciones de flechas Combinaciones de flechas de de interfaceinterface

• Output – Input

• Output – Control

• Output – Mecanismo

• Output – Control feedback

• Output – Input feedback

UNI-FIIS<Investigación Operaciones II> 34

Bifurcaciones y UnionesBifurcaciones y Uniones• Las salidas (outputs) de una

actividad pueden ser usadas por más que una actividad.

• En IDEFØ las flechas en general, pueden bifurcarse o unirse, renombrándose en caso sea necesario para especificar mayor detalle (dado que es un subconjunto de la flecha principal).

POLITICAS &PROCEDIMIENTOS

POLITICAS &PROCEDIMIENTOS

DE PERSONAL

POLITICAS &PROCEDIMIENTOS

DE VENTAS

Material residual

Material defectuoso

Material rechazado

Page 18: ejercicios resueltos

18

UNI-FIIS<Investigación Operaciones II> 35

Sistema BancarioOPERACIÓNOPERACIÓNBANCARIABANCARIA

ESPERA XESPERA XSERVICIOSERVICIO

ATENCIÓNATENCIÓNCLIENTECLIENTE

ARRIBO CLIENTE

PERSONALBANCO

CLIENTE CONOPERACIÓNREALIZADA

REGLAMENTO BANCO CLIENTE

CANSADO ESPERAR

CLIENTE CON OPERACIÓN PENDIENTE

CLIENTE PASA A VENTANILLA

UNI-FIIS<Investigación Operaciones II> 36

Que sigue ... ?Que sigue ... ?• Una vez identificados y comprendidos

los procesos u actividades, se define la situación problema.

• A continuación se identifican las variables del vector de estado (var. aleatorias), para luego observar y registrar su comportamiento (muestra).

• Se organiza la data recogida y se plotea, procediendo a plantear una hipotesis nula H0.

x1

x2 x3

x4 x5

x6xn

xi frec[a1,a2] 8<a2,a3] 12<a3,a4] 16<a4,a5] 6

...

x

H0:

Page 19: ejercicios resueltos

19

UNI-FIIS<Investigación Operaciones II> 37

Números Random ( #r )• Son números reales (r) distribuídos

uniformemente en el intervalo [0,1].

r = 1/2Var(r) = 1/12

0 1r0

r

UNI-FIIS<Investigación Operaciones II> 38

Algoritmos para generar Algoritmos para generar #r#r• Algoritmos congruenciales :

– Mixto : #ri+1 = ( a + b #ri)Mod(m)– Multiplicativo : #ri+1 = ( b #ri)Mod(m)

EJEMPLO: Generar 2 números aleatorios de módulo 8 con constantes a= 7 y b= 5 y una semilla r0 = 4.

ri+1= (5ri + 7)MODULO(8)

r1= 27 MODULO (8) = 3r2= 22 MODULO (8) = 6

Page 20: ejercicios resueltos

20

UNI-FIIS<Investigación Operaciones II> 39

Restricciones para los Restricciones para los parámetros de algoritmoparámetros de algoritmo

• a, b, m y r0 deben ser mayores que cero (0).• r0 no debe ser múltiplo de 2 ni de 5.• a debe ser impar.• a y m deben ser primos entre si.• b = 200t ± z tal que :

• z = 3,11,13,19,21,27,29,37,53,59,61,67,69,77,83,o 91.• t = 1,2,3,4,5, ...

• m = 10d y d ≥4 (d # de bits de una palabra del computador)

• Periodo máximo m/20

UNI-FIIS<Investigación Operaciones II> 40

Parámetros y VariablesParámetros y Variables

• En un experimento se tiene información o datos de dos tipos :

• PARÁMETROS: permanecen sin cambio durante todo el tiempo que dura el experimento.

• VARIABLES: cambian durante el experimento.

Page 21: ejercicios resueltos

21

UNI-FIIS<Investigación Operaciones II> 41

Variable AleatoriaVariable Aleatoria

• PROCESO ESTOCASTICO: experimento donde no es posible conocer de antemano los resultados obtenidos para cada valor de una variable. Se cumplen las propidades de la teoría de probabilidad para las variables asociadas.

• VARIABLE ALEATORIA: variable en un proceso estocástico.

UNI-FIIS<Investigación Operaciones II> 42

Distribución de probabilidad

FALLAS

20

30

70

FRECUENCIA

CBA

FALLAS

1/3

1/4

7/12

PROBABILIDAD

CBA

Page 22: ejercicios resueltos

22

UNI-FIIS<Investigación Operaciones II> 43

Tipos de Distribución Tipos de Distribución ProbabilidadProbabilidad

• CONTINUAS: los valores de las VA están en algún rango de los números reales y cubren entre todos ellos todo el rango.

• DISCRETAS: los valores de las VA pertenecen a algún rango de los enteros o reales. Entre dos valores de la VA hay por lo general una infinidad de valores que no se asocian a la variable aleatoria.

UNI-FIIS<Investigación Operaciones II> 44

Funciones Generadoras de Funciones Generadoras de Valores AleatoriosValores Aleatorios

• Para reproducir el comportamiento de los sistemas a través de los modelos, es necesario reproducir el comportamiento de los objetos del sistema, a través de la reproducción de las actividades en las que intervienen, especialmente las relacionadas con variables aleatorias.

• Recogemos una muestra de datos para cada variable identificada, realizamos el ajuste correspondiente a alguna función de probabilidad conocida o no.

Page 23: ejercicios resueltos

23

UNI-FIIS<Investigación Operaciones II> 45

Método de la Método de la Transformación InversaTransformación Inversa

• Muchas de las Funciones de Distribución de probabilidad acumuladas son univalentes de allí que tienen inversa.

F(x) = p(X ≤ x) ~ UNIF(0,1)

también #r ~ UNIF(0,1)entonces #r = F(x)por lo tanto x = F-1(#r)

r0

x0

1

F(x)

0 X

UNI-FIIS<Investigación Operaciones II> 46

Uniforme Continúa (UC)

a bx0

x

1b-a

F(x) = (x0-a)/(b-a)

a b

F(x)

1

0

#r

x0

Dado que F tiene inversa, entonces #r = F(x), luego #r = (x-a)/(b-a) por lo tanto x = a + #r(b-a)

Page 24: ejercicios resueltos

24

UNI-FIIS<Investigación Operaciones II> 47

Exponencial Negativa (Exponencial Negativa (ExpExp))• Función continua con

dominio [0,+∞ .

f(X) = µe-µx ; x≥0

F(x) = ∫ox0 f(x)dx

x

f(x)µ

0 x0 0

F(x)1

x

#r

x0

Media (x) = 1/µVar (x) = 1/µ2

Dado que F tiene inversa, entonces #r = F(x), luego #r = 1 - µe-µx por lo tanto x = - (1/µ)ln(1-#r)

UNI-FIIS<Investigación Operaciones II> 48

Lineal (Lineal (LinLin))

a b

2 b-a

f(x) F(x)1

0x

x

#r

x0

F(x) = (x0-a)2

(b-a)2

a b

f(x) = 2(x-a) dado que F tiene inversa, entonces #r = F(x)(b-a)2 entonces x = a + (b-a) #r

Page 25: ejercicios resueltos

25

UNI-FIIS<Investigación Operaciones II> 49

Normal (Normal (NormNorm))• Teorema del Límite Central : Toda variable aleatoria con media y

varianza conocidas, que se expresa como la suma de n variables aleatorias independientes, también con media y varianza conocidas, para un n suficientemente grande, se puede aproximar a través de una distribución normal.

µ

f(x) = 1 e -(1/2)[(x- µ)/ σ]2

2π σ

x

• Si t = s1+s2+s3+s4+s5+s6+......+sn / med (s i) y var(s i) son conocidas, entonces para un n “suficientemente grande” t ~ Normal (med,var).

• Si t = # r1+# r2+# r3+# r4+# r5+...+# rn = S # ri / # ri ~ RANDOMnormalizando t y x tenemos : t – (n/2) = x – µ

n/12 σTomando n = 12 encontramos que : X = µ + σ [(Σ #ri) - 6]

12

UNI-FIIS<Investigación Operaciones II> 50

BernoulliBernoulli ((BernBern))• Es una distribución discreta en la que los resultados

del experimento aleatorio sólo arrojan dos valores posibles 0 o 1(fracaso o éxito).

X =

0 si #r ≥ p

1 si #r < pf(x) = px(1-p)1-x / p = éxito

Ej: Trompo f(x) = (1/3)x(2/3)1-x

0(R) si #r ≥ 1/31(A) si #r < 1/3X =

Page 26: ejercicios resueltos

26

UNI-FIIS<Investigación Operaciones II> 51

BinomialBinomial ((BinBin))• Una distribución Binomial involucra varios procesos de

Bernoulli, digamos n procesos y, se desea el número de éxitos x que se tendrá en todos los procesos tomados en conjunto. La Binomial mide la probabilidad de que x=i éxitos en n pruebas:

p(x=i) =(n i)pi(1-p)n-i / med(x)=np y var(x)=np(1-p)

Entonces si x= b1+b2+b3+..bn = Σbi / bi ~ Bern(p)tenemos que x ~ Bin (n,p)

n

0 1 2 3 4

x

0.40

0.20

0.10

f(x)Bin (4,0.5)

UNI-FIIS<Investigación Operaciones II> 52

PoissonPoisson ((PoisPois))

0 1 2 3 4 5 6 7 8 9 10 11 12 ....

x

f(x) = λx e- λ / med(x) = λx!

f(x)

e-?

T T T T TX=4 X=2 X=1 X=5 X=0

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

1 1 1 1 1 1 1 1 1 1 1

x ~ Poiss(λ)

t ~ Exp(1/λ)

Si ti ~ Exp(1/λ) entonces t = - (1/λ)ln(1-#r)

Luego x = max {i : Σti ≤ T < Σti } ~ Poiss(λ)i i+1

0 0

Page 27: ejercicios resueltos

27

UNI-FIIS<Investigación Operaciones II> 53

Uniforme Discreta (UD)Uniforme Discreta (UD)

X =

a1 si 0 ≤ #r ≤ 1/na2 si 1/n < #r ≤ 2/na3 si 2/n < #r ≤ 3/n...an si n-1/n < #r ≤1

a1 a2 a3 a4 a5 a6 a7 ... an

1/n

x

f(x)

a1 a2 a3 a4 a5 a6 a7 ... an

1/n x

F(x)

2/n

3/n

4/n

5/n

1

#r

UNI-FIIS<Investigación Operaciones II> 54

Método de RechazoMétodo de Rechazo• Se tiene una Variable Aleatoria X

con función de densidad f(x) definida en a = x = b, además,M= max f(x), a = x = b

• Sea g(x)= [f(x) / M]luego 0 = g(x) = 1

• El método consiste en:a. Se generan r1 y r2, dos

números aleatoriosb. Se define x= a + (b-a)r1c. Si r2 = g(x) entonces x es

observación. En otro caso, volver al paso a.

a b

Mf(x)

x

1 g(x)

Page 28: ejercicios resueltos

28

UNI-FIIS<Investigación Operaciones II> 55

Ejemplos• Ejemplo1: Sea f(x)= 2 x , 0 = x = 1

Entonces M = 2 y g(x)= 2x/2 = xa. Generar r1 y r2b. x = a + (b – a) r1 = 0 + (1 - 0) r1 = r1c. Si r2 = r1 entonces x es observación, de lo contrario volver a generar r1 y r2.

• Ejemplo2: Sea f(x)= 2x/9 para 0 = x = 3, entoncesM=2/3 y g(x)= (2x/9)/(2/3)= x/3a. Generar r1 y r2b. x= a + (b - a)r1 = 0 + (3 - 0)r1 = 3r1c. Si r2 = g(x) = x/3, así r2 = 3 r1/3 = r1, o sea si r2 = r1, entonces x es observación, de lo contrario volver a generar r1 y r2.

UNI-FIIS<Investigación Operaciones II> 56

Pruebas de Bondad de AjustePruebas de Bondad de Ajuste• Estas pruebas nos permiten determinar si

la muestra de los datos recogida, respecto a una variable aleatoria de interés para el estudio, se puede aproximar a partir de una función de distribución de probabilidad teórica (H0).H0 : “No existe diferencia significativa entre los datos observados y los que se obtendrían a partir de una distribución ............ (distribución de probabilidad teórica)”.

Page 29: ejercicios resueltos

29

UNI-FIIS<Investigación Operaciones II> 57

Prueba de Prueba de JiJi--CuadradoCuadrado• Es recomendable para muestras cuyo tamaño

es mayor que 100.• Calcular :

χc2=Σ (fofoi – fefei)

2

fefeiDonde : k # intervalos de clase

fo frecuencia observada

fe frecuencia esperada, tal que fe = np(x i)≥5n tamaño de la muestrap(xi) probabilidad teórica para xi

k

i=1

UNI-FIIS<Investigación Operaciones II> 58

JiJi--Cuadrado ...Cuadrado ...• Luego obtener de tablas el estadístico

de Ji-Cuadrado para : χt2

(1-α, #gl)

Donde : (1 – α ) es el nivel de significancia, y#gl : es el número de grados de libertadtal que #gl = K - #parám.estimados – 1

• Comparamos, y aceptamos H0 si :χc

2 <<χt2

(1-α, #gl) Ji-Cuadrado calculado es menor que el

teórico

Page 30: ejercicios resueltos

30

UNI-FIIS<Investigación Operaciones II> 59

Prueba de Prueba de KolmogorovKolmogorov -- SmirnovSmirnov• Es recomendable para muestras cuyo

tamaño esta comprendido entre 10 y 100.• Se determinan las frecuencias relativa y

acumulada de los valores observados, y la probabilidad teórica y acumulada para la distribución teórica.

• El estadístico K/S calculado se determina a partir de la máxima de las diferencias absolutas entre la frecuencia y probabilidad acumuladas.

• El estadístico K/S teórico se obtiene de tablas dado un α (nivel significancia) y n(tamaño muestra).

• Se acepta H0 si se cumple que : Dc << Dt (α,n)

PA(x) – FA(x)

UNI-FIIS<Investigación Operaciones II> 60

Tabla de Tabla de KolmogorovKolmogorov//SmirnovSmirnovpara una(1) muestrapara una(1) muestra

Page 31: ejercicios resueltos

31

UNI-FIIS<Investigación Operaciones II> 61

Ejemplo 1Ejemplo 1• Suponga que se han

generado 100 #saleatorios y deseamos comprobar su uniformidad sobre 10 intervalos equidistantes utilizando la prueba de Kolmogorov/Smirnov. Usar un α = 5%.

• H0 : Los datos se pueden aproximar a través de una distribución Uniforme.

Int Frec FrecRel1 8 0.08

2 17 0.17

3 5 0.05

4 5 0.05

5 12 0.126 18 0.187 5 0.058 14 0.149 13 0.13

10 3 0.03

100

1 2 3 4 5 6 7 8 9 10

0.1 UNIF

UNI-FIIS<Investigación Operaciones II> 62

Int Frec FrecRel FrecAbs ProbTeor ProbAcum D k/s1 8 0.08 0.08 0.1 0.1 0.022 17 0.17 0.25 0.1 0.2 0.053 5 0.05 0.3 0.1 0.3 0.04 5 0.05 0.35 0.1 0.4 0.055 12 0.12 0.47 0.1 0.5 0.036 18 0.18 0.65 0.1 0.6 0.057 5 0.05 0.7 0.1 0.7 08 14 0.14 0.84 0.1 0.8 0.049 13 0.13 0.97 0.1 0.9 0.07 Max D k/s

10 3 0.03 1 0.1 1 0.0100

Tabla de Cálculos Ejemplo 1

Dc = 0.07Dt (5%,100) = 1.36/ 100 = 0.136Como Dc << Dt (5%,100) aceptamos H0:

Page 32: ejercicios resueltos

32

UNI-FIIS<Investigación Operaciones II> 63

Ejemplo 2Ejemplo 2• La siguiente tabla muestra la

distribución de frecuencias para la variable aleatoria tiempo entre dos arribos consecutivos a un SuperMercado.

• Formule la hipótesis adecuada y haga el ajuste correspondiente a una función de distribución de probabilidad teórica conocida. Use un α = 5%.

FrecTiempo

118 ≤ t < 20

216 ≤ t < 18

314 ≤ t < 16

512 ≤ t < 14

810 ≤ t <12

118 ≤ t < 10

156 ≤ t < 8

224 ≤ t < 6

332 ≤ t < 4

500 ≤ t < 2

UNI-FIIS<Investigación Operaciones II> 64

PloteoPloteo Ejemplo 2Ejemplo 2

t frec frecRelat1 50 0.333 33 0.225 22 0.157 15 0.109 11 0.07

11 8 0.0513 5 0.0315 3 0.0217 2 0.0119 1 0.01

+21 0 0.00150

0 2 4 6 8 10 12 14 16 18 20

0.33

0.22

0.15

0.100.070.050.03

t

H0: Los datos del tiempo entre Arribos se pueden aproximar através de una Distribución Exponencial Negativa.

f(t) = 0.21e- 0.21t

(1/µ) = (Σti.fo)/ Σfo = 714/150 = 4.76 entonces µ = 0.21

Page 33: ejercicios resueltos

33

UNI-FIIS<Investigación Operaciones II> 65

t ProbTeor (fo - Ei)2/Ei1 50 0.3440 51.60 0.0503 33 0.2252 33.78 0.0185 22 0.1481 22.22 0.0027 15 0.0973 14.60 0.0119 11 0.0618 9.27 0.323

11 8 0.0419 6.29 0.468

13 5 0.0275 4.1315 3 8 0.0181 2.72 6.84 0.19717 2 0.0119 1.7919 1 0.0078 1.17

+21 0 3 0.0164 2.46 5.42 1.077150 1.0000 150.00 2.146

Ei=npiFrec

P(0 ≤ ti < 2) = ∫020.21e- 0.21tdt = - e- 0.21t |0

2=0.3440

P(2 ≤ ti < 4) = ∫240.21e- 0.21tdt = - e- 0.21t |2

4=0.2252

...

P( ti ≥ 21) = 1 - ∫020

0.21e- 0.21tdt = 1 – (e- 0.21t )|0

20=0.0164

UNI-FIIS<Investigación Operaciones II> 66

Respuesta Ejemplo 2 ...Respuesta Ejemplo 2 ...• Determinamos #gl = 8 – 1 – 1 = 6• De Tablas determinamos :

χχt2 (95%,6) = 12.6

• Como :

χχc2 << χχt

2 aceptamos H0:

Page 34: ejercicios resueltos

34

UNI-FIIS<Investigación Operaciones II> 67

RecomendacionesRecomendaciones• Dada una muestra de tamaño n para una

variable aleatoria, se puede utilizar la Fórmula de Sturges para aproximar el número de intervalos en los que se les puede agrupar :

• K = 1 + 3.3 log n• Dado que se tienen que aproximar los parámetros

de la distribución de probabilidad teórica, se pueden utilizar las siguientes relaciones :

• Med(x) = (Σ xi.Foi) / n y • Var(x) = [Σ xi

2.Foi – n.Med2(x)] / (n – 1)

UNI-FIIS<Investigación Operaciones II> 68

Ejemplo 3• Construir una función generadora de valores

aleatorios para la siguiente función de distribución de probabilidades (fdp):

f

20 a

a

x

Page 35: ejercicios resueltos

35

UNI-FIIS<Investigación Operaciones II> 69

Cálculo de “a”: Por condición de una fdp, el área bajo la curva de f en su dominio debe ser 1.Entonces (1/2)(a)(a) + (1/2)(a)(2-a) = 1

(1/2)[a2 + 2a - a2] = 1 a = 1

Determinación de la regla de correspondencia de f:

f =

F =

x si x e [0,1]

-x + 2 si x e <1,2]

x2/2 si x e [0,1]

1 – (1/2)(2-x)2 si x e <1,2]

Una vez definida f determinamos la función de distribución acumulada F

UNI-FIIS<Investigación Operaciones II> 70

• Graficamos la función acumulada F

1 2

1/2

1F

x

#r

x

Como F es monótona entonces tiene inversa, F(x) = #r :i. x2/2 = #r vii. 1 – (1/2)(2-x)2= #rDespejando x en función de #r:i. x = 2#r ii. x = 2 - 2(1- #r)Luego 0 x 1 0 2#r 1

0 #r 1/22#r si #r e [0,1/2]

2 - 2(1- #r ) si #r e <1/2,1]x =

Page 36: ejercicios resueltos

36

UNI-FIIS<Investigación Operaciones II> 71

Ejemplo 4• Loas alumnos de la FIIS están distribuidos entre 60% para la

especialidad de Industriales y 40% para la especialidad de Sistemas. Se desea simular la cantidad de alumnos de la especialidad de Sistemas que figuran dentro del arribo de un grupo de cuatro alumnos.

• Estamos al frente de un comportamiento Binomial, el cual simulamos a través de comportamientos Bernoulli.

e = ~ Bern (p=2/5)0 si #r > 2/51 si #r < 2/5

x = ~ Bin (n=4, p=2/5)4

1ie∑

s I I I

UNI-FIIS<Investigación Operaciones II> 72

Mecanismos de control de Tiempo Mecanismos de control de Tiempo de la Simulaciónde la Simulación

• Dado que la ejecución de eventos en una PC es secuencial, estos mecanismos permiten controlar la cadena de eventos presente y futura durante la ejecución de la simulación.

• En los sistemas discretos los eventos que influyen sobre el sistema ocurren en puntos específicos en el tiempo, no en forma continua, de allí que mas importante será el mecanismo de control de tiempo variable, cuyo tiempo se incrementa en función de los momentos en los que se da la ocurrencia del evento.

Page 37: ejercicios resueltos

37

UNI-FIIS<Investigación Operaciones II> 73

EjemploEjemplo• Se está diseñando una máquina

para inyectar líquido a envases de diferentes capacidades, y tiene una línea de producción. Eventualmente se derramarálíquido de los envases, esto se da por la capacidad variable de los envases y/o por el error de la cantidad inyectada del líquido.

• Se desea incluir un recipiente (contenedor) en la máquina para recibir el líquido derramado, y que éste no se disperse en el piso. Si se tienen producciones de hasta 10,000 envases, calcule el tamaño del contenedor para la máquina inyectora.

UNI-FIIS<Investigación Operaciones II> 74

Ejemplo ...Ejemplo ...• Se conocen las siguientes características del proceso y de la

máquina:– La cantidad de l íquido que se inyecta no siempre es exacta, se

comporta como una V. A. normal con media igual a la cantidad ideal a inyectar en el envase y desviación estándar igual al 1% de esa cantidad ideal.

– Los envases tampoco tienen una capacidad única sino que varían por defectos de forma y de fabricación. La capacidad de los recipientes es de 1.05 (de la cantidad ideal a inyectarle) y tienen una desviación estándar del 5% de su capacidad total . La posibilidad m áxima del defecto es de un 10% de la especificada como capacidad media.

• Construya un programa en C++, Pascal o en cualquier otro lenguaje para determinar el tamaño del recipiente que se requiere.

• Se pueden manejar envases con capacidades de inyecccióndesde 200 ml hasta 1.5 litros. Haga su cálculo tomando en cuenta que llenará envases de 330 ml.

Page 38: ejercicios resueltos

38

UNI-FIIS<Investigación Operaciones II> 75

Diagrama de Diagrama de BloquesBloques

DETERMINARREBASAMIENTO

SIMULAR LLENADOLINEA 1

SIMULAR LA CAPACIDADDE LA BOTELLA A LLENAR

SIMULAR LA CANTIDAD A INYECTAR

ENVIO DE BOTELLAS

ACUMULAR CANTIDADREBASADA

FIN

UNI-FIIS<Investigación Operaciones II> 76

PseudocPseudocóódigodigo del programa para del programa para el Ejemploel Ejemplo

• Se generan los valores aleatorios que se necesitan.• Se genera la capacidad de la botella que llega a la línea.

– Con una variable aleatoria normal con med =1.05 (330 ml) y desv.est.= 5% de 1.05(330 ml.)

• Se generan las cantidades inyectadas en la línea .– Con una variable normal con med=330 ml y desv.est.= 1%(330 ml.)

• Se corrigen los valores que se aportan por las limitaciones físicas.– Para la inyección hasta un total de 2 litros inyectados(por falla)– Para la capacidad hasta un 10% del especificado como valor medio

(1.05*330 ml.)• Se calculan las cantidades rebasadas en cada caso.

– Inyectado - envasado (en el cado que inyectado > envasado)

Page 39: ejercicios resueltos

39

UNI-FIIS<Investigación Operaciones II> 77

Tiempoentre

Arribos (t)

Cola

Servicio

Población

SISTEMA DE COLASSISTEMA DE COLAS

Arribos

Tiempo deServicio

Politica deservicio

UNI-FIIS<Investigación Operaciones II> 78

Premisas para el estudio de un Premisas para el estudio de un Sistema de ColasSistema de Colas

• Un sistema de colas puede ser analizado en función de sus tasas de arribo y de servicio, variables cuyo comportamiento puede ser aleatorio.

• Para nuestro estudio consideraremos que los arribos se ajustan a una distribución de Poisson con tasa media λ o tiempo entre arribos Exponenencial con tasa media 1/λ.

• Los tiempos de servicio son Exponenciales con tasa media µ.

Page 40: ejercicios resueltos

40

UNI-FIIS<Investigación Operaciones II> 79

CONDICIONESINICIALES

LC = LC+ 1

GENERAR TA

SUMTA = SUMTA + TA

SERVICIODISPONIBLE ?

COLA =0 ? COLA =0 ?

TOT = TOT + 1 LC = LC - 1TET = TET + LC

GENERAR TS

SE OCUPASERVICIO

SI NO

NOSI

NO

SI

A

C

B

Para t=0arriba el 1er Cliente

Tiempo deArribo

Tiempo deServicio

Longitud dela Cola

Tiempo EsperaTotal

Mecanismo de Control de Mecanismo de Control de Incremento FijoIncremento Fijo

RELOJ = RELOJ +1

VERIFICARTS

TS =TS - 1 TS = TS - 1

COMPARARRELOJ::SUMTA

TS > 1 TS = 1

SEDESOCUPASERVICIO

TS = 0

A

B C

RELOJ < SUMTA RELOJ = SUMTA

UNI-FIIS<Investigación Operaciones II> 80

TS1

TS2

TS3

TS4

TO1

TE3

TE4

TE5

c1

c2

c3

c4

c5

0

TA2 TA3 TA4 TA5 TA6

TS5

TE6

SUMTA2SUMTA3

SUMTA4

c6

SUMTA1

Page 41: ejercicios resueltos

41

UNI-FIIS<Investigación Operaciones II> 81

Mecanismo de Control de Mecanismo de Control de Incremento VariableIncremento Variable

CONDICIONESINICIALES

GENERAR TA

TA = TA - TE

GENERAR TS

TS = TA ?

TS < TA ?TE = 0

TO = 0TE = 0

TO = TA - TS

TOT = TOT + TO

TO = 0

TE = TS - TA

TET = TET + TE

SI NO

SI NO

Tiempode Arribo

Tiempo deServicio

Tiempo deEspera

TiempoOcioso

TiempoOcioso Total

Tiempo deEspera Total

Para t=0arriba el 1er Cliente

UNI-FIIS<Investigación Operaciones II> 82

TS1

TS2

TS3

TS4

TO2=TA2-TS1TE2=0 TE3

TE4

TE5

c1

c2

c3

c4

c5

0

TA2 TA3 TA4 TA5 TA6

TS5

TE6

TA2 =TA2 – TE1

TA3 =TA3 – TE1

TA5=TA5 –TE4

c6

TE3=TS2-TA3T03=0

TA4 =TA4 – TE3

TE4=TS3-TA4T04=0

TE5=TS4-TA5T05=0

Page 42: ejercicios resueltos

42

UNI-FIIS<Investigación Operaciones II> 83

Ejemplo : Modelo SimulaciónEjemplo : Modelo Simulación• Una Compañía de carga recepciona sus camiones

que llegan en forma aleatoria en una terminal para descarga. Después de analizar los datos históricos se ha concluído que el número de llegadas diarias de camiones se comporta de acuerdo a una distribución de Poisson con tasa media de 3 camiones por día. El peso de la carga de cada camión es un factor importante en lo referente al tiempo de descarga. Se ha comprobado con los registros pasados que los pesos de la carga estan distribuídos normalmente con media 30 mil lbs. Y una desviación estándar de 5 mil lbs. Para la descarga se cuenta con cuadrillas cuya capacidad de descarga en lbs por hora es variable y función del tipo de carga.

• La frecuencia de cada tipo de carga y la velocidad de descarga de las cuadrillas se muestran en la tabla siguiente :

UNI-FIIS<Investigación Operaciones II> 84

Modelo Simulación ....Modelo Simulación ....• Una cuadrilla consta de 3 personas: 1operador

de elevador de carga a quien se le paga 4$/Hry dos obreros a quienes se les paga 2.50 $/Hr. La política de la Cia. es descargar en el día todos los camiones que arribaron el día anterior sin importar los costos de tiempo extra implícitos. El contrato del sindicato demanda una bonificación del 50% por horas extras fuera de la jornada de trabajo de 8 Hr diarias.

– Con base a una simulación de 10 días determine cuantas cuadrillas se requieren para reducir al mínimo los costos totales de descarga.

– Si aplicaramos la política de que los camiones deben descargarse el mismo día de su llegada en lugar del día siguiente, y que la tasa media de llegadas sube a 4 Cam/Día Cuántas cuadrillas se requerirán para reducir al mínimo los costos totales de descarga.

0 51 152 223 224 175 116 57 3

100

Nro Camiones

Frec

A 40 8000B 35 7000C 25 5000

Veloc.Descarga Lb/hr x Cuadrilla

Tipo Carga Frec

Page 43: ejercicios resueltos

43

UNI-FIIS<Investigación Operaciones II> 85

Modelo SimulaciónModelo SimulaciónGenerar Nro

Camiones (NCM)Arriban x Día

Generar TipoCarga x Camión

Generar PesoCarga x Camión

Calcular Costo Descarga (CD)

Asignar NroCuadrillas (NCD)

NDias=NDias + 1

Ndias=10 ?NO

TotCD=TotCD+CD

Imprimir x DíaValores Generadosy Costo Descarga

Imprimir Ndias,Nro Cuadrillasy Costo Total Descarga

SI

Definir Plan Trabajo

TotCDTotCD

NCDNCD

1 2 3 4 5 61 2 3 4 5 6

C1C1

C2C2C3C3

C5C5

C6C6

UNI-FIIS<Investigación Operaciones II> 86

Indicadores InicialesIndicadores Iniciales• Nro arribos ~ Poisson (λ) o

Tpo entre arribos ~ Exponencial (1/λ)

• Tiempo servicio ~ Exponencial (1/ µ)• Por lo tanto :

– Tasa arribo λ y tasa de servicio µ– Factor de ocupación del Stma. ρ = (λ/µ)– Probabilidad que Stma.vacio P0 = 1– (λ/µ)

– Porcentaje de Tiempo Ocioso del Servicio 100P0

Page 44: ejercicios resueltos

44

UNI-FIIS<Investigación Operaciones II> 87

Estructuras de los Sistemas de ColaEstructuras de los Sistemas de Cola• 1cola/1servidor/Pobl.NoFinita

• 1cola/1servidor/Pobl.Finita(k)

• 1cola/MúltiplesServ. (s)Paralelo/Pobl.NoFinita

• 1cola/MúltiplesServ. (s)Paralelo/Pobl.Finita(k)

• 1cola/MúltiplesServ. (s)Serie/Pobl.NoFinita

kk

s1

kk

s2

s1

s2

s1 s2

s

s

s

µλ

λ

λ

λ

λ

µ

µ

µµ

µ

µµ

µ1 µ2 µs

s1

s1

UNI-FIIS<Investigación Operaciones II> 88

Determinación de la Probabilidad de que en Determinación de la Probabilidad de que en el el StmaStma. existan . existan nn usuariosusuarios

• Sea Pn la probabilidad de que existan n usuarios en el sistema al final del tiempo t, uno de ellos siendo atendido y los otros esperando en cola.

• La probabilidad de que llegue 1usuario en el tiempo ∆t es igual a λ∆t

• La probabilidad de que 1usuario termine de ser atendido en ∆t es igual a µ∆t

• Para determinar la probabilidad de que existan n usuarios en el tiempo t+ ∆t, consideramos lo siguiente:– Que existan n usuarios al final del tiempo t. que no llegue ni se vaya

nadie en ∆t Pn(t)[1- λ∆t][1- µ∆t] ........ (1)– Que existan n usuarios al final del tiempo t, que llegue y se vaya 1 en ∆t

Pn(t)[λ∆ t][µ∆ t] ..................(2)– Que existan n-1 usuarios al final del tiempo t, que llegue 1 y no se vaya

nadie en ∆t Pn-1(t)[λ∆t][1- µ∆t] ...........(3)– Que existan n+1 usuarios al final del tiempo t, que no llegue nadie y se

vaya 1 en ∆t Pn+1(t)[1- λ∆ t][µ∆t] ...........(4)

Page 45: ejercicios resueltos

45

UNI-FIIS<Investigación Operaciones II> 89

Continuación ....Continuación ....• Luego sumando (1)+(2)+(3)+(4) tenemos:

Pn (t+∆t) = Pn(t)[1- λ∆t][1- µ∆t] + Pn(t)[λ∆t][µ∆t] + Pn-1(t)[λ∆t][1- µ∆t] + Pn+1(t)[1- λ∆t][µ∆t]

• Agrupando términos y eliminando los factores (∆t)2, tenemos :Pn (t+∆t) - Pn (t) = λPn -1(t) – (λ+µ) Pn(t) + µPn+1(t)

∆t

• Pero como el tiempo transcurrido desde la ocurrencia del último evento no tiene efecto en el tiempo restante hasta que ocurre el evento siguiente (propiedad “del olvido” de la func. exponencial):Pn (t+∆t) - Pn (t) = 0 entonces λPn-1 – (λ+µ) Pn + µPn+1 = 0

• Finalmente, agrupando términos obtenemos :Pn+1 = (- λ/µ)Pn -1 + [ (λ+µ)/µ ]Pn .................... (ß)

UNI-FIIS<Investigación Operaciones II> 90

Continuación ....Continuación ....• Similarmente para determinar la probabilidad de que exista un us uario

en el sistema :– No existen usuarios al final del tiempo t y no llega nadie en ∆t

P0 (t)[λ∆t]– Existe 1 usuario al final del tiempo t, no llega nadie y se va 1 en ∆t

P1 (t)[1- λ∆t][µ∆t]• Agrupando términos, eliminando los factores (∆t)2 y aplicando la

propiedad “del olvido” tenemos que :– λP0 + µP1 = 0 entonces P1 = (λ/µ)P0 ...... (d)

• De (ß) y (d) :– para n=1 P2 = (λ/µ)2 P0

– para n=2 P3 = (λ/µ)3 P0

– Para n=3 P4 = (λ/µ)4 P0

– generalizando Pn = (λ/µ)n P0

Page 46: ejercicios resueltos

46

UNI-FIIS<Investigación Operaciones II> 91

Probabilidades relevantesProbabilidades relevantes• Probabilidad de que en el stma. existan más de N usuarios:

P(n>N) = PN+1+PN+2+PN+3+PN+4 ....... = (λ/µ)N+1P0 + (λ/µ)N+2P0 + (λ /µ)N+3P0 + ........= P0 [(λ/µ)N+1+ (λ /µ)N+2+ (λ/µ)N+3+ ........ ]= P0 [ (λ /µ)N+1/ [1- (λ /µ)] ] luego P(n>N) =(λ/µ)N+1

• Probabilidad de que existan n usuarios en cola :Pn Cola = Pn+1 Stma entonces Pn cola = (λ/µ)N+1P0

• Probabilidad de que la cola este vacía :P~ Cola = P0 + P1 entonces P~ Cola = 1 - (λ/µ)2

UNI-FIIS<Investigación Operaciones II> 92

Sistema: 1 Cola/1 Servidor/Población No Sistema: 1 Cola/1 Servidor/Población No FinitaFinita

• Número esperado de usuarios en el sistema (NEUS):

NEUS = S i.Pi = 0P0 +1P1+ 2P2+ 3P3+ 4P4+ 5P5+ ....s.q.

• Número esperado de usuarios en la cola (NEUC):

NEUC = 0P0 +1P2+ 2P3+ 3P4+ 4P5+ 5P6+ ....

s.q.

NEUSλ

µ λ=

2

( )N E U C

λµ µ λ

=−

λ < µ

λ < µ

Page 47: ejercicios resueltos

47

UNI-FIIS<Investigación Operaciones II> 93

• Tiempo esperado de paso de un usuario en cola (TEPUC):TEPUC = (1/ µ)NEUS

• Tiempo esperado de paso de un usuario en el sistema (TEPUS):TEPUS = TEPUC + Tpo.Servicio = λ/µ(µ-λ) + 1/ µ

( )TEPUC

λµ µ λ

=−

1TEPUS

µ λ=

UNI-FIIS<Investigación Operaciones II> 94

Costo de Paralización y de ServicioCosto de Paralización y de Servicio• Costo Total de Paralización :CTP = (TasaArribo)(TpoTurno)(TpoEsperPasoUsuarioStma)(CostoParalizxUnidTpo)

CTP = ( ? ) . ( Tpo ) . ( TEPUS ) . ( CPu )(cl/ut) ( ut ) ( ut/cl ) ( $/ut )

• Costo Total de Servicio :CTS = (TasaServicio) (TpoTurno)(CostoServicioxUsuario)

(cl/ut) (ut) ($/cl)CTS = (TpoTurno)(CostoServxUnidTpo)

(ut) ($/ut)

• Costo Total de Atención del SistemaCTAS = CTP + CTS

CTAS

CTS

CTP

µµ

CTCT

µµ0

CC00

Page 48: ejercicios resueltos

48

UNI-FIIS<Investigación Operaciones II> 95

Problema de Colas• Fotografías tomadas desde 1 helicóptero mostraron

que en promedio había 80 autos circulando en el carril de alta velocidad sobre un tramo de 1 milla de una vía rápida urbana. En meses recientes habían ocurrido cierto número de accidentes en ese tramo y que han sido atribuidos al manejo a corta distancia del auto delantero. Si para plena seguridad la distancia entre los autos recomendable debería ser de cuando menos 30 pies, en ese tramo y sobre ese carril, que % de los autos corre a una distancia demasiado corta del delantero. Considere que la cantidad de autos sobre el tramo de la vía en cuestión se ajusta a una distribución de Poisson.

UNI-FIIS<Investigación Operaciones II> 96

dd11

dd22

λ = 80 autos/milla

1 milla = 5280 piesddi i ≥ 30 pies

n ~ Poisson (λ)

d ~ Expon (1/λ)P(d < 30) = ∫030

(80/5280)e- (80/5280)d dd= 1 - e- 30/66 = 0.37

Ptto. el 37% de los autos van a una distancia no recomendable.

Page 49: ejercicios resueltos

49

UNI-FIIS<Investigación Operaciones II> 97

Problema 2• El departamento para caballeros de un gran almacén tiene un sastre

para ajustar los trajes adquiridos por los clientes. Parece que el número de clientes que solicitan ajustes sigue una distribución de Poisson con una tasa media de llegadas de 24 cli/hora. Los ajustes se realizan del tipo primero en llegar primero en ser atendido. Los clientes siempre desean esperar, ya que las modificaciones son gratis. Aparentemente el tiempo que se tarda en realizar un ajuste se distribuye exponencialmente con media 2 minutos entre clientes. Calcular:

• Número promedio de clientes en la sala de ajustes.• Cuanto tiempo tiene que esperar un cliente en la sala de ajustes.• Porcentaje de tiempo que permanece ocioso el sastre.• Cual es la probabilidad de que un cliente espere los servicios del

sastre más de 10 minutos.• Cuanto tiempo deben esperar los clientes por los servicios del sastre.

UNI-FIIS<Investigación Operaciones II> 98

• Tiempo medio entre llegadas:

• Tiempo medio de servicio:

• Factor de utilización u ocupación:

– Número medio de clientes en la sala:

– Tiempo medio de espera en el sistema:

– Factor de ocio = 1 – Factor de utilización = 0,2

21

21

=⇒= µµ

min

8,054

522 ==⋅==

µλ

p

44

541

51

=−

=− pp

10

52

21

11 =−

=−λµ

5224 cli==

horaλ

Page 50: ejercicios resueltos

50

UNI-FIIS<Investigación Operaciones II> 99

– El 80 % del tiempo, el sastre está ocupado, y el 20% está ocioso.

– probabilidad de que un cliente espere los servicios del sastre más de 10 minutos.

– Tiempo medio de espera en cola:

29,054

)10()

5

2

2

1(10

)(10 ==⋅=>−−

−− eeptP esperaλµ

8

21)

541(54

)1(=

−=

− µpp

UNI-FIIS<Investigación Operaciones II> 100

Problema 3Una carnicería es atendida por el propietario de la misma. Aparentemente el patrón de llegada de los clientes durante los sábados se comporta siguiendo una distribución de Poisson con una tasa promedio de llegadas de 10 personas por hora. A los clientes se les atiende siguiendo una política FIFO, y debido al prestigio de la tienda, los clientes siempre están dispuestos a esperar su turno. Se estima que el tiempo que se invierte en atender a un cliente se distribuye exponencialmente con un tiempo de servicio medio de 4 minutos entre clientes. Obtener:

• Probabilidad de que se cree una cola de espera.• Longitud media de la cola.• Tiempo esperado de permanencia en cola por cliente.• Probabilidad de que un cliente permanezca menos de 12 minutos en

la tienda.

Page 51: ejercicios resueltos

51

UNI-FIIS<Investigación Operaciones II> 101

• Tiempo medio entre llegadas:

• Tiempo medio de servicio:

• Factor de utilización:

– Existirá cola cuando en el sistema haya más de 1 cliente.

– Probabilidad de 0 clientes en el sistema:

– Probabilidad de 1 cliente en el sistema:

– Probabilidad de más de 1 cliente en el sistema:

61

6110

===min

personahorapersonas

λ

41

41

=⇒= µµ

min

)(1)1( 10 PPNP +−=>

31)1(0

0 =−= ppP

92

31

32

)1(11 ==−= ppP

94)

92

31(1)1( =+−=>NP

3

2

4161

===µλ

p

UNI-FIIS<Investigación Operaciones II> 102

• Longitud media de la cola:

• Tiempo medio de espera en cola:

• Probabilidad de que un cliente permanezca menos de 12 minutos en la tienda:

)12(1)12( ≥−=< esperaespera tPtP

34

321

)32(

1

22

=−

=− pp

8

41)

321(32

)1(=

−=

− µpp

1)61

41

(12 )(12

32

32

)12( −−−−− ===≥ eepetP esperaλµ

Page 52: ejercicios resueltos

52

UNI-FIIS<Investigación Operaciones II> 103

Problema 04• El empleado de una ventanilla observa que de cada

100 veces que cuenta los clientes frente a el, en 64 de las veces hay dos o mas clientes. El tiempo promedio que cada cliente permanece desde que se ubica en la cola hasta que es atendido es de aproximada-mente 30 minutos. Calcular la probabilidad de que :– lleguen dos (2) clientes en media hora.– lleguen entre dos(2) y cinco(5) clientes en media hora.– transcurra mas de una (1) hora entre el arribo de un cliente y el

siguiente.

Ventanilla

λ

UNI-FIIS<Investigación Operaciones II> 104

p(n>n0) = 64/100 = (λ/µ)/µ)nn0+1 +1 , entoncesp(n> 1) = 64/100 = (λ/µ)2 , entonces

λ/µ = 8/10 = 4/5 ….… (1)

Luego TEPUS = 1/ (µ- λ) = ½½ hora/cliente, entonces1/ (µ-λ) = 1 media hora/cliente, entonces

µ-λ = 1 …….... (2)

Resolviendo (1) y (2) : µ- (8/10) µ = 1 , entoncesµ = 5 cl/hor y λ = 4 cl/hor

Finalmente :a. p(x=2) = (4)2e-4/2! = 8e-4

b. p(2<x<5) = p(x=3) + p(x=4) = (4)3e-4/3! + (4)4e-4/4! c. p(t>2) = 1 - ∫0

2(4)e- 4t dt = 1 - [1- e-8] = e-8

Page 53: ejercicios resueltos

53

UNI-FIIS<Investigación Operaciones II> 105

Problema 5• El inventario de un almacén se agota y se vuelve

a surtir según una distribución de Poisson. Los tiempos medios entre vaciados y resurtidos son iguales a 1/µ y 1/λ respectivamente. Suponga que por cada unidad de tiempo que el inventario esta vacío se incurre en un costo de escasez (Ce), y en un costo de almacenamiento (Ca) por cada unidad de tiempo que en el almacén se mantiene un determinado inventario. Si Ce > Ca, determine:– Una expresión para el costo total esperado por unidad

de tiempo– El valor óptimo de ρ = λ /µ

UNI-FIIS<Investigación Operaciones II> 106

tpo. surtir inventario = 1/λ ~ Exp

tpo. agotar inventario = 1/µ ~ ExpCT inventario = Costo escasez + Costo almacenamiento

= P0 * Ce + Inventario*Ca= (1- λ/µ)(Ce) + (NEUS)(Ca)= (1-ρ)Ce + [λ /(µ- λ )]Ca= (1- ρ)Ce + [ρ /(1- ρ)]Ca= [(1- ρ)2Ce + ρ Ca]/(1- ρ)

dCTi = [2(1- ρ)(Ce)(-1)+Ca](1- ρ) - (-1)[(1- ρ)2Ce+ ρ Ca]

dρ (1- ρ)2

dCTi = [-2(1- ρ)2(Ce)+Ca(1- ρ) +(1- ρ)2Ce+ ρ Cadρ (1- ρ)2

dCTi = Ca - (1- ρ)2Ce = Ca - Ce para determinar el ρ óptimo hacemos dρ (1- ρ)2 (1- ρ)2

dCTi = 0 entonces Ca - Ce = 0 luego (1- ρ)2 = Ce/Ca ρ = 1 - Cadρ (1-ρ)2 Ce

Page 54: ejercicios resueltos

54

UNI-FIIS<Investigación Operaciones II> 107

Problema 6• En un consultorio médico los pacientes

toman asiento en la sala de espera hasta que les corresponda su turno de atención. En promedio llegan 4 pacientes por hora según una distribución de Poisson, y entre cada atención transcurre un tiempo promedio de 12 minutos, según una distribución Exponencial. Cuantas sillas como mínimo serán necesarias en la sala de espera para que se tenga un 90% de probabilidad o más de que todos los pacientes esperen sentados.

UNI-FIIS<Investigación Operaciones II> 108

Problema 7• A un cajero automático llegan 3 tipos diferentes de

clientes. Clientes de retiro, de deposito y de consulta. Los de retiro se ha determinado llegan 12 cli/hora promedio y son atendidos a razón de 2 min/clipromedio; los clientes de deposito arriban en un tiempo promedio de 5 cli/hora y demoran 3 min/cli en realizar su operación como tiempo promedio. Los clientes de consulta llegan en promedio 8 cli/hora y la realizan en un promedio de 1 min/cli . Si todas las llegadas se ajustan a una distribución de Poisson y todos los tiempos entre servicios a una distribución exponencial, hallar la probabilidad de que no existan usuarios en cola.

Page 55: ejercicios resueltos

55

UNI-FIIS<Investigación Operaciones II> 109

Preguntas sobre elsistemas de colas …